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Abstract To date, 11 thermosensitive transient receptor

potential (thermo-TRP) channels have been identified.

Recent studies have characterized the mechanism of ther-

mosensing by thermo-TRPs and the physiological role of

thermo-TRPs in energy metabolism. In this review, we

highlight the role of various thermo-TRPs in energy

metabolism and hormone secretion. In the pancreas,

TRPM2 and other TRPs regulate insulin secretion. TRPV2

expressed in brown adipocytes contributes to

differentiation and/or thermogenesis. Sensory nerves that

express TRPV1 promote increased energy expenditure by

activating sympathetic nerves and adrenaline secretion.

Here, we first show that capsaicin-induced adrenaline

secretion is completely impaired in TRPV1 knockout mice.

The thermogenic effects of TRPV1 agonists are

attributable to brown adipose tissue (BAT) activation in

mice and humans. Moreover, TRPA1- and TRPM8-ex-

pressing sensory nerves also contribute to potentiation of

BAT thermogenesis and energy expenditure in mice.

Together, thermo-TRPs are promising targets for combat-

ing obesity and metabolic disorders.

Keywords TRP channel � Insulin � Brown adipose

adipocyte � UCP1 � Adrenaline � Energy expenditure

Introduction

Most transient receptor potential (TRP) channels are non-

selective cation channels. The name TRP comes from the

prototypical member in Drosophila, in which a mutation

resulted in abnormal transient receptor potential to con-

tinuous light [1]. TRP channels are now divided into seven

subfamilies: TRPC (canonical), TRPV (vanilloid), TRPM

(melastatin), TRPML (mucolipin), TRPP (polycystin),

TRPA (ankyrin) and TPRN (NomPC). In mammals, there

are six TRP subfamilies and 28 channels. TRP channels are

expressed in many tissues and have a wide variety of

physiological functions, including detection of various

physical and chemical stimuli in vision, taste, olfaction,

hearing, touch, and thermosensation [2, 3]. The gene

encoding the capsaicin receptor as a noxious heat sensor,

which is now called TRPV1, was isolated from a rodent

sensory neuron cDNA library in 1997 and was considered
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to be a breakthrough for research concerning temperature

sensing [4]. Since then, several TRP channels having

thermosensitive abilities have been identified in mammals,

with 11 thermosensitive TRP (thermo-TRP) channels

reported in mammals to date (Table 1). These channels

belong to the TRPV, TRPM, TRPA, and TRPC subfami-

lies, and their temperature thresholds for activation are in

the range of physiological temperatures, which we can

discriminate. TRPV1 and TRPV2 are activated by elevated

temperatures, whereas TRPM8 and TRPA1 are activated

by cool and cold temperatures. TRPV3, TRPV4, TRPM2,

TRPM4, and TRPM5 are activated by warm temperatures.

In addition, TRPM3 was shown to be a sensor for noxious

heat and TRPC5 was identified as a candidate cold sensor

[5, 6]. Thermo-TRP channels usually function as ‘multi-

modal receptors’ that respond to various chemical and

physical stimuli. For example, TRPV1, activated by nox-

ious heat ([42 �C), is also a receptor for several pungent

agents such as capsaicin, an active ingredient in chili

peppers, as well as by low pH. Activation of these channels

could contribute to changes in intracellular Ca2? concen-

trations ([Ca2?]i) and control of membrane potentials in

many cell types, except TRPM4 and TRPM5, which are

not permeable of divalent cations. Thermo-TRP channels

expressed in sensory neurons and skin can act as ambient

temperature sensors. On the other hand, thermo-TRP

channels are also expressed in tissues that are not exposed

to dynamic temperature changes, suggesting that these

channels have other physiological roles that are unrelated

to sensation of temperature changes.

The prevalence of excess weight and obesity is

increasing at an alarming rate worldwide. According to the

World Health Organization, in 2014, *39% (1.9 billion)

and 13% (600 million) of adults were overweight and

obese, respectively [7]. These numbers are expected to

increase in the future [8]. Obesity is a major risk factor for

metabolic syndromes, including type 2 diabetes, as well as

for cardiovascular and cerebral diseases. The fundamental

cause of excess weight and obesity is an energy imbalance

between energy intake and energy expenditure. Recent

studies showed that several thermo-TRP channels are key

molecules in the regulation of energy metabolism. In this

review, we focus on the involvement of thermo-TRP

channels, especially those expressed in the pancreas, brown

Table 1 Properties of thermosensitive TRP channels

Temperature

threshold

Tissue distribution Other stimuli

Heat TRPV1 [42 �C Sensory neuron, brain, skin Capsaicin, proton, capsiate, gingerol, shogaol, allicin, shanshool,

