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Abstract: It is now well known that oxidative stress promotes lipid peroxidation, protein oxidation,
activation of proteases, fragmentation of DNA and alteration in gene expression for producing
myocardial cell damage, whereas its actions for the induction of fibrosis, necrosis and apoptosis are
considered to result in the loss of cardiomyocytes in different types of heart disease. The present
article is focused on the discussion concerning the generation and implications of oxidative stress
from various sources such as defective mitochondrial electron transport and enzymatic reactions
mainly due to the activation of NADPH oxidase, nitric oxide synthase and monoamine oxidase in
diseased myocardium. Oxidative stress has been reported to promote excessive entry of Ca2+ due
to increased permeability of the sarcolemmal membrane as well as depressions of Na+-K+ ATPase
and Na+-Ca2+ exchange systems, which are considered to increase the intracellular of Ca2+. In
addition, marked changes in the ryanodine receptors and Ca2+-pump ATPase have been shown to
cause Ca2+-release and depress Ca2+ accumulation in the sarcoplasmic reticulum as a consequence
of oxidative stress. Such alterations in sarcolemma and sarcoplasmic reticulum are considered to
cause Ca2+-handling abnormalities, which are associated with mitochondrial Ca2+-overload and
loss of myofibrillar Ca2+-sensitivity due to oxidative stress. Information regarding the direct effects
of different oxyradicals and oxidants on subcellular organelles has also been outlined to show the
mechanisms by which oxidative stress may induce Ca2+-handling abnormalities. These observations
support the view that oxidative stress plays an important role in the genesis of subcellular defects
and cardiac dysfunction in heart disease.

Keywords: oxyradicals and oxidants; sarcolemmal membrane; sarcoplasmic reticulum; mitochon-
drial Ca2+-overload; myofibrillar Ca2+-sensitivity; subcellular Ca2+-handling

1. Introduction

Several clinical and experimental investigations have shown that oxidative stress plays
a critical role in the pathogenesis of heart disease [1–13]. It is also becoming evident that
the development of oxidative stress is invariably associated with the occurrence of cardiac
dysfunction in different types of cardiovascular diseases such as atherosclerosis, myocardial
infarction, hypertension, diabetes and various types of cardiomyopathies [14–24]. These
studies have revealed that oxidative stress may induce cardiac remodeling, fibrosis, apopto-
sis, necrosis, metabolic defects and Ca2+-handling abnormalities in cardiomyocytes as well
as endothelial dysfunction. Furthermore, various antioxidants have been observed to exert
beneficial effects in improving cardiac function and attenuating heart disease [25–31]. The
present article is focused on updating the existing information regarding the generation
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and implications of oxidative stress during the development of cardiovascular disorders. It
is planned to emphasize the involvement of oxidative stress as a mechanism for inducing
cardiac dysfunction as well as abnormalities in subcellular organelles and Ca2+-handling
in cardiomyocytes in chronic myocardial infarction. Although oxidative stress is known
to modify different proteins in subcellular organelles by affecting cardiac gene expression
and various signal transduction mechanisms as well as by activating different proteases,
no effort is made to deal with these issues in this article. On the other hand, some evidence
is presented in this review to show that oxyradicals and some oxidants exert direct effects
on subcellular organelles, and thus may explain the role of oxidative stress in the develop-
ment of subcellular abnormalities, Ca2+-handling defects and cardiac dysfunction in heart
disease.

2. Generation of Oxidative Stress in Heart Disease

It is now well known that the occurrence of oxidative stress is mainly a consequence
of excessive formation of reactive oxygen species (ROS) including superoxide radicals and
hydroxyl radicals as well as oxidants such as hydrogen peroxide (H2O2) and hypochlor-
ous acid (HOCl) and/or reduction in the activities of endogenous antioxidants such as
superoxide dismutase, glutathione peroxidase and catalase [1,32–35]. The transcription
factors such as KLF9 (Kruppel-like factor 9) and Nrf2 (nuclear factor erythroid-2 related fac-
tor 2), which control the development of oxidative stress and the expression of antioxidant
genes, have been reported to be activated in heart disease, respectively [36–38]. It should
be pointed out that excessively produced nitric oxide (NO) due to the activation of NO
synthase is known to combine with superoxide radicals to form peroxynitrite and produce
nitrosative stress [39–41]. Furthermore, inflammatory cytokines such as tumor necrosis
factor-alpha (TNF-α) have been shown to promote the development of both oxidative
stress and nitrosative stress due to the activation of myeloperoxidase (for the generation of
superoxide radicals) and NO synthase [42–46]. It is also noteworthy that the production of
nitrosative stress is considered to be a major cause for the endothelial dysfunction in heart
disease [47–50]. In fact, both oxidative stress and nitrosative stress have been demonstrated
to activate the nuclear enzyme poly (ADP-ribose) polymerase to cause the fragmentation
of DNA strands as well as initiate lipid peroxidation, protein oxidation and endothelial
dysfunction in diseased myocardium.

