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We describe here the first genome-scale metabolic model of Kluyveromyces lactis, iOD907. It is par-
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ed energy requirements, and the model proved accurate when predicting the biomass, oxygen and
carbon dioxide yields. When compared to published experiments, in silico knockouts accurately
predicted in vivo phenotypes. The iOD907 genome-scale metabolic model complies with the
MIRIAM (minimum information required for the annotation of biochemical models) standards for
the annotation of enzymes, transporters, metabolites and reactions. Moreover, it contains direct
links to Kyoto encyclopedia of genes and genomes (KEGG; for enzymes, metabolites and reac-
tions) and to the Transporters Classification Database (TCDB) for transporters, allowing easy
comparisons to other models. Furthermore, this model is provided in the well-established systems
biology markup language (SBML) format, which means that it can be used in most metabolic engi-
neering platforms, such as OptFlux or Cobra. The model is able to predict the behavior of K. lactis
under different environmental conditions and genetic perturbations. Furthermore, by performing
simulations and optimizations, it can be important in the design of minimal media and will allow
insights on the milk yeast’'s metabolism, as well as identifying metabolic engineering targets for
improving the production of products of interest.
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1 Introduction models are those of prokaryotes, the number of models
for eukaryotic organisms has been increasing rapidly
(www.optflux.org/models).

In recent years, some steps have been taken to stan-

Genome-scale metabolic models are now established
tools utilized in a wide range of biotechnological applica-

tions, such as metabolic engineering of microbes or drug
targeting [1-6]. Although a large majority of the available
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dardize the methodology for the reconstruction of genome-
scale metabolic models, for instance the publication of a
detailed protocol by Thiele and Palsson [7] for the develop-
ment of a standard that determines the minimum informa-
tion required for the annotation of biochemical models
(MIRIAM) [8]. Nevertheless, the reconstruction of the meta-
bolic network of an organism is still a complex procedure.

The same process may, in theory, be applied for recon-
structing eukaryotic and prokaryotic metabolic models
[7]. Nevertheless, eukaryotic models are more demanding
due to their larger knowledge base and genomes, as well
as the various compartments within the cells.

© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
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The reconstruction process consists of four main steps
[7, 9, 10]: genome annotation, assembling the genome-
scale metabolic network, conversion of the network to a
genome-scale metabolic model, and finally the validation
of the model. Genome annotation, in this context, is
the assignment of metabolic functions, by identifying
enzymes and transporters, to genes within the genome.
The genome annotation allows generating gene-protein-
reaction (GPR) rules, through the identification of GPR
triplets (the association between the genes, the proteins
encoded and the reactions promoted by such proteins).
A fully annotated genome allows the assembly of a meta-
bolic network, in which two reactions are connected if a
metabolite is the substrate of one reaction and the prod-
uct of the other. Besides the genome annotation results,
this step usually integrates biochemical and physiological
information about the specific organism available in the
literature or in specialized databases. The addition of a
biomass equation, constraints around the external
exchange flux values, and an equation representing the
depletion of adenosine triphosphate (ATP) for cellular
maintenance processes, allows converting the metabolic
network into a stoichiometric metabolic model. Finally,
the consistency of this model can be checked by compar-
ing simulated behavior with published experimental data.
These simulations are usually performed using the flux
balance analysis (FBA) formulation [11, 12].

One of the major issues when building a genome-scale
metabolic model is the lack of universal identifiers for the
metabolites. Unlike enzymes, which have Enzyme Com-
mission (EC) numbers [13], and carrier proteins that are
identified by Transporter Classification (TC) numbers
[14], metabolites do not have an international classifica-
tion standard widely accepted by the scientific commu-
nity. The classification systems for metabolites that most-
ly resemble those for enzymes and transporters are pro-
vided by the Kyoto Encyclopedia of Genes and Genomes
(KEGG) Compound database [15, 16] and MetaCyc [17].
However, only KEGG provides an application program-
ming interface that allows retrieving this information
automatically.

Tools like merlin ([18] and Dias, O., Rocha, M., Ferreira,
E. C., and Rocha, 1., Reconstructing genome-scale meta-
bolic models with merlin 2.0, submitted), model SEED
[19], Raven [20], MicrobesFlux [21] and others were devel-
oped specifically for model reconstruction and are becom-
ing increasingly available. These tools are usually devel-
oped for assisting in the automation of some steps of
the reconstruction process, although manual curation is
always required. merlin 2.0 is the second generation of our
tool, developed for the reconstruction of genome-scale
metabolic models. This user-friendly application allows
performing several steps of the reconstruction process
semi-automatically (Dias et al., submitted) and exporting
the model in the systems biology markup language
(SBML) format [22].

© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
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The yeast Kluyveromyces lactis, for which the com-
plete genome sequence has been available since 2004
[23], is attracting increasing attention from molecular
biologists and process engineers, and has even become a
reference organism in biological research. Several aspects
have contributed to this development [24-26], namely its
GRAS (generally recognized as safe) status, its ability to
grow on lactose as a sole carbon source, and its various
industrial applications. K. lactis is especially useful in the
dairy industry and as a host for the production of recom-
binant proteins [27], for which it presents an impressive
secretory capacity [28, 29] and does not require methanol
for efficient induction of protein production, as do methy-
lotrophic yeasts such as Pichia pastoris [30]. Its distinctive
petite-negative nature allows studies on mitochondrial
function [31]. Moreover, the availability of various molec-
ular tools makes it amenable to genetic manipulation [32,
33] (near the level of Saccharomyces cerevisiae), while its
evolutionary proximity to S. cerevisiae allows performing
comparative studies between these two species. Its reg-
ulation of carbon and energy metabolism, which contrasts
with the well-studied physiology of S. cerevisiae, reflects
its adaptation to aerobic conditions. Finally, K. lactis can
grow on a broader diversity of substrates and is less sen-
sitive to glucose repression than S. cerevisiae [34]. Like
S. cerevisiae, K. lactis is an ascomycetous budding yeast
that belongs to the endoascomycetales. However, where-
as the K lactis is an aerobic-respiring or Crabtree-nega-
tive yeast, the S. cerevisiae is an aerobic-fermenting or
Crabtree-positive yeast [35].

The first genome-scale metabolic model for a yeast
was for S. cerevisiae [36], for which there are currently
seven metabolic reconstructions available [36-42]. Sever-
al other yeasts also have reconstructions, namely several
Pichia strains [43-45], Schizosaccharomyces pombe [46],
among various other fungi. However, although K. lactis is,
along with S. cerevisiae, considered a prototype for mod-
eling two distinct types of yeast, as yet there is no model
for K. lactis [47]. A metabolic model of K. lactis is likely to
allow comparisons that will provide relevant information
on the origins of the differences between these industri-
ally relevant yeasts and will surely permit the elucidation
of interesting features of the milk yeast, as well as the
identification of engineering targets for improving this
organism.

Here, we present the first in silico genome-scale meta-
bolic reconstruction of K. lactis with gene rules, the
iOD907. This model accounts for compartmentation of
reactions and the transport of metabolites across cellular
membranes.

This genome-scale metabolic model complies with
the MIRIAM standards for the annotation of enzymes,
transporters, metabolites and reactions. Furthermore, it
contains direct links to KEGG (for enzymes, metabolites
and reactions) and to the Transporters Classification
Database (TCDB; for transporters) allowing easy compar-
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isons with other models. Finally, this model is provided in
the well-established SBML format, which means that it
can be used in most metabolic engineering platforms,
including OptFlux [48] and COBRA [49].

2 Material and methods

2.1 Model development

Specific studies on several aspects of K. lactis’ metabo-
lism are lacking, including biomass composition, ATP
requirements for maintenance and growth, and quantita-
tive physiological data, such as those obtained in chemo-
stat experiments. Thus, in addition to results from the
genome annotation, other sources used to develop,
improve and validate the iOD907 model were: the
iIMMO904 S. cerevisiae metabolic model [41], a study by
Kiers et al. in 1998 [50] on the regulation of alcoholic fer-
mentation in K. lactis, Biolog Phenotype MicroArrays [51],
ordered from Biolog (Hayward, CA) and publicly available
data from the Centraalbureau voor Schimmelcultures —
Royal Netherlands Academy of Arts and Sciences
(CBS-KNAW) Fungal Biodiversity Centre webpage
(http://www.cbs.knaw.nl/Collections).
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The methodology used for developing the genome-
scale metabolic model is depicted in Fig. 1. The main
steps of this methodology are concisely described below.

2.2 Protein-reaction associations

Protein-reaction associations are available in several
online databases including BRENDA [52], MetaCyc [17],
or KEGG [16]. The latter was selected for this step
because it provides this information automatically.

The genome annotation of K. lactis had been previ-
ously performed within our group [53]. Because annota-
tions are not static and new gene functions are discov-
ered and registered in databases every day, merlin 2.0 was
used to update this annotation. Also, the annotation of
transport proteins was revised using a transporter anno-
tation tool that was developed after the re-annotation
(Dias, O., Gomes, D. G., Vilaga, P, Cardoso, J. et al,
Genome-wide Semi-automated Annotation of Trans-
porter Systems, submitted).