camphor, resiniferatoxin, vanillotoxin, 2-APB, propofol,

anandamide, arachidonic acid metabolic products (by

lipoxygenases), monoacylglycerol, NO, extracellular cation

TRPV2 [52 �C Sensory neuron, brain, spinal cord,

lung, liver, spleen, colon, heart,

immunocyte

Probenecid, 2-APB, cannabidiol, mechanical stimulation

Warm TRPV3 [32 �C Skin, sensory neuron, brain, spinal

cord, stomach, colon

Camphor, carvacrol, menthol, eugenol, thymol, 2-APB

TRPV4 [27–41 �C Skin, sensory neuron, brain, kidney,

lung, inner ear, bladder

4a-PDD, bisandrographolide, citric acid, arachidonic acid metabolic

products (by epoxygenases), anandamide, hypoosmolality,

mechanical stimulation

TRPM2 [36 �C Brain, immunocyte, pancreas etc. (cyclic) ADPribose, b-NAD, H2O2, intracellular Ca
2?

TRPM3 Warm-heat Brain, sensory neuron, pancreas, eye Ca2? store depletion, pregnenolone sulfate, nifedipine, clotrimazole

TRPM4 Warm Heart, liver, immunocyte, pancreas

etc.

Intracellular Ca2?

TRPM5 Warm Taste cell, pancreas Intracellular Ca2?

Cold TRPM8 \27 �C Sensory neuron Menthol, icilin, eucalyptol

TRPC5 Cold Brain, sensory neuron, liver, heart,

kidney

Gq/11-coupled receptors, diacylglycerol, Gd3?

TRPA1 \17 �C Sensory neuron, inner cell Allyl isothiocyanate, carvacrol, cinnamaldehyde, allicin, dially

trisulfide, miogadial, miogatrial, capsiate, acrolein, icilin,

tetrahydrocannabinol, menthol (10-100 lM), formalin, H2O2,

alkalization, intracellular Ca2?, NSAIDs, propofol/isoflurane/

desflurane/etomidate/octanol/hexanol etc.

2-APB 2-aminoethoxydiphenyl borate, NO nitric oxide, 4a-PDD 4a-phorbol-didecanoate, ADPribose adenosine diphosphate ribose, b-NAD b-
nicotinamide adenine dinucleotide, H2O2 hydrogen peroxide, NSAIDs non-steroidal anti-inflammatory drugs
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adipocytes and sensory nerves, in energy metabolism and

the secretion of the metabolically important hormones

insulin and adrenaline.

Thermo-TRP in the pancreas and regulation
of insulin secretion

TRPM2 channel in b-cells

In pancreatic b-cells, glucose metabolism-induced closure

of ATP-sensitive K? (KATP) channels and membrane

depolarization trigger opening of voltage-dependent Ca2?

channels, which induces Ca2? influx and subsequent

insulin secretion. During glucose-stimulated insulin secre-

tion in b-cells, induction of background inward current

promoted by the opening of non-selective cation channels

(NSCCs) might facilitate depolarization after glucose

metabolism-induced closure of the KATP channels. Glucose

metabolism evokes not only KATP channel inhibition but

also increases NSCC currents. We reported that the NSCC

transient receptor potential melastatin 2 (TRPM2) channel

in b-cells plays an essential role in glucose-induced and

incretin-potentiated insulin secretion [9]. TRPM2 is

expressed in b-cells [10] and the increase in glucose-in-

duced NSCC activity is due to opening of TRPM2 chan-

nels, since this glucose effect was attenuated in b-cells
from TRPM2-deficient mice [11]. These effects of glucose

on KATP channel inhibition and NSCC (TRPM2) activation

may synergistically and effectively depolarize the b-cell
membrane to trigger acute insulin secretion. This mecha-

nism may contribute to the priming of insulin release from

b-cells, since glucose-induced TRPM2 activation occurs

before glucose-induced KATP channel inhibition [11].

Intestinal incretin hormones, such as glucagon-like

peptide-1 (GLP-1) secreted from L-cells and glucose-de-

pendent insulinotropic polypeptide (GIP) secreted from

K-cells after meal, potentiate glucose-induced insulin

release by cytosolic cAMP production via Gs-coupled

receptors [12, 13]. GLP-1 activates NSCC currents and

depolarizes the membrane potential through cAMP pro-

duction in b-cells. In wild-type mice, the non-selective

TRPM2 blocker 2-aminoethoxydiphenyl borate (2-APB)

inhibits GLP-1-mediated increases in NSCC currents.

Furthermore, GLP-1 has no effect on insulin secretion in

TRPM2-deficient mice [11, 14]. These results demonstrate

that TRPM2 activation is an important pathway for incre-

tin-potentiated insulin secretion.