Although ROS are considered to be mainly generated as a by-product of defects in
mitochondrial metabolism and uncoupling of electron transport in heart disease, several
enzymes such as xanthine oxidase, NADPH oxidase, nitric oxidase synthase, myeloperoxi-
dase and monoamine oxidase are also involved in this process [51–55]. ROS production due
to impaired electron transport in mitochondria is balanced by mitochondrial antioxidant
enzymes such as superoxide dismutase and glutathione peroxidase but is augmented by dif-
ferent chronic pathological conditions [56–59]. Mitochondrial uncoupling proteins, which
promote the leakage of protons across the inner mitochondrial membrane, are considered to
be the promoters of mitochondrial ROS generation [58]. Furthermore, mitochondria were
shown to integrate ROS signals from other cellular sources and promote the development
of oxidative stress through a process termed as “ROS-induced ROS release” involving
mitochondrial ion channels [59]. Increased myocardial fatty acid uptake has been shown to
promote palmitoyl carnitine oxidation, increase formation of ROS and induce mitochon-
drial structural remodeling [60]. In addition, exposure of mitochondria for a prolonged
period to palmitate was observed to enhance ROS generation associated with mitochondrial
fission [60]. Angiotensin II has also been reported to promote ROS generation and produce
mitochondrial DNA deletion as well as autophagy in cardiomyocytes [61]. In fact, chronic
increase in ROS in mitochondria has been demonstrated to produce mitochondrial oxida-
tive stress, which is associated with mitochondrial DNA damage [62,63]. Overexpression
of mitochondrial transcription factor A (TFAM) and genes for mitochondrial antioxidant,
peroxiredoxin-3 (PRX-3), were observed to attenuate ROS-induced mitochondrial oxidative
stress, DNA deletion and decrease in oxidative phosphorylation activities [64,65].
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The family of NADPH oxidase (NOX) are transmembrane proteins, which are involved
in the generation of ROS by transferring electrons from NADPH to molecular oxygen, and
serve as signaling molecules for inducing cardiac hypertrophy, apoptosis, fibrosis and heart
failure [66–68]. ROS are released upon the activation of phagocytic NOS by acute myocar-
dial infarction or reperfusion injury whereas abnormal stimulation of nonphagocytic NOS
by angiotensin II, catecholamines and TNF-α has been implicated in cardiac hypertrophy
collagen deposition, metalloprotease activation, fibrosis and heart failure [69]. The cascade
of events triggered by increased activity of NOS includes lipid peroxidation and activa-
tion of mitogen-activated protein kinases (ERK 1/2, JNK and p38) for the occurrence of
adverse cardiac remodeling [70]. It should be pointed out that NOX is present in different
isoforms in multiple cell types; two isoforms (NOX2 and NOX4) are mainly expressed in
cardiomyocytes [71–74]. The NOX2 isoform is localized in the sarcolemmal membrane
and plays an important role in mediating angiotensin II-induced cardiac hypertrophy
whereas the NOX4 isoform is localized in mitochondria, sarcoplasmic reticulum as well as
nucleus and mediates adverse cardiac remodeling and heart failure due to pressure over-
load [72]. Inhibition of NOX2 was observed to prevent palmitate-induced abnormalities
in mitochondrial respiration, ROS generation and Ca2+-overload [74]. Studies in mouse
model of NOX4 knockout have revealed that NOX4 contributes to heart failure due to
coronary ligation by increasing the inflammatory cytokine levels via enhancing the soluble
epoxide hydrolase (a potent regulator of inflammation) [75], and in fact, NOX4 is a major
source of mitochondrial ROS production in heart failure due to pressure-overload [76].
Apocynin, an inhibitor of NOX was found to attenuate oxidative stress, cardiomyocyte
apoptosis and heart failure due to myocardial infarction in rabbits [77]. Furthermore, this
agent ameliorated cardiac dysfunction, attenuated cardiac fibrosis and restored defects in
Ca2+-handling activities of the sarcoplasmic reticulum in rabbits subjected to combined
volume and pressure overload [78].