Using the updated annotation, the reactions associat-
ed with complete EC numbers were used to assemble the
draft network. At this stage, one of the major concerns is
to identify which reactions should be included in the
model when KEGG associates an EC number with more
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Figure 1. Methodology for the reconstruction of the Kluyveromyces lactis iOD907 metabolic model.
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than one reaction. A conservative approach would
include all reactions, but that would also create a meta-
bolic model with many gaps and dead ends. In order to
overcome that, while still having a reliable model, we used
the concept of KEGG pathways. KEGG pathways are
functional sets of reactions and enzymes that are con-
nected by metabolites. The fact that an EC number is part
of a pathway does not necessarily mean that all reactions
associated with that EC number are also part of the same
pathway. Assuming that the most relevant reactions are
the ones linked to the EC numbers present in the associ-
ated pathway, in our approach, when an EC number was
linked to several reactions, only those reactions present in
the KEGG pathways that also included the mentioned EC
number were included in the model. When the EC num-
ber only promoted a single reaction, the reaction was
directly included in the model. In the same way, all reac-
tions classified as spontaneous or non-enzymatic were
also included in the model. Moreover, all reactions associ-
ated with encoded enzymes not present in any KEGG
pathways were also included in the first draft of the
model.

2.3 Reaction reversibility

By default, all KEGG reactions are set to be reversible.
Thus, data provided in a study by Stelzer et al. [54] were
used to perform an automatic initial correction of the
reversibility of the reactions. These authors first retrieved
the information shown in KEGG PATHWAY maps and
confirmed it in BRENDA whenever possible. However,
the criteria for the determination of irreversible reactions
described by Ma and Zeng [55] was generally still adopt-
ed by Stelzer and co-workers when elaborating their data-
base. Each KEGG reaction identified as irreversible in
that study was automatically set to irreversible in our
model.

2.4 Correct deleted/transferred EC numbers

Although the annotation was upgraded, there are no
guarantees that the EC numbers available in the different
databases are updated, even though the function
assigned to each gene might be correct. Some EC num-
bers found during annotation matched KEGG records
labelled as Transferred or Deleted. In these cases, a man-
ual inspection was performed to assign roles to all meta-
bolic genes in the model.

2.5 Transport reactions

Transport reactions were generated using genomic infor-
mation together with public databases. In brief, the pro-
cedure consists of finding genes with transmembrane
domains on the K. lactis genome using the TransMem-
brane prediction with Hidden Markov Models (TMHMM)

© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
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approach [b6]. Amino acid sequences for proteins pre-
dicted to have at least one transmembrane helix were
then compared, using the Smith-Waterman [57] algo-
rithm, to all sequences kept in the TCDB [14]. The
metabolites associated to TCDB records with similarities
to a given K. lactis gene were associated to that gene,
according to the following procedure: every metabolite
linked to a K. lactis gene was assigned a score that took
into account the frequency of that metabolite among the
homologous genes, as well as the taxonomy of the TCDB
records associated to that metabolite and with similari-
ties to the above-mentioned gene. The computed score,
which ranged between 0 and 1, represented the likelihood
of a particular metabolite being transported by a carrier
encoded in that K. lactis gene. Hence, transport reactions
for all metabolites with classifications above a given
threshold were generated. The manner in which each
metabolite was transported through the membrane (e.g.
uniport, symport, antiport) was selected using the same
process used for the sorting of metabolites. For more infor-
mation on this methodology please refer to “Genome-
wide Semi-automated Annotation of Transporter Sys-
tems” (Dias et al., submitted). Only transport reactions
with metabolites participating in biochemical reactions
were included in the model so as to avoid introducing
gaps in the network.

Transport reactions from/to the exterior and across
internal membranes for currency metabolites, such as
H,0O, CO,, and NH,, which are often carried by facilitated
diffusion, were added to the model with no gene associa-
tion.

2.6 Compartmentation

This model accounts for four compartments: extracellular
milieu, cytoplasm, mitochondrion and endoplasmic retic-
ulum. The two internal compartments included are of
utmost importance in eukaryotes since mitochondria
have a major role in eukaryotic ATP synthesis, while the
endoplasmic reticulum is the site where lipids, glycogen,
and protein biosyntheses occur, among several other
functions. The assignment of enzymes and carriers to
compartments was performed using the WoLF PSORT
[58] tool. Some proteins were assigned to other compart-
ments in K. lactis, i.e. the nucleus, the Golgi apparatus
and the peroxisome. However, the reactions catalyzed by
proteins assigned to these compartments were discon-
nected from the network. Therefore, such enzymes were
reassigned to the cytoplasm.