Considering the mechanism of TRPM2 channel stimu-

lation mediated by cAMP signaling via Gs-coupled

receptors, Gi/Go-mediated inhibition of cAMP production

is expected to attenuate TRPM2 channel activity. Ghrelin,

an acylated 28-amino acid peptide produced predominantly

in the stomach, was discovered as the endogenous ligand

for the growth hormone secretagogue-receptor (GHS-R),

which is widely expressed throughout the body. Ghrelin

inhibits glucose-stimulated insulin secretion in vitro in

perfused pancreas tissue and isolated islets [15, 16]. We

found that the insulinostatic action of ghrelin is produced

via pertussis toxin-sensitive Gi-proteins in b-cells that in

turn attenuate cAMP and [Ca2?]i signaling in b-cells and

insulin release from islets [17, 18]. Moreover, ghrelin

markedly counteracts glucose (8.3 mM)-induced activation

of TRPM2 currents in islet b-cells from wild-type mice but

not TRPM2 knockout (TRPM2-KO) mice [19]. These

results suggest that ghrelin suppresses glucose-induced

insulin secretion at least partly by inhibiting TRPM2

channels. Furthermore, ghrelin potently attenuates GLP-1-

induced cAMP generation and insulin release from islet b-
cells, whereas ghrelin receptor antagonists potentiate GLP-

1-induced cAMP generation and insulin release [20].

Consistent with ghrelin signaling, we recently found that

adrenaline attenuates TRPM2 activation via Gi-mediated

inhibition of cAMP signaling in b-cells [21].
The gastric hormones GLP-1 and ghrelin have recipro-

cal actions on cAMP levels and TRPM2 channel activity in

islet b-cells. GLP-1 and ghrelin are released in a reciprocal

pattern: following a meal, the GLP-1 plasma level rises

while ghrelin levels fall [22]. These changes may collab-

orate to effectively elevate cAMP and activate TRPM2

channels in b-cells, leading to rapid and efficient insulin

release for regulated postprandial glucose disposal. As

such, the development of approaches that would specifi-

cally intervene in TRPM2 signaling in b-cells might pro-

vide a potential therapeutic tool to treat patients with type 2

diabetes.

Other TRP channels in b-cells

Several TRP family members are reportedly expressed in

b-cells, although their physiological role is unclear and

mechanistic insights into the regulation of these channels

during insulin release are limited. TRPM3 expressed in b-
cells functions as an ionotropic steroid receptor that links

insulin release [23], although the inhibition of TRPM3

channels does not affect glucose-induced insulin secretion

[24]. TRPM4 is a Ca2?-activated NSCC that may play a

key role in controlling the membrane potential and elec-

trical activity of insulin-secreting INS1 cells [25]. TRPM5

is also activated by Ca2? and plays a role in insulin release

[26]. GLP-1 stimulates insulin secretion in part by pro-

moting TRPM4 and TRPM5 activation [27]. Activation of

TRPA1 channels expressed in b-cells by the agonist allyl

isothiocyanate stimulates insulin release from insulinoma

cells and primary b-cells [28]. TRPA1-mediated depolar-

ization may act synergistically with KATP channel blockade
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to facilitate insulin release in b-cells. Interestingly, the anti-
diabetic drug glibenclamide inhibits KATP channels but

activates human TRPA1 channels [29], suggesting that part

of the insulin-secreting action of glibenclamide could be

attributed to TRPA1 activation.

Roles of thermo-TRP channels in brown adipose
tissue

Trpv2

TRPV2 was initially reported to be activated by noxious

heat (temperature threshold[52 �C) [30]. TRPV2 was also

found to act as a mechano-sensor that is activated by

membrane stretch and cell swelling [31]. 2-APB and

lysophosphatidylcholine (LPC) act as TRPV2 agonists

[32, 33], whereas ruthenium red and SKF96365 antagonize

TRPV2 activity [32], although these ligands are not

specific for TRPV2. TRPV2 is dominantly expressed in the

central and peripheral nervous systems and is involved in

axon outgrowth in developing neurons and intestinal

movement [34–36]. In addition, the phenotype of TRPV2

knockout (TRPV2-KO) mice suggests that TRPV2 is

involved in phagocytosis of macrophages [37].