Another major source of ROS production is a monoamine oxidase (MAO), which
participates in degradation of neurotransmitters such as norepinephrine, epinephrine
and dopamine as well as serotonin [79,80]. This enzyme is localized in mitochondria
and is involved in the production of H2O during the process of oxidative breakdown of
catecholamines and serotonin. It should be noted that the levels of plasma catecholamines
and serotonin are elevated in different types of heart disease and these may partly generate
ROS during their degradation by MAO. In fact, MAO-A has been shown to play a key role
in the development of acute and chronic heart diseases [81]. Exposure of cardiomyocytes
to MAO-A has been reported to block autophagic flux with the accumulation of LC311,
p62 and ubiquitylated proteins leading to mitochondrial fission and cellular necrosis [82].
Furthermore, the activation of MAO-A was found to result in the accumulation of lysosomal
proteins (cathepsin D and Lamp 1), reduction in lysosomal acidification and blockade of
the nuclear translocation of transcription factor-EB (TFEB), a regulator of autophagy and
lysosome biogenesis [82]. It is also pointed out that MAO was found to be overactivated in
ischemic heart disease [83], and its enhanced activity was shown to contribute to adverse
cardiac remodeling and heart failure due to pressure overload [84]. Furthermore, the
activation of MAO has been observed to depress mitochondrial function and result in heart
failure as a consequence of oxidative stress in chronic diabetes [85].

3. Implications of Oxidative Stress in Heart Disease

Extensive research over the past several decades has revealed that oxidative stress
may be a major mechanism for the genesis of cardiac dysfunction, subcellular defects and
Ca2+-handling abnormalities in diverse cardiovascular disorders [1,86–90]. Such a role of
both oxidative stress and nitrosative stress is mainly based on observations regarding the
association of increased levels of various biomarkers of these stress factors and defects in
subcellular organelles such as sarcolemma, sarcoplasmic reticulum, mitochondria and my-
ofibrils [91–94]. Particularly, there occurs an increase in the level of inflammatory cytokines,
depression in the activities of endogenous antioxidant enzymes and down-regulation of
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antioxidant defense mechanisms, including the Nrf2 pathway, which are known to promote
the development of oxidative stress in diseased myocardium [1,35,38,42–44]. It is pointed
out that the relationship of oxidative stress and inflammatory cytokines is of complex
nature as both of these are known to promote the formation of each other in the diseased
myocardium. Nonetheless, different antioxidant agents such as several vitamins, resver-
atrol and pterostilbene, as well as activation of the Nrf2-associated antioxidant pathway,
have been shown to improve cardiac function, subcellular defects and Ca2+-handling ab-
normalities in heart disease [31,95–99]. Some of the major mechanisms for the induction of
subcellular defects due to oxidative stress are depicted in Figure 1 and whereas those for
the occurrence of Ca2+-handling abnormalities and cardiac dysfunction in heart disease are
shown in Figure 2.
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It is now well known that oxidative stress increases the intracellular Ca2+ in cardiomy-
ocytes by promoting the entry of Ca2+ upon affecting the sarcolemmal membrane as well
as by inducing changes in Ca2+-release and Ca2+-uptake activities in the sarcoplasmic
reticulum under different pathological conditions [1,91]. Exposure of the heart to high
levels of circulating angiotensin II or catecholamines for a prolonged period as well as
in chronic myocardial infarction have been shown to induce abnormal Ca2+ -handling
associated with mitochondrial Ca2+-overload, depression of mitochondrial function, gen-
eration of oxidative stress, activation of proteases, fragmentation of DNA and impaired
cardiovascular function [1,91,95]. The loss of myofibrillar Ca2+-sensitivity due to pro-
longed oxidative stress and Ca2+-handling abnormalities is considered to explain cardiac
dysfunction as a consequence of myofilament derangements and myofibrillar degenera-
tion [91,99,100]. The oxidation of myofibrillar proteins such as actin, myosin and troponin
has been shown to be accompanied by depressed ATPase activities as a consequence of
oxidative stress [91,101]. Prolonged inhibition of xanthine oxidase was demonstrated to
prevent myofibrillar oxidation and preserve cardiac function in a transgenic model of
cardiomyopathy [102]. Failing hearts due to myocardial infarction exhibited a marked de-
pression in myofibrillar Ca2+-stimulated ATPase activity due to the modification of myosin
gene expression as a consequence of both oxidative stress and Ca2+-handling abnormalities
in cardiomyocytes [91].
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While excessive entry of extracellular Ca2+ through the sarcolemmal membrane has
been shown to occur for the development of Ca2+-handling abnormalities in heart failure
due to myocardial infarction, the exact contribution of Ca2+-influx and Ca2+-efflux mecha-
nisms has not been fully established [91]. In this regard, the density of voltage dependent
Ca2+-channels, which are associated with beat-to-heat Ca2+-influx through sarcolemma,
was decreased but the activity of sarcolemmal Ca2+-pump, which is involved in Ca2+-
efflux, was unaltered in the failing heart [1,91]. On the other hand, marked depression in
sarcolemmal Na+-K+ ATPase in the infarcted heart has indicated that the Ca2+ entry in
cardiomyocytes may increase indirectly through the Na+-Ca2+ exchange mechanism. In
fact, the sarcolemmal Na+-Ca2+ exchange activity was also decreased, which may impair
Ca2+-efflux (via the reverse mode) and contribute in the development of Ca2+-handling
abnormalities in failing cardiomyocyte [103]. Furthermore, depression of the sarcolemmal
Na+-K+ ATPase activity by cardiac glycosides has been shown to cause abnormal Ca2+-
cycling and impair mitochondrial energetics in guinea pig cardiomyocytes [104]. Although
oxidative stress can be seen to induce Ca2+-entry through the sarcolemmal membrane by
increasing its permeability due to lipid peroxidation, changes in the sarcolemmal phos-
pholipid composition by other mechanisms cannot be overlooked. Particularly, different
oxyradical generating systems have been shown to decrease phospholipid N-methylation,
which is known to determine the membrane fluidity [105]. Furthermore, oxidative stress
has been demonstrated to modify the sarcolemmal activities of both phospholipases C
and D, which may directly or indirectly participate in the occurrence of Ca2+-handling
abnormalities in cardiomyocytes [91,106].

