
 Open access  Posted Content  DOI:10.1101/603688

Involvement of multiple influx and efflux transporters in the accumulation of
cationic fluorescent dyes by Escherichia coli — Source link 

Srijan Jindal, Lei Yang, Philip J. R. Day, Douglas B. Kell

Institutions: University of Manchester, Technical University of Denmark

Published on: 09 Apr 2019 - bioRxiv (Cold Spring Harbor Laboratory)

Related papers:

 
Involvement of multiple influx and efflux transporters in the accumulation of cationic fluorescent dyes by
Escherichia coli

 
Assays for Analyzing the Role of Transport Proteins in the Uptake and the Vectorial Transport of Substances
Affecting Cell Viability.

 
Overexpressed maltose transporters in laboratory and lager yeasts: Localization and competition with endogenous
transporters

 
Endogenous, cholesterol-activated ATP-dependent transport in membrane vesicles from Spodoptera frugiperda
cells

 Mutational scanning of the human serotonin transporter reveals fast translocating serotonin transporter mutants.

Share this paper:    

View more about this paper here: https://typeset.io/papers/involvement-of-multiple-influx-and-efflux-transporters-in-
p1ivc73bmk

https://typeset.io/
https://www.doi.org/10.1101/603688
https://typeset.io/papers/involvement-of-multiple-influx-and-efflux-transporters-in-p1ivc73bmk
https://typeset.io/authors/srijan-jindal-1wrdp111ko
https://typeset.io/authors/lei-yang-3e1xbcjqhh
https://typeset.io/authors/philip-j-r-day-3b4zhoxbmb
https://typeset.io/authors/douglas-b-kell-2gdt71r0xt
https://typeset.io/institutions/university-of-manchester-34928rha
https://typeset.io/institutions/technical-university-of-denmark-1d4srdmh
https://typeset.io/journals/biorxiv-318tydph
https://typeset.io/papers/involvement-of-multiple-influx-and-efflux-transporters-in-2jma22pdxl
https://typeset.io/papers/assays-for-analyzing-the-role-of-transport-proteins-in-the-56zi46dqbi
https://typeset.io/papers/overexpressed-maltose-transporters-in-laboratory-and-lager-25oo5pxt2s
https://typeset.io/papers/endogenous-cholesterol-activated-atp-dependent-transport-in-1ny6gjien2
https://typeset.io/papers/mutational-scanning-of-the-human-serotonin-transporter-bo5rlo2tqn
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/involvement-of-multiple-influx-and-efflux-transporters-in-p1ivc73bmk
https://twitter.com/intent/tweet?text=Involvement%20of%20multiple%20influx%20and%20efflux%20transporters%20in%20the%20accumulation%20of%20cationic%20fluorescent%20dyes%20by%20Escherichia%20coli&url=https://typeset.io/papers/involvement-of-multiple-influx-and-efflux-transporters-in-p1ivc73bmk
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/involvement-of-multiple-influx-and-efflux-transporters-in-p1ivc73bmk
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/involvement-of-multiple-influx-and-efflux-transporters-in-p1ivc73bmk
https://typeset.io/papers/involvement-of-multiple-influx-and-efflux-transporters-in-p1ivc73bmk


RESEARCH ARTICLE Open Access

Involvement of multiple influx and efflux
transporters in the accumulation of cationic
fluorescent dyes by Escherichia coli
Srijan Jindal1,2,3, Lei Yang4, Philip J. Day2,3 and Douglas B. Kell1,2,4,5*

Abstract

Background: It is widely believed that most xenobiotics cross biomembranes by diffusing through the
phospholipid bilayer, and that the use of protein transporters is an occasional adjunct. According to an alternative
view, phospholipid bilayer transport is negligible, and several different transporters may be involved in the uptake
of an individual molecular type. We recognise here that the availability of gene knockout collections allows one to
assess the contributions of all potential transporters, and flow cytometry based on fluorescence provides a
convenient high-throughput assay for xenobiotic uptake in individual cells.

Results: We used high-throughput flow cytometry to assess the ability of individual gene knockout strains of E coli
to take up two membrane-permeable, cationic fluorescent dyes, namely the carbocyanine diS-C3(5) and the DNA
dye SYBR Green. Individual strains showed a large range of distributions of uptake. The range of modal steady-state
uptakes for the carbocyanine between the different strains was 36-fold. Knockouts of the ATP synthase α- and β-
subunits greatly inhibited uptake, implying that most uptake was ATP-driven rather than being driven by a
membrane potential. Dozens of transporters changed the steady-state uptake of the dye by more than 50% with
respect to that of the wild type, in either direction (increased or decreased); knockouts of known influx and efflux
transporters behaved as expected, giving credence to the general strategy. Many of the knockouts with the most
reduced uptake were transporter genes of unknown function (‘y-genes’). Similarly, several overexpression variants in
the ‘ASKA’ collection had the anticipated, opposite effects. Similar results were obtained with SYBR Green (the range
being approximately 69-fold). Although it too contains a benzothiazole motif there was negligible correlation
between its uptake and that of the carbocyanine when compared across the various strains (although the
membrane potential is presumably the same in each case).