TRPV2 was recently shown to be expressed in brown

adipose tissue (BAT) and primary brown adipocytes. In

particular, the increase in TRPV2 expression levels during

brown adipocyte differentiation suggests that TRPV2 could

have important roles in differentiated brown adipocytes. A

study by Sun et al. showed that TRPV2-KO mice have

alterations in the mRNA levels for genes that are related to

mitochondrial oxidative metabolism [38]. For instance,

mice lacking TRPV2 have decreased amounts of mRNA of

UCP1, which is a mitochondrial transporter protein and

plays important roles in energy balance and regulation, and

peroxisome proliferator-activated receptor gamma coacti-

vator 1-alpha (PERM1) expression that are accompanied

by increases in expression of genes related to lipid accu-

mulation, such as lipoprotein lipase (LPL), and cluster of

differentiation 36 (CD36). Furthermore, in morphological

terms, TRPV2-KO BAT cells were larger overall and had

larger lipid droplets compared to wild-type BAT. These

differences could be explained by the impaired thermo-

genic activity seen for TRPV2-KO BAT. TRPV2-KO mice

are unable to maintain body temperature upon exposure to

cold, but these mice had locomotor activity and sympa-

thetic nerve activity that were similar to wild-type mice. In

addition, increases in UCP1 mRNA and protein in BAT

were impaired in TRPV2-KO mice exposed to cold tem-

perature (4 �C). TRPV2 expression levels in BAT were

also increased following exposure of wild-type mice to

cold. Thermogenesis in mice can be assessed by measuring

interscapular BAT (iBAT) temperature using an inserted

temperature probe. The iBAT temperature could be

increased by systemic administration of the b3-adrenergic
receptor agonist BRL37344 to anesthetized wild-type mice,

but not TRPV2-KO mice. Consistent with this impairment,

TRPV2-KO mice showed heavier white adipose tissue

(WAT) and increased accumulation of lipid droplets in

BAT. Moreover, TRPV2-KO mice fed a high-fat diet had a

significant increases in body weight and metabolically

active tissues.

These findings raise several questions: (1) how is

TRPV2 activated downstream of sympathetic nerve acti-

vation? (2) what are the mechanisms involved in

increased TRPV2 expression? and (3) what is the

involvement of calcium signaling in BAT thermogenesis?

Stimuli that activate TRPV2 include membrane stretch

(mechanical tension), as well as the chemical agonists

LPC, LPI, and the endocannabinoids [31, 33, 39, 40].

Insulin growth factor-1 (IGF-1) is reported to enhance

translocation of TRPV2 from intracellular compartments

to the plasma membrane following stretch-mediated

activation of TRPV2 [41]. In brown adipocytes, TRPV2

could be activated downstream of adenylyl cyclase (AC),

based on the finding that enhancement of UCP1 mRNA

expression mediated by the AC activator forskolin was

almost abolished in primary brown adipocytes from

TRPV2-KO mice [38]. Although the precise mechanism

of TRPV2 activation in BAT is unclear, several studies

indicated that TRPV2 agonists and stimulations could

work synergistically both in vitro and in vivo. There is

little evidence for the dependence of calcium influx on

sympathetic nerve activation of brown adipocytes,

although increases in intracellular calcium concentrations

have been observed in these cells. Calcium is thought to

be released from mitochondria or the ER followed by

store-operated calcium entry. On the other hand, activa-

tion of TRPM8 by menthol in brown adipocytes report-

edly enhances calcium-dependent PKA phosphorylation

(also described below). This result suggests that a calcium

influx pathway that promotes entry of extracellular cal-

cium directly into the cell may exist, and TRPV2 could be

a candidate channel that promotes this entry. Another

important event in brown adipocyte function is PKA

phosphorylation. Given that chelation of intracellular

calcium by BAPTA-AM attenuates increases in UCP1

expression in brown adipocytes treated with the b-
adrenergic receptor agonist isoproterenol [38], it is pos-

sible that calcium influx could modulate UCP1 expression

increase through PKA phosphorylation. Furthermore,

TRPV2 activation could enhance PKA phosphorylation

levels [42], although further experiments are necessary to

clarify the precise mechanisms of thermogenesis medi-

ated by TRPV2 activation.
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TRPV2 mRNA expression can also be seen in primary

pre-adipocytes, but its expression is significantly increased

in differentiated brown adipocytes compared to pre-adi-

pocytes [43]. Pre-adipocytes isolated from mouse iBAT

showed impaired differentiation to brown adipocytes in the

presence of non-selective TRPV2 agonists (2-APB and

LPC). However, application of the TRPV2 agonists 3 days

after differentiation began had no effect, indicating that

TRPV2 activation could be critical for the early stages of

pre-adipocyte differentiation [43]. Mechanical stimulation,

which could activate TRPV2, also inhibited brown adipo-

cyte differentiation. In addition, brown adipocyte differ-

entiation was enhanced in TRPV2-KO mice. Calcium

influx is reported to suppress brown adipocyte differenti-

ation through a calcineurin-dependent pathway [44].

Indeed, the calcineurin inhibitors cyclosporine A and

FK506 partially recovered TRPV2 activation-induced

inhibition of brown adipocyte differentiation [43]. These

results demonstrated that TRPV2 is involved in the dif-

ferentiation of brown adipocytes, and could regulate the

number of brown adipocytes. Although the phenotype

related to impaired differentiation is not seen in TRPV2-

KO BAT, a compensatory effect could be present in these

mice, particularly given the importance of BAT functions.

Taken together, these findings suggest that TRPV2 plays

two different roles related to the developmental stages of

brown adipocytes. First, in pre-adipocytes, TRPV2 could

inhibit the differentiation of brown adipocytes, and second,

in differentiated brown adipocytes TRPV2 could facilitate

thermogenesis.