When discrepancies were found between predic-
tions made by our transporter annotation tool and
PSORT, preference was given to the former. Namely,
non-transport reactions promoted by enzymes predicted
by PSORT to be located in the plasma membrane were
assigned to both the cytoplasm and the extracellular
milieu, so that both possibilities would be anticipated.
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On the other hand, proteins identified as carriers by the
transporters annotation tool, although predicted to be
localized in internal compartments by PSORT (i.e. endo-
plasmic reticulum or the mitochondrion), were assigned
with transport reactions between the cytoplasm and the
organelle. Transport reactions for carriers predicted to
be localized by PSORT in the cytoplasm or the extracel-
lular environment were discarded and assigned with
transport reactions between the cytoplasm and the
extracellular milieu.

2.7 Biomass formation, growth and non-growth
ATP requirements

Besides the reactions from KEGG, this model includes
reactions representing the formation of specific bioenti-
ties present inside the cell and reactions representing bio-
mass formation and maintenance (non-growth) ATP
requirements. These bioentities represent the average
protein and the average fatty acid composition in the bio-
mass.

Biomass formation was represented by an equation
that included all components considered to be required
for growth and their stoichiometries. The lack of specific
studies for determining the composition of K. lactis was
overcome by assuming that this yeast's composition was
similar to the composition of S. cerevisiae. Hence, the bio-
mass equation from the iMMO904 S. cerevisiae model was
used in i0OD907, with a few exceptions like the proteins,
nucleotides and polysaccharides contents. Table S1
(additional file 2 of the Supporting information) shows the
contribution of each component that was directly extract-
ed from iMM904.

The growth ATP requirements (also adopted from the
iMMO904 S. cerevisiae model —59.276 moles ATP per g bio-
mass) were introduced directly into the biomass equa-
tion.

2.7.1 Fatty acid entity

The fatty acid entity represents the average composition
of the fatty acids in the cell. Again, the estimations used
in the iMM904 model for S. cerevisiae for the weight of
each fatty acid were used (Table S2, additional file 2 of the
Supporting information). Fatty acids are precursors of
acyl-CoA (reaction R00390), which is, in turn, a precursor
of all lipids present in the biomass. The design of this
entity allowed generating all lipids present in the bio-
mass equation, i.e. phosphatidate (C00416), phosphati-
dylcholine (C00157), phosphatidylethanolamine (C00350),
phosphatidylserine (C02737), 1-phosphatidyl-pD-myo-ino-
sitol (C01194) and triacylglycerol (C00422).

2.7.2  Protein entity

Likewise, the protein entity represents the average com-
position of the proteins in the cell. The total protein con-
tents were retrieved from the iMM904 (0.45 g protein per
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g biomass), as it was assumed that these contents are
similar in yeasts. The amount of each amino acid in the
protein content was estimated by calculating the per-
centage of each codon usage, from the translated
genome sequence [7], assuming equal transcription and
translation of all coding sequences, although this is not
necessarily always valid [69]. Although it was not possi-
ble to experimentally validate the amino acid distribution
(nor the total protein contents) in K. lactis, according to
Santos [60], model predictions (of the specific growth
rates and the flux distribution) are closer to experimental
data when in silico biomass precursor coefficients are
used instead of data from closely related organisms. The
estimation of the amino acid contents allows focusing
the model predictions on the K. lactis requirements
encoded in the genome. The average protein composi-
tion is available in Table S3 (additional file 2 of the Sup-
porting information).

2.7.3 Estimation of the nucleotide contents

The estimation of the nucleoside monophosphates
(NMP), i.e. nucleotides, and deoxynucleoside monophos-
phates (ANMPs), i.e. deoxynucleotides, in the biomass
can also be inferred from the genome, and were also
determined using the methodology described in the pro-
tocol from Thiele and Palsson [7]. The estimation of each
dNMP, shown in Table S4 (additional file 2 of the Support-
ing information), was performed by calculating the fre-
quency of each nucleobase in the whole genome (includ-
ing mitochondrial DNA). The same percentage of the cel-
lular contents in DNA utilized in the iMM904 biomass
equation, i.e. 0.04 g dNMP per g biomass, was used for the
calculations.

The determination of the nucleotides composition,
shown in Table S5 (additional file 2 of the Supporting
information), was also performed according to the Thiele-
Palsson protocol with one major difference: cells contain
different types of RNA, which is not taken into account by
the protocol, which only uses mRNA to perform these cal-
culations. However, RNA accounts for the majority of the
RNA content in any cell; thus, in this work, three types of
RNA were used: TRNA, tRNA, and mRNA, with percent-
ages of 80, 15, and 5%, respectively [61, 62]. The same per-
centage of overall cellular content of RNA utilized in the
iMM904 biomass equation, i.e. 0.063 g NMP per g bio-
mass, was used for the calculations.