Conclusions: Overall, we conclude that the uptake of these dyes may be catalysed by a great many transporters of
putatively broad and presently unknown specificity, and that the very large range between the ‘lowest’ and the
‘highest’ levels of uptake, even in knockouts of just single genes, implies strongly that phospholipid bilayer
transport is indeed negligible. This work also casts serious doubt upon the use of such dyes as quantitative stains
for representing either bioenergetic parameters or the amount of cellular DNA in unfixed cells (in vivo). By contrast,
it opens up their potential use as transporter assay substrates in high-throughput screening.
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Background
The presence, number, nature, and physiological status of

bacteria is widely assessed using fluorescent dyes [1–9].

Some of these stain particular molecules or macromole-

cules such as DNA [10], protein [11] or lipid [12], while

others reflect physiological variables such as pH, the

concentrations of other ions and small molecules, or the

extent of membrane energisation [13]. In some cases (e.g.

[6, 8]), cells are permeabilised before staining, such that

the natural ability of stains to reach their intracellular tar-

gets is not an issue. However, studies of in vivo physiology

[9, 14–16] necessarily require that native, intact cells are

used. In Gram-negative cells, entry to the periplasm is me-

diated via porins [17], which can affect the ability of stains

such as rhodamine 123 and other cations to be accumu-

lated [18–20], while intracellular concentrations of stain

may also be modified by the activities of influx and efflux

transporters.

Although it is often assumed and stated that intact cells

take up xenobiotics mainly according to their hydrophobi-

city (lipophilicity) [21–23], and generally by ‘passive diffu-

sion’ through the limited phospholipid bilayer areas that

exist, an abundance of evidence indicates that this is not

in fact the case [24–26] and that ‘phospholipid bilayer

transport is negligible’ [27]. Those xenobiotics that pass

through the membrane, which necessarily include xeno-

biotic fluorescent probes, must thus be taken up by

protein-based transporters, and the question arises as to

which ones [28, 29]. In mammalian cells, for instance,

fluorescein can be transported by an active monocarboxyl-

ate transporter [30].

Since the amount of fluorescence is often used as a

quantitative indicator of the amount of the relevant

determinand, it is obvious that the involvement of such

transporters might significantly obscure the true values

that would result if transporter-mediated membrane

permeability or translocation was not occurring or was

kinetically irrelevant. An early indication of this was the

recognition that the apparent failure of ethidium brom-

ide to stain intracellular DNA inside intact (live) E. coli

cells was almost entirely due to the overwhelming activ-

ity of an efflux pump whose activity was much reduced

at 0 °C [31]. The relevant efflux pumps were not then

identified, but it is now well established that ethidium

bromide is a very good substrate for ‘efflux’ transporters

such as the multisubunit acrAB-tolC complex [32] and

the small molecule resistance (SMR) protein emrE [33].

Concentrative transporters (whether influx or efflux)

need additional sources of free energy. In E. coli these are

typically the energised membrane (often seen as a mem-

brane potential or a protonmotive force [34]) generated

via electron transport (that can also be used to synthesise

ATP), or ATP itself acting directly. The latter is signifi-

cantly more common in prokaryotes [35]. However, it is

often considered that the uptake of more or less lipophilic

cations into bacteria or mitochondria is driven by a

negative-inside membrane potential, whose concentration

ratio reflects it according to the Nernst equation and

thereby allows one to infer it (see Discussion).

Many non-fluorescent drugs, including anti-infectives,

can simply be seen as xenobiotics, and systematic studies

have been performed to see the extent to which the loss of

effluxers (and occasionally of influxers) modulates their

toxicity [36, 37]. In particular, the AcrAB-TolC complex

spans inner and outer membranes, is constitutively

expressed, and is considered to play a major role in multi-

drug resistance [38–42]. Consequently, the activities of ef-

flux transporters are widely recognised both as major

mediators of microbial resistance to antibiotics and as tar-

gets for ameliorating it [43–69]. However, such activities

cannot yet be predicted reliably (e.g. [70–72]). Efflux

transporters are also important in pharmacokinetics, not

least by effecting the export of anticancer drugs in mam-

malian systems (e.g. [53, 73–76]). They can also play im-

portant roles in the biotechnological production of small

molecules and/or their biotransformations [77, 78].

Since efflux transporters are required to remove such

intracellular molecules that have been taken up by cells,

it is reasonable that influx transporters were exploited to

get them there in the first place [24–27]. However, in

the case of bacteria, knowledge of the specific influx and

efflux transporters for individual xenobiotics is surpris-

ingly limited, albeit many efflux transporters can be

quite promiscuous [79–81].

Although they can be interfered with by coloured

compounds [82], an understanding of the transporters

used in the uptake and efflux of fluorescent probes in in-

tact microbial cells is of interest for a number of reasons:

(i) as with mammalian cells [83–86], they can provide

substrates for competitive or trans-stimulation-type

uptake assays, (ii) they provide examples of substrates

that can be used in the development of quantitative

structure-activity relationships (QSARs) for the effluxers

themselves, and (iii) they allow us to assess the limita-

tions of any individual fluorescent probe assay where the

expression levels of relevant transporters is not known

or controlled [87]. It is already known that even lipid

stains such as Nile Red [88–91] and membrane energisa-

tion stains such as bis-(1,3-dibutylbarbituric acid tri-

methine oxonol) (commonly known as DiBAC4(3)) are

in fact efflux substrates of acrAB-tolC [92], while other

widely used stains that are effluxed via acrAB-tolC in-

clude the Hoechst dye H33342 [93], berberine [94], resa-

zurin [95], and rhodamine 6G [96]. What is much less

well known is which if any other efflux transporters are

involved, and which influx transporters may have been

responsible for the uptake of such commonly used

fluorophores in the first place.
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Following the systematic genome sequencing of E. coli