Other TRP channels

TRPV1 is reported to be expressed in the 3T3-L1 and HB2

adipocyte cell lines, brown adipocytes, and BAT [45–47].

Application of the TRPV1 agonist (capsaicin) to 3T3-L1

adipocytes caused upregulation of the expression of genes

related to thermogenesis and ‘‘browning’’ [46]. However,

the physiological roles of TRPV1 in BAT have not been

well clarified.

TRPM8 is also expressed in BAT and menthol-induced

activation of TRPM8 expressed in brown adipocytes

upregulates UCP1 expression, which requires the activa-

tion of PKA [48]. Chronic dietary application of menthol

significantly increases the core body temperature and

locomotor activity in wild-type mice, whereas these effects

are absent in both TRPM8-KO and UCP1-KO mice [48]. In

addition, TRPM8 was demonstrated to be expressed in a

human white adipocyte cell line and its expression level is

elevated during the differentiation of adipocyte. TRPM8

activation induced UCP1 expression, mitochondrial acti-

vation and heat production [49]. Although this study sug-

gests that TRPM8 stimulation enhances non-shivering

thermogenesis, the roles of TRPM8 in BAT are still largely

unclear [48].

TRPV4 is expressed in both BAT and WAT [50].

Reduction of TRPV4 expression enhances the expression

of genes related to thermogenesis such as PGC-1a and

UCP1 without changing adipogenesis in 3T3-F442A adi-

pocytes [50]. TRPV4 activation causes a rapid phospho-

rylation of ERK1/2 and JNK1/2, which further suppresses

the expression of thermogenic genes [51]. Consistent with

this finding, TRPV4-KO mice exhibit increased muscle

oxidative capacity and resistance to diet-induced obesity

[50]. Another report indicated that TRPV4 is expressed in

WAT and BAT [50]. Interestingly, induction of thermo-

genic gene expression upon TRPV4 inhibition by GSK205

leads to the development of metabolically active brown fat-

like features in WAT [50]. Calcium influx through TRPV4

has an opposite effect to that seen for TRPV2 in BAT

thermogenesis. Thus, how and when calcium influx occurs

during thermogenesis in BAT could have important regu-

latory implications.

Activation of thermo-TRP channels in sensory
nerves increases energy expenditure
via sympathetic nerve activation
and via enhancement of adrenaline secretion

Findings on the effects and mechanisms of thermo-

TRP from animal studies

It is empirically known that consumption of spicy foods or

drinks can enhance thermogenesis by increasing energy

expenditure. In traditional Chinese medicine, many spicy

foods were shown to induce warming sensations in the

body. In 1986, Henry and Emery provided evidence to link

consumption of hot foods and enhanced energy expendi-

ture, in that individuals who consumed spicy foods con-

taining chili or mustard sauces had an approximately

twofold increase in O2 consumption after the meal [52].

Red hot peppers (Capsicum sp.) are a representative spicy

food, and its pungent ingredient is capsaicin. Also in 1986,

Kawada et al. reported that intraperitoneal injection of

capsaicin increased O2 consumption and that the addition

of capsaicin to a high-fat diet prevented accumulation of

visceral WAT and obesity in rats [53, 54]. The effect of

capsaicin on increasing energy expenditure has since been

supported by numerous studies involving both humans and

animals [55, 56].

After cloning and identification of the capsaicin receptor

TRPV1 in 1997 [4], the mechanism of action by which

capsaicin and TRPV1 agonists increase energy expenditure

and thermogenesis has been determined in greater detail.

Many pungent ingredients derived from spices activate
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TRPV1 [57], including capsaicin in hot peppers [4],

piperine and its analog in black pepper [58, 59], and gin-

gerol and shogaol in ginger [60, 61]. Interestingly, some

compounds with no or very low pungency have been

identified as TRPV1 agonists, such as the capsaicin analog

capsiate present in ‘‘CH-19 sweet’’ peppers [62, 63], [10] -

shogaol from ginger [61], and 1-monoacylglycerol that has

various acyl moieties in wheat, mioga (Zingiber mioga)

and onion [64]. TRPV1 agonists with no or low pungency

can also have high lipophilicity, which could render these

molecules unable to access the termini of trigeminal nerves

in the oral cavity that is covered with epithelium

[61, 63, 64].

Oral administration of the TRPV1 agonists capsaicin

and capsiate increases energy expenditure (O2 consump-

tion) and core body temperature, and these responses are

significantly blunted by a TRPV1 antagonist [65] and

abolished in TRPV1-KO mice [66], suggesting that TRPV1

is an essential receptor for increasing energy expenditure

and heat production. TRPV1 is markedly expressed in

peripheral sensory neurons derived from the dorsal root

ganglion, the trigeminal ganglion and the nodose ganglion

[4, 67, 68]. Denervation of TRPV1-expressing sensory

nerves by systemic pretreatment with excess capsaicin can

completely block enhancement of O2 consumption and

increases in body temperature [69]. Therefore, TRPV1

agonists induce incremental energy expenditure and ther-

mogenesis via TRPV1-expressing sensory nerves.