2.7.4  Polysaccharides

The contents of several polysaccharides present in the
biomass equation, i.e. o, 0-trehalose, amylose and chitin,
were adapted from the iMM904 model. However, a study
of the composition of the K. lactis cell wall [63] was used
to retrieve the relative contents of 1,3-B-p-glucan and
mannan in the cell. The mannan and 1,3-B-p-glucan con-
tents in the cell are shown in Table S6 (additional file 2 of
the Supporting information).

© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
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2.7.5 Phosphorus to oxygen ratio

The phosphorus to oxygen (P/O) ratio is the relationship
between ATP synthesis and oxygen consumption. This
quotient indicates the number of orthophosphate mole-
cules used for ATP synthesis per atom of oxygen con-
sumed during oxidative phosphorylation. In the absence
of specific studies to characterize the P/O ratio in K. lac-
tis, the same theoretical ratio (i.e. 1.6) used in the S. cere-
visiae iMM904 metabolic model was used. The reactions
contributing to this ratio were automatically generated by
the transporter annotation tool. However, these reactions
are generic and were updated to replicate the same P/O
ratio as in the iMM904 model. The three reactions that
contribute to this calculation are listed below:

Reaction T03074_C4:
1.0 Oxygen + 4.0 Ferrocytochrome ¢

mito mito
=2.0H,0_,, +4.0 Ferricytochrome ¢, + 6.0 H,

mito cyto

+ 6.0 H"

mito

mito

Reaction T03020_C4:
1.0 Ubiquinol ..+ 2.0 Ferricytochrome ¢
= 1.0 Ubiquinone

+1.5H

mito mito
+ 2.0 Ferrocytochrome ¢

. mito mito
+156H eyt
Reaction T02959_C4:
1.0 Orthophosphate,_, + 1.0 ADP_, + 3.0 szm
=10ATP_, +10H0O_, +30H

The final balance of summing these three reactions is:
3.0 Orthophosphate _,  + 1.0 Oxygen .+ 3.0 ADP
+ 2.0 Ubiquinool , = 3.0 ATP_. +5.0H,0
+ 2.0 Ubiquinone,_ ;.

mito

i mito

2.8 Model curation

The model curation protocol is described in the additional
file 3 of the Supporting information. Throughout this
phase, reactions were edited, and manually added to, or
removed from the model. The manual inspection of the
fluxes associated to reactions involved in the formation of
the biomass precursors exposed some gaps in the net-
work. Whenever a gap was found in the model, reactions
were sought to fill that gap. The KEGG pathways and the
iMM904 model were used as standards. If the model
lacked a reaction in a KEGG pathway, this gap was ana-
lyzed to search for additional GPR evidence and the reac-
tion was added to the network. If the gap was outside a
KEGG pathway, gap filling reactions identified within the
iMM904 model were sought in KEGG. If the reaction was
not available in KEGG, it was manually created and added
to the network. In either case, the model was improved
with the new reaction and the gap was filled.

This process was repeated several times, according to
Fig. 1, until the in silico results replicated the in vivo data.
The model was tested by simulating growth using the
environmental conditions presented in Table S7 (addi-

© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
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tional file 2 of the Supporting information). This method-
ology was implemented using merlin 2.0 for the recon-
struction process and OptFlux 3.0 [48] for the validation of
the model. All predictions were performed using the IBM'
CPLEX solver.

2.9 GPR associations

The relationship between genes, proteins and reactions
in the cases of non-one-to-one associations was automat-
ically retrieved, by merlin, from pathway modules and
complex modules provided in the KEGG BRITE database
[64]. The Boolean rules determined whether the genes are
associated to a protein and reaction by an AND rule (pro-
tein complexes) or an OR rule (isoenzymes). Nevertheless,
some rules were determined by the authors’ previous
knowledge, such as the determination of rules for known
protein complexes, like the PFK (phosphofructokinase)
complex, which could not be determined by the GPR tool.

3 Results and discussion
3.1 Model characteristics and validation

Comparison of the automatic annotation, performed with
the default merlin 2.0 parameters, with the previous one
[53], resulted in the updating of the annotation of 45 genes
and the addition of 22 new metabolic genes and 1 non-
catalytic essential subunit added by GPR rules (Table S8,
additional file 2 of the Supporting information). The new
metabolic genes, not present in the previous annotation,
included 8 genes encoding enzymes and 14 genes encod-
ing carriers.