It needs to be emphasized that mitochondria is not only a major source for the pro-
duction of cellular ATP but is also a major contributor for the production of oxyradicals
in cardiomyocytes, and these processes are regulated by the intracellular concentration of
Ca2+ [107,108]. Ca2+-handling abnormalities associated with oxidative stress are known to
induce mitochondrial Ca2+-overload and impair mitochondrial function for the production
of energy [109–111]. On the other hand, an increase in the mitochondrial ATPase inhibitory
factor-1 due to oxidative stress has been shown to disrupt mitochondrial Ca2+-handling
whereas a loss of mitochondrial Ca2+ uniporter has been reported to trigger arrhythmias
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possibly by affecting the Ca2+-handling function of the sarcoplasmic reticulum [112,113].
It is pointed out that the sarcoplasmic reticulum, by virtue of its ability to release and
accumulate Ca2+ on a beat-to-heat basis, is known to play a major role in Ca2+-handling
in cardiomyocytes, and has been indicated to serve as a critical target for oxidative stress.
Both oxidative stress and nitrosative stress have been demonstrated to promote Ca2+-leak
by modifying ryanodine receptors in the sarcoplasmic reticulum in various types of fail-
ing hearts [114–116]. Alterations in the sarcoplasmic reticulum Ca2+-pump ATPase and
ryanodine receptors in heart failure are considered to occur due to oxidative stress as these
were corrected by an antioxidant, edaravone, as well as by carvedilol (due to its antioxidant
properties) [117,118].