Adrenaline produced by the adrenal medulla is an

important stimulating hormone that increases energy

expenditure and thermogenesis, as well as possibly con-

tributing to diet-induced energy expenditure. Meal intake

induces increases in plasma adrenaline and O2 consump-

tion, and meal-induced energy expenditures can be blunted

by the b-blocker propranolol [70]. Administration of cap-

saicin enhances adrenal sympathetic nerve activity [71] and

adrenaline secretion from the adrenal medulla [72]. Pre-

treatment with a b-blocker and adrenal demedullation lar-

gely attenuate capsaicin-induced increases in O2

consumption [54, 69]. Capsaicin-induced adrenaline

secretion is inhibited by chemical denervation of sensory

nerves [73], pretreatment with the TRPV1 antagonist

capsazepine [74], and in TRPV1-KO mice (Fig. 1). In

Fig. 1, basal adrenaline level in adrenal vein in TRPV1-KO

mice were lower than that in wild-type mice. Previous

reports indicate that TRPV1-KO mice show a decreased

sympathetic activity although basal body temperature,

heart rate and blood pressure are normal [75–77], therefore

the lowering of adrenaline secretion in TRPV1-KO might

be due to decreasing activity of sympathoadrenal nerves.

Moreover, not only the pungent TRPV1 agonist capsaicin

but also the low pungency TRPV1 agonists capsiate [78]

and [10] -shogaol [61] could induce adrenaline secretion.

These results indicate that peripheral administration of

TRPV1 agonists can evoke adrenaline secretion via sen-

sory—central—sympathoadrenal reflexes to increase

energy expenditure (Fig. 2). In addition, Osaka et al.

reported that the rostral ventrolateral medulla, which is the

site of the premotor area that contains sympathoadrenal

preganglionic neurons, is a critical locus for capsaicin-

mediated increases in energy expenditure [79].

Increases in O2 consumption by capsaicin are partially

retained in adrenal-demedullated rats [69], suggesting that

mechanisms other than those involving adrenaline could

underlie the increase in energy expenditure. Capsaicin and

capsiate activate sympathetic efferent nerves innervating

iBAT, thereby inducing expression of UCP1 and heat

production [66, 69, 80, 81]. Sympathetic denervation of

iBAT partly attenuates capsaicin-induced energy expendi-

ture [69]. The administration of capsaicin or capsiate into

the GI tract increases the activity of sympathetic efferent

nerves innervating iBAT and induces thermogenesis in

iBAT. These effects can be impaired by the denervation of

vagal afferents and extrinsic nerves connected to the jeju-

num [66, 81]. Subchronic intake of the non-pungent

TRPV1 agonist capsiate or 1-monoolein elevates UCP1

expression in iBAT and prevents accumulation of visceral

fat promoted by a high-fat diet [64, 80]. Furthermore, the

anti-obesity effects of capsiate are completely abolished in

UCP1-KO mice [82]. Together, these findings indicate that

TRPV1-expressing sensory nerves, especially vagal affer-

ent sensory nerves, participate in regulating activity of

sympathetic nerves innervating the iBAT as well as energy

expenditure (Fig. 2).

Many spicy foods contain both TRPV1 agonists and

TRPA1 agonists [57]. For example, allyl isothiocyanate in

mustard [83], cinnamaldehyde in cinnamon [83], and alli-

cin and diallyl trisulfide in garlic [84, 85] are TRPA1

agonists. Additionally, we identified miogatrial from mioga

(Zingiber mioga) as a potent and low pungency TRPA1

agonist [86]. TRPA1 is co-expressed with TRPV1 in dorsal

root ganglion neurons and nodose ganglion neurons

[87, 88], and similar to that of TRPV1 agonists, the TRPA1

agonists allyl isothiocyanate and cinnamaldehyde enhance

adrenaline secretion via the sensory—central—sympa-

thoadrenal reflex [89]. Allyl isothiocyanate and cin-

namaldehyde induce UCP1 expression in iBAT [90–92]

and heat production [93]. Therefore, sensory neurons

expressing both TRPV1 and TRPA1 might be a crucial

subclass that regulates energy expenditure and thermoge-

nesis (Fig. 2).

Cold exposure is known to enhance thermogenesis to

maintain body temperature. TRPM8 is a cold receptor that

is activated by moderate cold (\25–28 �C) and ‘‘cooling-

mimetic’’ compounds such as menthol from mint [94, 95].