From the 1788 metabolic genes provided by the
updated annotation (1759 from the previous annotation
+ 6 previously discarded genes + 23 new metabolic
genes), only 906 were used in the final version of the meta-
bolic model. The remaining 881 genes are available for
subsequent development of an extended version of the
model in merlin 2.0, but were excluded for several reasons:
e Approximately one quarter (204) of these genes en-

coded enzymes exclusively identified with partial EC

numbers, and thus were not integrated in the model.

e 82 exclusively encoded transporters. However, the
transport reaction generation tool did not assign any
reaction to 23 of these genes, so it was not possible to
include them in the model. The remaining 59 genes
are connected to transport reactions in merlin 2.0, but
the corresponding metabolites were not present in the
metabolic model.

e Theremaining 595 genes encoded proteins promoting
reactions available in merlin 2.0, but were not includ-
ed in this version of the model either because the
metabolites are disconnected from the main network
or due to a decision taken during the manual curation
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of the model. For instance, genes BDH1_KLULA

(KLLAOF00582g) and BDH2_KLULA (KLLAOF00594q)

encode enzymes 1.1.1.303 and 1.1.1.4, which promote

reactions R02855 and R02946, respectively. Although
initially present in the model, these genes and reac-
tions were removed as they were disconnected from
the remaining network.
Nevertheless, the final version of the iOD907 model
included 906 metabolic genes + 1 gene encoding a non-
metabolic essential subunit. These genes are associated
with 1867 reactions (1107 internal and 760 transport)
involving 1476 species in four different compartments
(the same metabolite in different compartments is con-
sidered a distinct species).

As shown in Table S9 (additional file 2 of the Support-
ing information), only a small number of the genes in this
model (154) had their annotation confirmed by UniProt, at
the time of the development of the model. The annotation
status of the remaining 753 genes was “unreviewed” and
often the automatic annotations available in UniProt did
not assign them any function. Most of the genes with
reviewed annotations are associated with enzymes pres-
ent in the central carbon metabolism.

Although it might seem that the number of genes in
this model is similar to the number of genes in the S. cere-
visiae model, i.e. the widely used iMM904, it should be
kept in mind that baker's yeast has experienced whole
genome duplication [65] and many reactions in this mod-
el might be connected to paralogous genes. Thus, pro-
portionally, the number of reactions is much higher in the
i0OD907 (1043 reactions associated with 904 genes in
iMMO904, and 1785 reactions associated with 907 genes in
i0D907).

Finally, the effective in silico P/O ratio, calculated
according to Famili et al. [66], for K. lactis is 1.04. The dif-
ference between the theoretical and effective P/O ratio
can be explained by the transmembrane proton gradient
needed to carry metabolites across the membranes, such
as in the symport of proton-coupled pyruvate [66], as
demonstrated with simulations performed on the iOD907
model.

3.2 Oxygen availability

The iMMO904 S. cerevisiae model can simulate anaerobic
growth when the environmental conditions are supple-
mented with sterols (ergosterol and zymosterol) and
unsaturated fatty acids (C16-C18), because the biosyn-
thesis of these metabolites requires oxygen, and when
heme (only mandatory for oxidative phosphorylation) is
removed from the biomass equation, resembling the in
vivo behavior. However, although in silico anaerobic
growth is possible with the iOD907, K. lactis is not capa-
ble of surviving under these conditions, even if supple-
mented with sterols and unsaturated fatty acids. Accord-
ing to Snoek and Steensma [67], one of the reasons for this
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could be the lack of genes involved in sterol uptake. How-
ever, the transporters annotation tool found several K. lac-
tis genes with homologies to the genes of S. cerevisiae
known to be related to such function, as shown in
Table S10 (additional file 2 of the Supporting information).
For instance, the gene KLLAOD18601g was found to be
homologous to S. cerevisiae ARV1 gene, known to be
required for sterol uptake and for growth during anaero-
biosis. Another reason proposed by the authors for this
behavior is the absence of transcription factors involved
in sterol uptake. However, this was not corroborated in
our work. During the re-annotation of the genome it
was noticed that the KLLAOA04169g gene is a function-
al homologue of the S. cerevisiae UPC2 gene, known to
be implicated in the activation of anaerobic genes
involved in sterol uptake and regulation of sterol biosyn-
thesis. Therefore, the absence of anaerobic growth in
K. lactis does not seem to be related to any metabolic
deficiency nor correlated with the regulation of sterol
uptake, and may rather be associated with several
other factors, e.g. other regulatory phenomena, as also
remarked on by the authors [67]. Since the iOD907 does
not include any regulatory mechanisms, this would jus-
tify the fact that the predictions obtained do not match
the real behavior.