K12 strain MG1655 [97], and an equivalent programme in

baker’s yeast [98, 99], it was soon recognised that much sci-

entific value would accrue to the possession of a collection

of single-gene knockouts (of ‘non-essential’ genes), and this

was produced as the ‘Keio collection’ [100–102] http://

ecoli.iab.keio.ac.jp/. Flow cytometry provides a convenient

means of estimating the steady-state uptake of fluorescent

probes in bacteria [9], and while efflux pumps have been

analysed elegantly in this way [44] the combination of flow

cytometry and the Keio collection seemed to provide an

ideal opportunity to assess the contribution of individual

transporter genes (i.e. their products) to the uptake

and efflux of widely used fluorescent probes. We used

TransportdB http://www.membranetransport.org/trans-

porter2.php?oOID=ecol1 [103] to pick out the most

pertinent subset of transporters, to which we added a

few more strains whose knockouts were involved in

ATP synthesis, and report the findings herein. It is

concluded that every probe used can exploit a wide

variety of transporters for both influx and efflux, add-

itional to reporting on their nominal determinand of

interest. This is consistent with the view [27, 29, 104]

that most xenobiotics that enter cells can be taken up

and/or effluxed by multiple transporters of varying

specificities. A preprint has been lodged at bioRxiv

(https://www.biorxiv.org/content/10.1101/603688v1).

Results

Variation of the uptake of a lipophilic carbocyanine cation

3,3′-Dipropylthiadicarbocyanine iodide (IUPAC name(3-

Propyl-2-{(1E,3E,5E)-5-(3-propyl-1,3-benzothiazol-2(3H)-

ylidene)-1,3-pentadien-1-yl}-1,3-benzothiazol-3-ium iod-

ide, Fig. 1), commonly known as diS-C3(5) [105, 106], is a

cationic carbocyanine dye that is accumulated by bacteria

(both Gram-positive and Gram-negative) with energised

membranes. Although culturability is the conventional

metric for bacterial ‘viability’ [107, 108], diS-C3(5) has

been exploited widely in microbiology to detect nominally

‘viable’ bacteria (at least those with intact membranes) in

clinical, laboratory and environmental samples, especially

using flow cytometry (e.g. [109–113]). Metabolising

yeast cells can also accumulate it [114–118]. We note

that the extent of fluorescence is not necessarily fully

linear with concentration because of dye stacking

[105, 106, 119] (and see [120]) but is at least assumed

to be more or less monotonic.

The strategy used to assess diS-C3(5) uptake, gating

on light scattering in ‘forward’ and ‘side’ directions by

the bacteria and assessing uptake via red fluorescence

(which is not interfered with by any autofluores-

cence), is precisely as was described previously [121].

It is obvious (Fig. 2) that even in the wild-type strain

there is considerable heterogeneity in the distribution

of uptake between individual cells; this becomes even

greater for the cells (ΔatpB) lacking the β subunit of

the membrane ATP synthase. Figure 3 shows the

mode fluorescence for the wild type strain and for

knockouts of known transporter and certain other

genes; the wild type and some of these are labelled in

Fig. 3. The dataset (and all the other KOs described

herein) is given in full as an Excel sheet in Additional

file 1: Table S1. (Note that we have strong suspicions

that the supposed tolC knockout was not in fact a

knockout of tolC.) The very great breadth and com-

plex shapes of the distributions is considered to be

underpinned by the significant number of transporters

involved, especially those driven by ATP, and their

heterogeneous expression level distributions between

individual cells [107].

Fig. 1 Chemical structures of some molecules described in this article
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The shape of the curve of Fig. 3 is of interest, with two

major break points, one after the lowest 75 and one before

the highest 15 in terms of their effects on the steady-state

uptake of DiS-C3(5). Several other important features

emerge from this plot (Fig. 3). (i) the range of steady-state

uptake over the family of single-gene knockouts is very

substantial, i.e. some 36-fold between the lowest and high-

est mode uptake, (ii) this range is somewhat asymmetric,

in that the highest values are just two-fold greater than is

that of the wild type (although we cannot exclude trunca-

tion due to fluorescence quenching [105]), while the lowest

value is ~ 18 times lower; (iii) the number of (y-)genes of

unknown function that are uptake transporters (or whose

removal most decreases the uptake of diS-C3(5)), encoded

in red, is far greater than is the number of unknown efflux-

ers (or those whose removal most increases its uptake; the

three highest such y-genes are ygfQ, ydcS and ybbW,

Table 1), (iv) the five highest values include four known

drug effluxers (mdtJ, acrA, mdtI, mdtA), giving confidence

in the strategy; (v) 297 knockouts are higher and 244 lower.

If a cutoff of 50% above or below the WT is taken (fluores-

cence levels < 128,000 or > 384,000), we still have 115

knockouts below and 33 knockouts above these thresholds.