TRPM8 is abundantly expressed in different
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subpopulations of sensory neurons (from dorsal root,

trigeminal and nodose ganglion) that express TRPV1 and

TRPA1 [87, 96–98]. Previous reports using TRPM8-

deficient mice show that TRPM8 mediates cold sensations

to induce avoidance behavior towards innocuous cold

[99–101]. Moreover, recent studies demonstrated that
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impaired in TRPV1 knockout mice. We investigated the effect of

capsaicin on adrenaline secretion in male adult C57BL/6 wild-type

mice and TRPV1 knockout mice (obtained from Dr. D. Julius,

University of California, San Francisco) according to the previous

report with a slight modification [89]. A mouse anesthetized with a-
chloralose and urethane (0.1 and 1 g/kg, respectively) was placed on

heated pad, and the rectal temperature was maintained at

36.5–37.5 �C. Heparinized saline (500 IU/ml, 25 ll) was injected

through the femoral vein, then sampling of adrenal blood from the

adrenal vein was started with a 2-min interval. Immediately after

collecting the first fraction, capsaicin (0.05 mg/kg) or vehicle (saline

containing 2% ethanol and 10% Tween-80) was administered into the

femoral vein. Plasma adrenaline was purified with active alumina and

measured by HPLC-electrochemical detection. Intravenous adminis-

tration of capsaicin significantly increased adrenaline secretion in

wild-type mice (a) but not TRPV1 knockout mice (b). There was a

significant difference between vehicle and capsaicin in a but not

b (treatment effect, p\ 0.01 by two-way ANOVA). **p\ 0.01 by

Bonferroni’s test. c Total adrenaline secretion for 20 min in a and

b. *p\ 0.05, **p\ 0.01 by one-way ANOVA followed by Tukey’s

test. Each value is the mean ± SEM (n = 5)
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TRPM8 is a crucial channel for cold-defense thermoregu-

lation. The core body temperature in wild-type mice is

maintained during cold exposure, but the core temperature

of TRPM8-KO mice and wild-type mice treated with a

TRPM8 antagonist is decreased [102, 103]. Moreover,

activation of TRPM8 by cold stimulation or menthol

administration increases core temperature in wild-type

mice but not TRPM8-KO mice [93, 102]. Cold exposure

activates and increases c-Fos expression in the lateral

parabrachial nucleus, which is relay area for cutaneous cold

signals from primary sensory neurons to the preoptic

hypothalamus [104, 105]; c-Fos expression is blunted by

treatment with TRPM8 antagonists [103]. Taken together

with these data, activation of TRPM8, presumably on

sensory nerves, increases heat production (Fig. 2). TRPM8

expression has also been detected outside of sensory nerves

in tissues such as the bladder, prostate, brown adipocyte,

liver, gastrointestinal mucosa and several types of tumors.

As such, the above-mentioned results using TRPM8-KO

mice and TRPM8 antagonists might contribute to an

understanding of TRPM8 mechanisms beyond that in

sensory nerves. Future studies using site-specific loss of

function approaches could clarify the mechanism by which

TRPM8 in sensory nerves regulates thermogenesis.

TRP-activated brown fat thermogenesis in humans

In humans, with the exception of newborns, the prevalence

of BAT has long been believed to be negligible. However,

recent radionuclide imaging studies revealed the existence

of considerable amounts of BAT in healthy adults

[106, 107]. The metabolic activity of human BAT can be

assessed by fluorodeoxyglucose (FDG)-positron emission

tomography (PET) combined with X-ray computed

tomography (CT), which is a powerful diagnostic tool for

malignant tumors. Although the principal substrate for

BAT thermogenesis is fatty acids, glucose utilization is

greatly enhanced in parallel with the activation of UCP1, a

key molecule of BAT thermogenesis [108]. Thus, glucose

utilization assessed by FDG uptake could serve as an index

of BAT thermogenic activity.

Cold exposure is the most powerful and physiological

stimulus for BAT activation. Cold acts on TRP expressed in

sensory nerves to enhance sympathetic nerve activity and

trigger b-adrenergic receptor-mediated intracellular cas-

cades in brown adipocytes, and finally to activate UCP1 and

thermogenesis (Fig. 2) [104, 109]. In fact, the activity of

BAT as assessed by FDG-PET/CT is greatly increased after

acute cold exposure or administration of b-adrenergic
receptor agonists, but is reduced under warm conditions or

by pretreatment with a b-adrenergic blocker [106, 110, 111].
BAT activity is positively associated with cold-induced non-

shivering thermogenesis (CIT), suggesting that BAT

contributes to whole-body energy expenditure in humans

[112]. BAT activity decreases with age and these decreases

are associated with excessive accumulation of body fat with

age [113]. Inactivation and reduction of BAT are now

accepted to be associated with obesity and insulin resistance

[114, 115]. As such, methods that re-activate and recruit

BAT could promote reductions in body fat. Indeed, repeated

mild cold exposure at 16 �C for 2 h every day for 6 weeks

results in increases in BAT activity and CIT in healthy lean

subjects [116]. More importantly, such cold acclimation

decreases body fat mass, in parallel with the changes in BAT

activity and CIT. This result is in line with a recent report

showing increased BAT mass and CIT after cold acclima-

tion in obese subjects [117]. Thus, BAT is a significant anti-

obesity target in humans [118].