4. Evidence for the Direct Action of Oxidative Stress on Subcellular Organelles

Although the development of oxidative stress has been shown to be associated with
subcellular defects for the occurrence of Ca2+-handling abnormalities and subsequent
cardiac dysfunction, it is not clear whether these effects of oxidative stress on subcellular
organelles are of any direct or indirect nature. In order to gain some information in this
regard, sarcolemmal membranes, sarcoplasmic reticulum, mitochondria and myofibrils
were isolated from control hearts; these subcellular organelles were incubated with dif-
ferent oxyradical generating systems and oxidants for 30 min and their activities were
determined. The results in Table 1 indicate that the incubation of sarcolemma with superox-
ide radical generating mixture, H2O2 and hydroxyl radical generating mixture depressed
Na+-K+ ATPase and Na+-Ca2+ exchange activities. These changes were associated with
increased malondialdehyde (MDA) content and reduced sulfhydryl groups (SH-groups).
The effects of superoxide radicals were attenuated by superoxide dismutase (SOD), the
effects of H2O2 were attenuated by catalase and those of hydroxyl radicals were reduced by
mannitol [119,120]. The sarcolemmal ATP-dependent Ca2+ uptake activity, Ca2+-stimulated
ATPase activity and Mg2+-ATPase activity were also depressed by superoxide radicals,
H2O2 and hydroxyl radicals and these effects were attenuated by their scavengers, SOD,
catalase and mannitol, respectively (Table 2) [120]. Furthermore, the density, unlike the
affinity of Ca2+-binding and both low and high affinities of ATP-binding, were depressed
whereas the activity of Ca2+-ecto ATPase (which serves as a Ca2+-gating mechanism) was in-
creased by superoxide radicals, H2O2 and hydroxyl radicals (Table 3) [121,122]. Superoxide
radicals and H2O2 were also observed to depress the sarcoplasmic reticulum Ca2+-release,
Ca2+-uptake and Ca2+-pump ATPase activities whereas the myofibrillar Ca2+-stimulated
ATPase activity and SH-group content were reduced and Mg2+-ATPase activity was in-
creased (Table 4) [123–125]. Furthermore, both superoxide radicals and H2O2 depressed
mitochondrial state 3 respiration, RCI value and ADP-to-O ratio, indicating impaired mito-
chondrial function (Table 4) [126]. The effects of incubating sarcolemma and myofibrils with
a potent oxidant, HOCl, are shown in Table 5 [125,127]. The depressions in sarcolemmal
Na+-K+ ATPase as well as SH-group content and increase in MDA content by HOCl were
attenuated by the presence of its scavenger, methionine [127]. Furthermore, HOCl was
observed to increase myofibrillar Mg2+-ATPase and decrease Ca2+-stimulated ATPase activ-
ities, these effects of HOCl were attenuated by methionine [125]. It is pointed out that most
of the changes in subcellular activities induced by different oxyradical generating systems
and oxidants under in vitro conditions are similar to those seen in failing hearts due to
chronic myocardial infarction. Furthermore, the present in vitro observations indicate that
the activities of different subcellular organelles are affected directly by oxyradicals and
oxidants, thus, support the view that oxidative stress can induce subcellular organelles and
Ca2+-handling abnormalities in cardiomyocytes for the occurrence of cardiac dysfunction
in heart disease.
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Table 1. Modification of Na+-K+ ATPase and Na+-Ca2+ exchange activities as well as malondialde-
hyde (MDA) and sulfhydryl (SH-group) content of cardiac sarcolemma upon incubation for 30 min
with or without different oxyradical generating systems.

Parameters Control X + XO 0.5 mM
H2O2

0.1 mM
H2O2 +

0.05 mM Fe2+

Na+-K+ ATPase
(µmol Pi/mg/h) 14.27 ± 1.07 6.81 ± 1.03 * 8.64 ± 1.04 * 6.98 ± 0.13 *

Na+-Ca2+ exchange
(nmol/mg/2 s)

4.59 ± 0.08 1.97 ± 0.13 * 2.97 ± 0.11 * 3.02 ± 0.14 *

MDA content
(nmol/mg protein) 61.67 ± 3.67 81.85 ± 2.54 * 78.77 ± 3.23 * 88.26 ± 3.07 *

SH-group content
(nmol/mg protein) 72.61 ± 2.37 37.59 ± 4.41 * 42.36 ± 2.75 * 40.86 ± 3.54 *

The data are taken from our papers (Kaneko et al. [119], and Kaneko et al. [120]). X + XO, 2 mM xanthine plus
0.03 U xanthine oxidase. The mixture of X+XO was used to generate superoxide radicals and the mixture of low
concentrations of H2O2 and Fe2+ was used to generate hydroxyl radicals. * p < 0.05 vs. respective control.

Table 2. Modification of ATP-dependent Ca2+ accumulation, Mg2+ ATPase and Ca2+-stimulated AT-
Pase activities in cardiac sarcolemma upon incubation for 30 min with different oxyradical generating
systems in the absence or presence of their scavengers.