While we do not know which ones are operating under

each condition, this does imply the potential contribution

of a very considerable number of transporters to the

steady-state uptake of the dye, which is, of course, consist-

ent with the very broad range of uptakes of an individual

dye in a given cytogram (Fig. 2); (vi) even if all of the up-

take in the most ‘potent’ knockout was through the

phospholipid bilayer, and none through ion-coupled trans-

porters, for instance, this uptake (one thirty-sixth of that of

the highest strain) would be less than 3% of it, which we

regard as negligible. We note that ybbW has been anno-

tated as a putative uptake transporter for allantoin [136]

(http://www.tcdb.org), but in this case it must at least be

an antiporter, since its knockout causes a large increase in

dye uptake. Such findings also illustrate that there remain

many mis-annotations or incomplete annotations of the E.

coli transporterome.

A referee has helpfully pointed out that some of the y-

genes (as designated in the Keio collection terminology

we have used (and retain) throughout), now have more

secure functions, and these alternative non-y-gene desig-

nations appear in Table 1 and Additional file 1. Other

Fig. 2 Typical cytograms of the wild-type strain (WT) stained (save for
the no-dye control) with diS-C3(5) as described in Methods, along with
other knockout strains. Those deleted in atpB or acrA are labelled with
the relevant colours. Experiments were performed as described in the
Materials and Methods section

Fig. 3 Variation in the mode uptake of diS-C3(5) into different knockout strains of the Keio collection as judged by flow cytometry. Experiments
were performed as described in the legend to Fig. 3. Experiments were performed as described in the Materials and Methods section
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updates, including those emerging after this paper, may be

found in Ecocyc.

Although it was not financially reasonable to determine

any compensating or pleiotropic changes [139] at the level

of the genome-wide transcriptome for these many hun-

dreds of experiments, the simplest explanation for such

data is that an increase in uptake following a knockout

denotes the removal of an efflux transporter, while a de-

crease denotes that an influx transporter (or its source of

free energy) has been knocked out. Either there are a

massive number of pleiotropic effects on a smaller num-

ber of transporters or there are least 115 influx and 34

efflux transporters for diS-C3(5) (or both). Similarly, this

vast (36-fold) range of uptake levels is not obviously con-

sistent with the fact that uptake might reflect a membrane

potential, although the activity of at least acrAB/tolC is in

fact considered to be enhanced by an energised mem-

brane. Indeed, the lowering of uptake in the ΔatpA/B

knockouts, that would be expected to have a higher mem-

brane potential [140], makes it absolutely clear that the

uptake cannot mainly be driven by such a potential, but

instead by ATP directly (generated by substrate-level

phosphorylation). We note that a tolC knockout did not

result in major changes in uptake (although it might be

expected to inhibit many RND-type efflux pump activ-

ities), but it seems that this strain may have had a muta-

tion elsewhere as tolC was still present as judged by

colony PCR and our own attempts to remove it were un-

successful. Similar suspicion applies to acrB (Fig. 3, which

would be anticipated to lie near acrA). But the general

principle remains clear: individual gene knockouts lead to

a huge range in the steady-state uptake of the dye that

cannot be ascribed to changes in a membrane potential

with which its distribution might equilibrate.

To confirm these general findings, we took a few of the

gene designations whose removal in the Keio collection led

to the greatest or lowest uptake, and assessed their behav-

iours in the corresponding strains in the ASKA collection

of overexpressed genes. As anticipated, overexpression of

these effluxers lowered the uptake levels to less than that of

the wildtype, while overexpression of putative uptake trans-

porters raised the steady-state level of their uptake consid-

erably (Fig. 4), albeit not to the levels of the highest effluxer

KOs, implying some spare kinetic capacity in the latter.

To analyse more closely the main conclusion of this sec-

tion – that the steady-state uptake level of the diS-C3(5)

molecule is determined significantly by multiple proteins in-

cluding transporters – we highlight some of the most signifi-

cant knockouts in Table 1. A number are unsurprising,

which gives confidence in the idea that our basic method is

sound. Among the most potent of the non-transporters at

inhibiting uptake were knockouts of the genes encoding the

two main (α and β) subunits of the membrane ATP syn-

thase, implying strongly that the uptake transporters were

Table 1 A selected subset of the most effective knockouts in terms of their ability to affect the uptake of diS-C3(5)

Gene Comments Uniprot ID Representative reference(s)

atpB F1-ATPase subunit P0ABB0 [122]

atpA F1-ATPase subunit P0AB98 [122]

ycdG (rutG) Broad-specificity pyrimidine permease P75892 [123–125]

rbsB Ribose ABC transporter periplasmic binding protein P02925 [126]

ybiO mechanosensitive ion channel P75783 [127]

yifK probable transport protein (possibly amino acid) P27837 [128]

yliA/gsiA ATP-driven Glutathione importer P75796 [129]

ybiR Inner membrane protein P75788 (none)

yccS Inner membrane protein P75870 (none)

phoR Phosphate sensor regulon P08400 [130]

yejA Putative oligopeptide ABC transporter periplasmic binding protein P33913 [131]

mdtI Spermidine export protein P69210 [132, 133]

mdtJ Spermidine export protein P69212 [133]

mdtL Multidrug resistance protein (e.g. vs chloramphenicol) P31462 [133]

mdtA Multidrug resistance protein (e.g. vs novobiocin) P76397 [134]

acrA Multidrug efflux pump subunit P0AE06 [135]

ybbW Putative allantoin permease P75712 [136]

ydcS Part of ABC transporter complex, possibly involved in
poly-β-hydroxybutyrate synthesis/ polyamine efflux

P76108 [137]

ygfQ (ghxQ) Hypoxanthine-guanine permease Q46817 [138]

Those whose knockout increased uptake are given in bold face
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powered directly by ATP, rather than (e.g.) by an electron-

transport-derived energised membrane (often referred to as

a protonmotive force). This is consistent with the relative

prevalence of ATP-driven transporters in prokaryotes [35].