Nevertheless, increased exposure to cold would be dif-

ficult and uncomfortable in daily life. As mentioned above,

some thermo-TRP channels are activated by various

chemical substances, including food ingredients. Given

that chemical activation of TRPV1 in the gastrointestinal

tract by capsaicin and capsiate activates UCP1 in BAT in

mice [82], oral administration of these ingredients may be a

more feasible method to recruit BAT in humans. We found

that single oral ingestion of capsinoids, which include

capsiate, dihydrocapsiate, and nordihydrocapsiate, increa-

ses whole-body energy expenditure in human individuals

with metabolically active BAT, but not in those without

active BAT [119]. Furthermore, daily ingestion of capsi-

noids augments BAT activity [120] and CIT [116] even in

individuals with low BAT activities. Thermogenic and fat-

reducing effects of capsinoids have also been shown in an

obese population [55, 121, 122]. Taken together, the anti-

obesity effects of capsinoids as TRPV1 agonists may be

attributable to the thermogenic activity of recruited BAT.

The mechanism of capsinoid-induced activation of BAT

has been characterized for the most part by studies in small

rodents. As noted above, the primary action site of capsi-

noids would be TRPV1 on sensory nerves in the gas-

trointestinal tract. Consistent with the crucial role of

TRPV1 in capsinoid-mediated effects in mice [66], the

beneficial effects of capsinoids are greatly attenuated in

individuals who carry a mutated (Val585Ile) TRPV1 [121].

Although TRPV1 is expressed in brown adipocytes, the

direct action of capsinoids toward TRPV1 in human BAT

may be unlikely because orally ingested capsinoids are

rapidly hydrolyzed, and thus are usually undetectable in the

general circulation in humans. Although TRPV1 activators

affect BAT and body fat similarly to cold exposure, it

should be noted that TRPV1 is not a cold sensor but instead

is a sensor of noxious stimuli, including exposure to tem-

peratures above 42 �C. Thus, human BAT is likely to be

activated by nociceptive stimuli such as high temperature

and capsinoids. In agreement with this idea, Sidossis et al.
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[123] recently demonstrated in humans that chronic

adrenergic stress induced by burn trauma results in

browning of WAT.

In addition to capsinoids, several dietary substances

activate TRPV1 and BAT thermogenesis. For example,

dietary supplementation with eicosapentaenoic acid (EPA)

and docosahexaenoic acid (DHA) up-regulates UCP1

expression in both BAT and WAT, thereby preventing diet-

induced obesity [124]. These effects are largely dependent

on the presence of TRPV1 and activation of sympathetic

nervous system (SNS) [76]. Despite the evidence in mice,

effects of EPA and DHA on human BAT have not been

determined. Additionally, as noted above, TRPV1-ex-

pressing sensory nerves also express cold-sensitive

TRPA1, which is involved in BAT activation induced by

cold exposure. TRPA1 is activated by various pungent

compounds, such as allyl- and benzyl-isothiocyanates in

wasabi (Japanese horse radish) and cinnamaldehyde in

cinnamon. These compounds are known to increase ther-

mogenesis and UCP1 expression in small rodents [125].

Furthermore, TRPM8 is also the most likely candidate

receptor to sense lower temperatures and is known to be

involved in BAT activation [125]. A representative

TRPM8 agonist is menthol, a cooling and flavor compound

in mint [93]. Using TRPM8- and UCP1-deficient mice, Ma

et al. documented that dietary menthol activates UCP1-

dependent thermogenesis in a TRPM8-dependent manner

[48]. These findings concerning the chemical activation of

the TRPs-SNS-BAT axis in small rodents provide further

impetus for the identification of common food ingredients

that can activate and recruit BAT in humans.

Conclusions and perspectives

The obesity pandemic is a serious global health problem

because it is a major risk factor for metabolic syndromes

including insulin resistance, impaired insulin secretion,

hyperglycemia, dyslipidemia, and hypertension. Normal

regulation of glucose and lipid metabolism is indispensable

for healthy biological activity. Moreover, enhancement of

energy expenditure together with a reduction in food intake

is effective in reducing obesity. Eleven thermo-TRP

channels have been identified in the 20 years since the first

thermo-TRP channel, TRPV1, was cloned. Furthermore,

these thermo-TRPs not only sense temperature but also

regulate events related to energy metabolism, such as

insulin secretion by the pancreas, differentiation and/or

thermogenesis in brown adipocytes, and energy expendi-

ture mediated by sensory nerve—brain—sympathetic

reflexes. We anticipate that further studies on the physio-

logical and pathophysiological roles of thermo-TRPs may

open novel avenues for treating metabolic disorders,

including obesity and diabetes.
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