Parameters
ATP-Dependent

Ca2+ Accumulation
(nmol Ca2+/mg/5 min)

Mg2+ ATPase
(µmol/mg/h)

Ca2+-Stimulated
ATPase

(µmol/mg/h)

Control 27.0 ± 1.7 195 ± 3 13.6 ± 0.7
X + XO treated 9.5 ± 0.8 * 176 ± 2 * 2.6 ± 0.5 *

X + XO +
80 µg/mL SOD 21.8 ± 0.8 † 192 ± 2 † 10.1 ± 0.4 †

0.5 mM H2O2 treated 4.7 ± 1.3 * 165 ± 6 * 2.9 ± 0.4 *
0.5 mM H2O2 + 10 µg/mL

catalase 20.6 ± 1.1 † 190 ± 5 † 8.4 ± 0.3 †

0.1 mM H2O2 + 0.2 mM Fe2+

treated
6.7 ± 0.5 * 169 ± 4 * 4.0 ± 0.3 *

0.1 mM H2O2 + 0.2 mM Fe2+

+ 20 mM mannitol
17.2 ± 0.8 † 184 ± 2 † 8.0 ± 0.5 †

The data are taken from our paper (Kaneko et al. [120]). X + XO, 2 mM xanthine oxidase plus 0.03 U/mL xanthine
oxidase. The mixture of X + XO was used to generate superoxide radicals whereas that with low concentration of
H2O2 plus Fe2+ was used for generating hydroxyl radicals. SOD, superoxide dismutase. * p < 0.05 vs. respective
control, † p < 0.05 vs. respective oxyradical treated.

Table 3. Modification of Ca2+-channels, ATP receptors, Ca2+-binding and Ca2+-ecto ATPase in cardiac
sarcolemma upon incubation for 30 min with oxyradical generating systems.

Parameters Control X+XO 1 mM H2O2
0.1 mM H2O2
+ 0.2 mM Fe2+

A. Ca2+-channel binding
Kd (nM) 0.231 ± 0.011 0.252 ± 0.011 0.254 ± 0.018 0.267 ± 0.017

Bmax (fmol/mg) 199 ± 12 139 ± 7.0 * 142 ± 8.0 * 157 ± 9.0 *
B. ATP-binding

Low affinity
(1.25 mM Ca2+) 97.8 ± 4.3 147.2 ± 6.1 * 141.3 ± 5.4 * 41.4 ± 4.9 *

High affinity
(50 µM Ca2+) 7.95 ± 0.32 12.08 ± 0.68 * 13.92 ± 0.66 * 4.08 ± 0.24 *

C. Ca2+-ecto ATPase
(µmol Pi/mg/h) 44.3 ± 1.1 57.7 ± 1.4 * 57.0 ± 1.2 * 31. 4 ± 1.3 *

The data are taken from our papers (Kaneko et al. [121] and Kaneko et al. [122]). X + XO, 2 mM xanthine plus
0.03 U xanthine oxidase. The mixture of X + XO was used to generate superoxide radicals whereas the mixture of
H2O2 plus Fe2+ mixture was used for the generation of hydroxyl radicals. * p < 0.05 vs. respective control.
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Table 4. Modification of some biochemical activities of cardiac sarcoplasmic reticulum, myofibrils
and mitochondria upon incubation for 30 min with some oxyradical generating systems.

Parameters Control X+XO 1 mM H2O2

A. Sarcoplasmic reticulum:
Ca2+-release

(nmol Ca2+/mg/15 s)
8.5 ± 1.4 4.2 ± 0.8 * 3.9 ± 0.7 *

Ca2+-uptake
(nmol Ca2+/mg/min)

29.6 ± 2.4 15.9 ± 1.6 * 12.7 ± 1.5 *

Ca2+-pump ATPase
(µmol Pi/mg/h)

14.7 ± 1.3 6.4 ± 0.8 * 5.7 ± 0.9 *

B. Myofibrils:
Mg2+-ATPase
(µmol/mg/h)

2.53 ± 0.13 4.97 ± 0.16 * 5.46 ± 0.18 *

Ca2+-stimulated ATPase
(µmol/mg/h)

10.29 ± 0.17 6.48 ± 0.18 * 5.92 ± 0.38 *

Sulfhydryl group content
(nmol/mg protein) 67.0 ± 1.3 54.2 ± 1.6 * 47.6 ± 2.06 *

C. Mitochondria
State 3 respiration

(O/mg/min) 293 ± 7.0 138 ± 7.0 * 106 ± 4.0 *

RCI
(State 3 to state 4 ratio) 5.36 ± 0.13 2.66 ± 0.23 * 1.89 ± 0.07 *

ADP to O ratio
(nmol ADP/ng atom O) 3.00 ± 0.15 2.55 ± 0.07 * 2.37 ± 0.03 *

The data are taken from our papers (Matsubara and Dhalla [123], Takeda et al. [124], Suzuki et al. [125] and
Makazan et al. [126]). X + XO, 2 mM xanthine plus 0.03 U xanthine oxidase. This mixture was used to generate
superoxide radicals. * p < 0.05 vs. respective control.