The complement of y-genes of unknown or poorly

annotated function stands at around 35% of the total,

with transporters being over-represented among them

[141]. It is of particular interest that so many y-genes

are represented among the KOs showing the biggest

effects; clearly we have much to learn, as with mammalian

cell transporters of pharmaceutical drugs [142, 143], about

their ‘natural’ substrates.

It is of course entirely arbitrary to pick the top few only

(all are given in the Additional file 1), and we would add

that one set of interest is represented by potC and potE (as

well as other products of pot genes) that are components of

a (cationic) sperm(id) ine import/efflux system [144–147].

Obviously it is entirely reasonable that this might serve,

when active, to remove a cation such as diS-C3(5), and the

fact that the potent effluxers mdtI and mdtJ are also

spermi(di)ne effluxers (Table 1) lends weight to this view.

In a similar vein, the KOs of mdtH and mdtK [132] have a

significantly reduced uptake; although they were originally

tagged as effluxers (in the sense of multidrug transporters),

it seems more likely that they are in fact antiporters, nor-

mally contributing to the uptake (here) of the cyanine dye.

SYBR Green

SYBR Green is another cationic dye, and increases its

fluorescence massively on binding to (especially) double-

stranded DNA [10, 148]. It is considered to be ‘mem-

brane-permeable’ (by whatever means) and it is widely

used both in environmental and general microbiology

(e.g. [10, 148–152]) and in mammalian cell biology (e.g.

[153]). SYBR Green also contains a benzothiazole motif

(Fig. 1), and using our standard methods of cheminfor-

matics [143, 154, 155], we noted that SYBR Green and

DiS-C3(5) have a Tanimoto similarity to each other of

0.731 when encoded using the RDKit (www.rdkit.org)

“patterned” fingerprint.

A similar experiment to that performed with diS-C3(5)

was performed with SYBR Green. Typical cytograms of

SYBR Green uptake are shown in Fig. 5, and the full set of

Fig. 4 Effect of overexpression and knockout of a series of genes whose knockout causes major changes (both up and down) in the modal
uptake of diSC3(5) relative to that of the wild type. Experiments were performed as described in the Materials and Methods section

Fig. 5 Typical cytograms of the uptake of SYBR Green in the wild-
type strain (WT) and some other, knockout strains stained with SYBR
Green as described in Methods (save for the no-dye control), along
with other knockout strains

Jindal et al. BMC Microbiology          (2019) 19:195 Page 6 of 16
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results (slightly fewer KOs than for diSC3(5)) shown in

Fig. 6. Again there is a huge range of uptakes (69-fold),

the lowest being ~five-fold lower and the largest approxi-

mately thirteen-fold greater than that of the wild type. Be-

cause of the greater range, and the occasionally bimodal

peaks such as that for ΔatpG in Fig. 5, the median fluores-

cence values are given on a logarithmic scale. All data are

again given in Additional file 1: Table S1. Some of this

variation can of course reflect differences in the DNA con-

tent of the cells, since this is a function of the earlier

growth rate [156, 157], though this typically does not ex-

ceed about 8 chromosome contents even at the fastest

growth rates [121, 158], so variations in DNA content

alone could not conceivably explain this range. We there-

fore also performed growth rate experiments for almost

all the strains tested; there was no correlation between the

uptake of SYBR green and either the growth rate (Fig. 7,

r2 ~ 0.02) or the stationary phase OD (Fig. 8, r2 ~ 0.015),

indicating clearly that variations in DNA content were not

a significant contributor to these findings in intact cells.

By contrast with the diS-C3(5) data (Fig. 3), there are

considerable differences (Fig. 9), in that the phoR knockout

now shows the second greatest uptake (rather than the

eighth lowest). Again there is a considerable preponderance

of y-genes in the part of the figure where their removal

lowers uptake relative to the wild type. A subset of genes

with the ‘highest’ and ‘lowest’ effects is given in Table 2.

Despite the fact that both dyes contain a benzothiazole

motif, there is absolutely no correlation (r2 ~ 0.002) be-

tween the uptake of the two dyes in individual knockouts

(Fig. 6). Thus, mdtL and nagE are among the highest for

diS-C3(5) but among the lowest for SYBR Green, while

the converse is true for phoR, zntA (zinc/lead-transportng

ATPase) and yifK (‘probable amino acid transporter pro-

tein’). This is despite the presumption that the putative

membrane potential with which their uptake might equili-

brate is the same in the same strains. Such findings imply

that some transporters have a fairly unusual specificity,

even if they are labelled (as is mdtL) as multidrug resist-

ance proteins. In the case of SYBR Green, the heterogen-

eity in uptake can clearly contribute to the heterogeneity

in staining observed [10] when cells are not permeabilised.