Although simulations performed under oxygen-limit-
ing conditions (1 mmol O,.gDw™"-h™) predict the pro-
duction of ethanol, it is generally accepted that under
such conditions K. lactis starts increasing glucose metab-
olism, accumulating both ethanol and glycerol. However,
it is inaccurate to evaluate by-product formation by only
inspecting FBA results from one simulation. In fact, as dif-
ferent combinations of by-products often offer equivalent
stoichiometric results, it is necessary to perform flux vari-
ability analysis (FVA) [68] to interpret predictions of by-
product formation.

Therefore, the minimum and maximum in silico yields
of the most common fermentation by-products (acetate,
ethanol, glycerol, pyruvate and succinate) were assessed
using uptake fluxes (environmental conditions in Opt-
Flux) corresponding to limited glucose availability and
low oxygen concentration (Env 1: o, = 1.2 mmol.g™-h™?,
=2.49mmolg"-h™; Env 2:q,,=17mmolg"-h™,
Ugiucose = 2:046 mmol.g?-h™, as described in Table S7,
additional file 2 of the Supporting information), according
to a study on the dependence of baker’s yeast on oxygen
for energy generation [69]. The minimum biomass flux
was set to the yield (b, ) obtained when maximizing bio-
mass in each environmental condition for both the K. lac-
tis and the S. cerevisiae models. Through evaluation of
these yields it was possible to determine whether there
were any significant differences, stoichiometrically, in the
production of a given by-product compared to another.
The results of this evaluation are shown in Fig. 2.

As shown in Fig. 2, the only mandatory fermentation
by-product is ethanol. The in silico yield for this metabo-

qglucose
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Figure 2. Analysis of the energy balances involved in the formation of several by-products (acetate, ethanol, glycerol, pyruvate and succinate). K. lactis wild-
type simulation 1 (KLAT) and S. cerevisiae wild-type simulation 1 (SCE1) were obtained using ENV1 environmental conditions. Likewise, K. lactis wild-type
simulation 2 (KLA2) and S. cerevisiae wild-type simulation 2 (SCE2) use ENV2. Env 1: g, = 1.2 mmol.g™-h, Qglucose = 249 mmol.g™-h7T; Env 2: qo, =

1.7 mmol.g™"-h™, Qgjucose = 2045 mmol.g™' - h~'. The energetic theoretical yields (ATP, NADH and NADPH) were calculated assuming one molecule of glu-
cose. The formation of all by-products occurs via glycolysis. Glycerol is produced from glyceraldehyde 3-phosphate, thus it does not account for the 4 ATP
molecules generated when glyceraldehyde 3-phosphate is converted to pyruvate, yielding 2 ATP molecules. On the other hand, the formation of pyruvate
consumes 2 NAD* molecules, while the glycerophospholipid metabolism, which is an intermediate in the production the production of glycerol, generates
2 NAD* molecules. The conversion of pyruvate to ethanol is coupled to the consumption of 2 NADH molecules, thus the excretion of ethanol is very favor-
able under oxygen limitation. Similarly, the conversion of pyruvate to succinate consumes 4 NADH molecules. However, 2 ATP molecules are also con-
sumed for the generation of this by-product. The conversion of pyruvate to acetate consumes 2 NADP* and 2 NAD* molecules. Therefore, although the

production of acetate yields 2 ATP molecules, the overall yields are unfavorable as there is no net co-factor regeneration. (* — assuming an NADPH-
dependent acetaldehyde dehydrogenase, similar to S. cerevisiae’ ALD6 [70], in K. lactis).

lite is very robust, since the maximum and minimum
yields vary by less than 1% from the original FBA simula-
tion for both yeasts and environmental conditions. On the
other hand, the production of all other metabolites is
optional, since a value of zero for each metabolite still pro-
vides a viable phenotype.

The energy balance clearly favors the formation of
ethanol, since the excretion of this metabolite is associ-
ated with a theoretical yield of 2 ATP molecules per mole
of glucose, and neutral yields for both NADH and NADPH.
When growing under oxygen-limiting conditions, the uti-
lization of the reduced form of these coenzymes for gen-
erating energy is compromised due to the lack of oxygen.
In addition, the oxidized form of NAD" is required for
instance to oxidize the carbon source. Therefore, the
regeneration of NAD" and NADP* under these conditions
is essential to the cell.

© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

The excretion of pyruvate or acetate also provides
2 ATP per mole of glucose for growth and cellular mainte-
nance. However, the metabolic pathway for the produc-
tion of both metabolites requires the reduction of 2 NAD*
molecules and, in the case of acetate, an additional
amount of 2 NADP* molecules.

Succinate, although yielding 2 NAD" molecules, has
neutral theoretical ATP and NADPH yields. Cells have
high growth and non-growth ATP requirements [9, 71],
so the formation of this by-product is not as beneficial for
the cell as ethanol, unless extra NADH needs to be recy-
cled.