Table 5. Modification of ATPase activities in cardiac sarcolemma and myofibrils upon incubation
with HOCl for 30 min in the presence or absence of L-methionine.

Parameters Control 0.1 mM HOCl HOCl Plus 10 mM
L-methionine

A. Sarcolemma:
Na+-K+ ATPase
(µmol Pi/mg/h) 18.86 ± 2.03 2.16 ± 1.05 * 13.31 ± 2.44 †

MDA content
(nmol/mg protein) 51.64 ± 3.97 67.33 ± 3.97 * 48.2 ± 3.59 †

Sulfhydryl group content
(nmol/mg protein) 64.84 ± 6.36 28.67 ± 4.40 * 55.86 ± 5.72 †

B. Myofibrill ATPase (µmol/mg/h)
Mg2+ ATPase 2.80 ± 0.12 9.51 ± 0.16 * 3.79 ± 0.16 †

Ca2+-stimulated ATPase 10.96 ± 0.15 5.73 ± 0.31 * 11.64 ± 0.12 †
The data are taken from our papers (Kato et al. [127] and Suzuki et al. [125]). MDA, malondialdehyde. * p < 0.05
vs. respective control; † p < 0.05 vs. respective HOCl.

5. Concluding Remarks

An in-depth analysis of the literature regarding the pathophysiology and pharma-
cotherapy of different types of cardiovascular diseases has revealed that oxidative stress is
one of the most critical factors, which is involved in the pathogenesis of cardiac dysfunction.
It is also evident that the occurrence of oxidative stress represents a disbalance between the
excessive formation of oxyradicals and the activities of antioxidant defense mechanisms.
Furthermore, it has been demonstrated that the generation of oxyradicals in diseased
myocardium is a consequence of defects in the mitochondrial electron transport system as
well as the by-product of reactions involving different enzymes including NADPH oxidase,
xanthine oxidase, nitric oxide synthase and monoamine oxidase. Although the contribution
of each source to produce oxidative stress is not clear, it seems that the involvement of each
source for the generation of oxyradicals may differ from one disease to the other and may be
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specific for the stage and type of heart disease. In addition, oxidative stress has been shown
to produce a wide variety of changes in various metabolic pathways and signal transduc-
tion systems for the induction of fibrosis, necrosis and apoptosis as well as the depression
of cardiac gene expression and activation of different proteolytic enzymes in heart disease.
However, alterations in subcellular organelles such as sarcolemma, sarcoplasmic reticulum,
mitochondria and myofibrils may be more related to the development of Ca2+-handling
abnormalities and cardiac dysfunction due to oxidative stress in heart disease. Particularly,
there occurs an excessive entry of Ca2+ due to increased membrane permeability (as a
consequence of changes in lipid composition and activation of the Ca2+-gating mechanism)
as well as depression in the sarcolemmal Na+-K+ ATPase and Na+-Ca2+ exchange systems
due to oxidative stress. Furthermore, oxidative stress promotes the release of Ca2+ (due to
defect in ryanodine receptors) and depresses Ca2+-uptake (due to changes in Ca2+-pump
ATPase) in the sarcoplasmic reticulum. Such Ca2+-handling alterations in both sarcolemma
and sarcoplasmic reticulum can be seen to induce mitochondrial Ca2+-overload and de-
press the process of energy production. Prolonged Ca2+-handling abnormalities in diseased
myocardium will also cause derangements of myofilaments and loss of myofibrillar Ca2+-
sensitivity. Taken together, all these defects in subcellular organelles can be seen to result in
cardiac dysfunction due to the development of oxidative stress in heart disease. It should
be emphasized that it is not our intention to exclude the participation of several other
pathogenic factors in the pathogenesis of cardiac dysfunction but the information in this
article provides evidence in support of the concept that oxidative stress may induce cardiac
dysfunction due to subcellular defects and Ca2+-handling abnormalities in heart disease.
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