It was also of interest to assess the effect of chemical

inhibitors on the ability of transporter knockouts to take

up SYBR Green. In contrast to earlier work [170] where

we studied effects on gene transcription, the interest here

was in direct, acute effects. Table 3 shows the effects of a

few such molecules, that of chlorpromazine, a known in-

hibitor of acrAB activity [171–173], and clozapine (a

second-generation anti-psychotic) [174] being particularly

striking. Note (see Methods) that different conditions

were used from those of Figs. 2, 3, 4, 5 and 6. The very

large increase upon chlorpromazine addition (more than

25-fold) might be taken to imply that it can inhibit mul-

tiple effluxers, and suggests that it might be a useful

adjunct therapy in cases of antimicrobial resistance.

Discussion
There is present lively debate as to whether a majority of

xenobiotic uptake through cellular membranes occurs

via whatever phospholipid bilayer may be present, or

whether Phospholipid Bilayer diffusion Is Negligible (a

view referred to as “PBIN”; [27, 175]). In this latter view,

it is recognised that potentially a great many transporters

can and do interact with a given molecule [27, 175] (see

also [29]). This would be unsurprising given that the

Fig. 6 Median uptake in ranked order of SYBR Green uptake into E. coli single-gne knockout strains, with a small subset of gene names marked.
Y-genes are encoded in red. Experiments were performed as described in the Materials and Methods section
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typical known numbers of binding targets for pharma-

ceutical drugs is ~six [26, 176]. The present data are

entirely consistent with (indeed lend strong support to)

this view.

If a closed biological cell or organelle maintains a

transmembrane electrical potential difference Δψ relative

to that of its adjacent, external phase, it is in principle

possible to estimate that potential by allowing a freely

membrane-permeable (usually lipophilic) ion to come

into a Nernstian equilibrium with it (e.g. [177–186]). For

a negative-inside potential, and concentrative uptake by

a lipophilic cation such as methyltriphenylphosphonium

(TPMP+), Δψ may be related to the ratio of internal ain
and external aout activities of the ions by:

ΔΨ ¼ −2:3 RT=zFð Þ log ain=aoutð Þ ð1Þ

where T is the absolute temperature, R the universal gas

constant, F Faraday’s constant, and z the charge on the lipo-

philic cation. RT/F is about 60mV at room temperature,

such that a Δψ of 60mV equates to a concentration ratio

for a monovalent cation of 10:1, a Δψ of 120mV a concen-

tration ratio of 100, and so on. It is often assumed that the

uptake of such lipophilic cationic dyes by bacteria reflects

Fig. 7 Lack of relationship between the median extent of uptake of SYBR Green and growth rate. Y-genes are encoded in red. Experiments were
performed as described in the Materials and Methods section

Fig. 8 Lack of relationship between the median extent of uptake of SYBR Green and stationary phase OD. As before, y-genes are encoded in red.
Experiments were performed as described in the Materials and Methods section
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the existence and magnitude of such a transmembrane po-

tential. However, import and export transporters invalidate

such estimations of Δψ, their activities respectively causing

an over- and under-estimate, and this has been shown

clearly to occur for the uptake of dibenzyldimethylammo-

nium in baker’s yeast [70] and of Tl+ in bacteria [187–189].

Confidence in any such estimations of Δψ is bolstered if the

equilibrium uptake ratio is independent not only of the con-

centration but the nature of the lipophilic cations employed,

and also of any anions that may be present. In practice, and

although such difficulties are commonly ignored, these re-

quirements are rarely if ever met [177, 179, 190, 191].

Fig. 9 Relationship between the uptake of SYBR Green (ordinate) and of diS-C3(5) (abscissa). The line is a line of best fit (r2~0.002). Also shown
are some of the knockout labels as discussed in the text. Symbols for y-genes are in red, others in blue. Experiments were performed as
described in the Materials and Methods section

Table 2 A selected subset of the most effective knockouts in terms of their ability to affect the uptake of Sybr Green

Gene Comments Uniprot ID Representative reference(s)

yiaM 2,3-diketo-L-gulonate transporter P37674 (none)

setC Putative sugar efflux system B7L779 [159]

tsgA Uncharacterised transporter P60778 (none)

yhjV Uncharacterised transporter P37660 [160]

yggT Unknown transporter involved in osmotolerance P64564 [161]

actP Cation/acetate symporter P32705 [162]

yrbG Possible inorganic cation transporter P45394 [163, 164]

yidK Uncharacterised symporter P31448 (none)

aaeB p-hydroxybenzoate efflux pump P46481 [165–167]

atpG ATP synthase gamma chain P0ABA6 (none)

phoR Phosphate sensor regulon P08400 [130]

cysU (cysT) Sulphate transport permease P16701 (none)

mdtD Putative multidrug resistance transporter P36554 [159]

dctA Dicarboxylate transport protein P0A830 [168]

yehW Non-osmoprotecting glycine betaine uptake system (presumably antiporter) P33359 [169]

Those whose knockout increased uptake are given in bold face
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However, in the present work we have shown

clearly that a variety of cations enter cells via a large

number of transporters, especially those driven by

ATP directly, so whatever their uptake is reflecting it

cannot simply be a bulk transmembrane potential. In-

deed, the loss of ATP synthesis by electron transport-

linked phosphorylation in the ΔatpA and ΔatpB

strains might be expected to increase the level of any

such membrane potential [140] but instead the extent

of uptake is substantially reduced. This is very strong

evidence against any such equilibration of uptake with

a membrane potential. Similarly, the almost complete

lack of correlation between the two cations studies

make it inconceivable that the steady-state uptake re-

flects the value of any membrane potential as it is

presumably the same for each strain when the two

dyes are compared. In the case of SYBR Green, the

data also call into question the use of that dye for es-

timating quantitatively the amount of DNA in live,

non-permeabilised cells, and indeed (using growth

rate as a surrogate [156, 192] for DNA content) no

such relationship was found.

By contrast, a possible benefit of our findings, for

those interested in estimating transporter activities, is

that if overexpression of a particular transporter causes

most of the uptake (or efflux) flux to occur via it (as in

Fig. 4), competition or trans-stimulation assays with a

fluorophore provide a powerful and potentially high-

throughput [44, 193] method for measuring Quantita-

tive structure-activity relationshipss. The fact that the

substrate specificities of individual transporters are typ-

ically rather different from each other (Fig. 6) implies

that there could indeed be much value in pursuing this

more widely.

Conclusions
Despite a widespread assumption that xenobiotics, (in-

cluding pharmaceutical drugs such as antibiotics) cross

biomembranes by diffusion through whatever phospho-

lipid bilayer exists, there does not seem to have been a sys-

tematic attempt to assess the contribution of such a flux

to cellular uptake. The availability of systematic gene

knockout collections such as the Keio collection allows an

assessment of every candidate transporter (and other

genes) to the uptake of a substance of interest, and fluor-

escence flow cytometry provides a convenient means of

assessing the extent of that uptake in individual cells. We

have done this for what seems to be the first time. The

very large number of gene knockouts with an extent of

uptake of one or more dyes that is reduced substantially

(i.e. less than half) relative to that of the wild type, as well

as the large ranges between ‘lowest’ and ‘highest’ uptake,

even in only single-gene knockouts, really does attest to

the fact that phospholipid bilayer transport is indeed

negligible. It also casts considerable doubt on the util-

ity of these dyes in vivo in assessing quantitatively

any membrane potential that might exist, or the DNA

content of the cells.

Materials and methods
Bacterial strains

E. coli (K-12, MG1655) was taken from the laboratory

collection of Prof R. Goodacre [194, 195]). The Keio col-

lection of E. coli (K-12, MG1655) was obtained from the

SYNBIOChem group (University of Manchester, UK)

from which a collection of 530 knockouts (188 y-genes)

was selected for the study, mainly those with a trans-

porter protein gene knocked out. The full list is given in

Additional file 1. We recognise that one or two transport

proteins may have been missed (e.g. nupC, as pointed

out by a referee), but the conclusions drawn are not

affected by this. A few strains were selected from the

ASKA collection of E. coli (BW38029) also taken from

SYNBIOChem group. No permissions were required to

use these strains.

Culture

E. coli strains were grown from single colonies on agar

plates in conical flasks using Lysogeny broth (LB) to an

optical density (600 nm) of 1.5–2.0, representing station-

ary phase in this medium. They were held in stationary

phase for 2–4 h before being inoculated at a concentra-

tion of 105 cells.mL− 1 into LB.

Keio collection sample preparation

Singer ROTOR HDA (Singer Instruments, UK), a high

throughput robotic replicator and colony picker, was

used to pick single strains from stock 96-well plates

stored at -80 °C and stamped on nutrient agar plates in

Table 3 Effects of various modifiers on steady-state uptake of
diSC3(5) and SYBR Green by wild-type E. coli. Experiments were
performed as described in Materials and Methods

WT means no inhibitors added. Red and green highlight the most significant

decreases or increases, respectively
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96-well format. The agar plates were grown overnight

and strains were then transferred in a 96-well plate with

200μL of LB in each well. The resulting set of six 96-

well plates was incubated overnight at 37 °C and 200

rpm shaking and used later for analysis.

DiSC3(5) and Sybr Green I uptake measurement

Singer RePads 96 long (Singer Instruments, UK), 96-pin

plastic replica-plating pads were used to replicate and

culture the new subset of the Keio collection grown

overnight. 150μL of LB was added in each well with

3 μM (final concentration) of DiSC3(5) This was chosen

because it was an amount that gave a signal roughly an

order of magnitude greater than the undyed control in

the wild type. (Thermo Fisher Scientific, UK) in six U-

bottom 96-well plates. The Singer RePads were used to

transfer individual strains from overnight cultured plates

to the new plates. The plates were sealed with Breath-

able Film (Starlab UK, Ltd.) and incubated at 37 °C for 2

min in the dark. The plates were vortexed at 200 rpm

for 2 min and screened on a Sartorius Intellicyt iQue

Screener Plus™ flow cytometer.

Our variant of this flow cytometer has three fixed exci-

tation lasers (405, 488, 640 nm), forward and side scatter

(from the 488 nm excitation) and 13 fluorescence chan-

nels based on filters. The channels we report here are

mainly BL1 (Ex 488, Em 530 ± 15 nm) and RL1 (Ex 640

nm, Em 675 ± 15 nm). To detect bacteria we gated via

forward scatter and side scatter. This instrument does

not have user-adjustable photomultiplier tubes so the

numbers simply reflect the extent of fluorescence it reg-

isters. The following settings [121] were used for the

flow cytometry: automatic prime – 60 s (in Qsol buffer);

pre-plate shake − 15 s and 900 r.p.m.; sip time − 2 s (ac-

tual sample uptake); additional sip time − 0.5 s (the gap

between sips); pump speed − 29 r.p.m. (1.5 μl.s− 1 sample

uptake); plate model – U- bottom well plate (for 96-well

plates); mid-plate clean-up – after every well (4 washes;

0.5 s each in Qsol buffer); inter-well shake − 900 rpm;

after 11 wells, 4 s in Qsol buffer; flush and clean – 30 s

with Decon and Clean buffers followed by 60 s with de-

ionized water. Fluorescence intensity was measured with

RL1 channel and the Forecyt™ software supplied with

the instrument was used to perform the analysis.

For Sybr Green I (Thermo Fisher Scientific, UK) uptake

measurements, the samples were prepared similarly to

those for DiSC3(5) except that Sybr Green I was added at

10,000x diluted concentration from the original stock as

provided by the supplier (catalogue number S7585). The

sample plates were incubated for 15min and fluorescence

was measured using the BL1 channel.

The fluorescence kinetics experiment was performed

on a Sony SH800 FACS machine. An overnight-grown

culture of E. coli was diluted in LB to a concentration of

105CFU.mL− 1. diSC3(5) dye was added to 10mL of the

bacterial solution at a final concentration of 3 μM in a

50mL amber falcon tube (to prevent photobleaching)

and incubated in the dark at 37 °C for 2 min. Post-

vortexing, the falcon tube was placed in the flow cyt-

ometer and the fluorescence intensity of the sample was

measured for 1 h continuously. Same was repeated with

SYBR Green I.

SYBR Green I uptake measurement on fixed Keio strains

A further subset of 20 strains from the previously

analysed Keio collection subset was taken and fixed

by injection in 70% ice-cold ethanol. The cells were

washed twice by centrifugation in 0.1 M-Tris/HCl buf-

fer, pH 7.4, before being resuspended in PBS at the

concentration of 106 CFU.mL− 1. Sybr Green I was

added to the sample at 10,000x diluted concentration

from the stock and the samples were kept at 37 °C in

the dark for 15 min. Samples were added in a U-

bottom 96-well plate and fluorescence intensity was

measured using the BL1 channel.

Effect of inhibitors on the fluorescence of dye uptake in

E. coli

A few efflux inhibitors were tested for their effects on

the fluorescence intensity of the bacterial cells. The

stock solutions of the inhibitors were made at 1 mM in

DMSO and 5uL was added in two 96-well plates in trip-

licates. A vacuum centrifuge was used to evaporate all

the DMSO in the plates. 200μL of overnight-cultured E.

coli was added in each well of the plates at 105

CFU.mL− 1 final concentrations. The plates were sealed

and kept at 30 °C and 900 rpm shaking for 30 min. 3uM

of DiSC3(5) and 10,000x diluted Sybr Green I was then

added to the different plates. The plate with DiSC3(5)

was incubated for 2 min while one with Sybr Green I

was incubated for 15 min at 37 °C before being analysed

using the flow cytometer.

Screening ASKA collection strains for dye uptake

Selected strains from the ASKA collection were taken

from -80 °C stock and resuscitated in LB with 34 μg.mL− 1

Chloramphenicol. The strains were cultured overnight in

M9 media (M9 Minimal Media: 1x M9 Salts, 2 mM

MgSO4, 0.1 mM CaCl2, 0.2% glucose, 10 μg.mL− 1

Thiamine HCl and 0.2% Casamino Acids) and 0.5 mM

Isopropyl β-D-1-thiogalactopyranoside (IPTG) was added

in the morning and grown for another hour. The strains

were diluted and their fluorescence upon uptake of

DiSC3(5) was measured using the same steps as per-

formed above with the Keio strains.
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Growth assessment of Keio collection strains by bulk OD

measurement

The Growth Profiler 960 (Enzyscreen, NL) is a commercial

instrument (http://www.enzyscreen.com/growth_profiler.

htm) that estimates growth rates using camera-based mea-

surements in up to 10 96-well plates. E. coli was taken from

an overnight culture and diluted to a concentration of 106

CFU.mL− 1. The Keio collection strains were sub-cultured

and samples were prepared using stamping method as de-

scribed above. The strains were stamped in CR1496c Poly-

styrene transparent square 96-half-deepwell microtiter

plates used with CR1396b Sandwich covers in the Growth

Profiler. The samples were prepared in 10 96-well plates

and incubated in the instrument at 37 °C with 225 rpm

shaking (recommended settings). The pictures of the plates

were recorded at 15-min interval. The G values obtained

from these pictures were converted to their respective

OD600 values using the manufacturer’s software, Eq. 1,

and pre-calculated values of the constants (a = 0.0234,

b = 1, c = 1.09E-6, d = 3.41, e = 1.56E-13 and f = 6.58).

Calculated OD600 ¼ a� Gvalue� GvalueMediumð Þbþ

c� Gvalue �GvalueMediumð Þdþ

e� Gvalue� GvalueMediumð Þ f

ð2Þ

In some cases the estimates were clearly far too

high due to outliers; growth rates were truncated at 3

doubling times.h− 1.

Additional file

Additional file 1: Modal and mean uptake data for diS-C3(5) and Sybr
green as described in the body of the paper. (XLSX 55 kb)
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