Similarly, glycerol production yields 2 NAD* and has a
neutral theoretical NADPH yield. However, the formation
of glycerol has a yield of =2 ATP molecules, which is very
unfavorable for the cell in oxygen-limiting conditions in
which the ATP availability is tightly controlled.
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Furthermore, as shown in the Supporting information,
Fig. S1 (additional file 3), formate is a mandatory by-prod-
uct of the biosynthesis of several metabolites necessary
for cellular growth, i.e. steroids and coenzymes (riboflavin
and FAD'). Usually, when oxygen is not limiting, this
metabolite is oxidized to CO, by an acceptor, which, in
turn, is oxidized directly or indirectly by O,. However,
these environmental conditions make the cell redirect the
oxygen to essential reactions, such as the biosynthesis of
heme and lipids. Therefore, its formation is mandatory.

3.3 Gapfilling

The 84 reactions used to fill gaps in the iOD907 model are
listed in Table S11 (additional file 2 of the Supporting
information). This list includes 50 reactions (27 enzymat-
ic + 12 spontaneous + 11 non-enzymatic) added to the
model without genomic evidence but which are present
in the KEGG. The added enzymatic reactions often had
incomplete EC numbers associated with them, impairing
the direct inference of reactions from the annotation
results. The list of gap filling reactions also includes
32 reactions (27 transport + 5 other) added to the model
without genomic evidence and which are not available in
the KEGG. These transport reactions were not predicted
by the transporter annotation tool and were usually for
currency metabolites (i.e. metabolites with hundreds of
connections in the model, e.g. water, oxygen, ammonia)
and for the transport of specific metabolites to uncommon
compartments, like NADPH and ergosterol to the endo-
plasmic reticulum. One of the explanations for this is that
the methodology for the generation of transport reactions
is very stringent, because the tool has to meet several cri-
teria to generate such reactions. Lastly, the list of gap fill-
ing reactions includes 2 reactions with GPRs, not avail-
able in the KEGG, adopted from the iMM904 model. In
this case, KEGG reactions were modified to resemble the
imm904 reactions. For instance, R_SUCD3_u6m from the
iMM904 model is not available in the KEGG, yet it resem-
bles reaction R02164 from the KEGG that uses fumarate
as an electron acceptor. This cofactor was replaced by
FAD* to match the iIMM904 reaction, as shown in reaction
R02164_FAD_C4. These reactions were used either to
eliminate critical gaps in the network or because the reac-
tions can take place without the intermediation of a cata-
lyst.

3.4 Carbon sources

The growth on different carbon sources with the iOD907
model was assessed by comparing in silico predictions to
in vivo experiments obtained using Biolog Phenotype
MicroArrays and information obtained from the CBS-
KNAW on K. lactis CBS 2359, as shown in Table S12 (addi-
tional file 2 of the Supporting information). The combina-
tion of all the information from both data sources resulted

784

Biotechnol. ). 2014, 9, 9, 776-790

BIO:tec
& visions

www.biotecvisions.com

Table 1. Kluyveromyces lactis growth assessment for the carbon sources
tested in all data sets (in silico, Biolog assays and CBS-KNAW).
Growth (+) and lack of growth (—) were verified.

Carbon source KEGG ID Biolog CBS-KNAW in silico
Sucrose C00089 + + +
D-Xylose C00181 + + +
Maltose C00208 + + +
D-Lactose C00243 + + +
p-Glucose C00267 + + +
o,0-Trehalose C01083 + + +
Succinate C00042 - + +
Glycerol C00116 - + +
p-Galactose C00124 - + +
Citrate C00158 - + +
L-Lactate C00186 - + +
Xylitol C00379 - + +
Raffinose C00492 - + +
p-Sorbitol C00794 - + +
D-Ribose C00121 + - +
p-Glucosamine C00329 + - +
D-Gluconate C00257 - - +
L-Lysine C00047 - + -
myo-Inositol C00137 - - -
p-Glucuronate C00191 - - -
Melibiose C05402 - - -

in a set of 199 metabolites in which the growth of K. lac-
tis was tested using at least one of the information
sources. As shown in Table 1, only 21 carbon sources test-
ed in vivo by both Biolog and CBS-KNAW could be tested
in silico. Thus, the following discussion will focus on these
carbon sources. An extensive analysis of all carbon
sources tested in every dataset is available in the addi-
tional file 3 of the Supporting information.

As shown in both tables mentioned above, consensus
between the two data sources and the in silico predic-
tions (iI0D907) was only attained for 9 carbon sources
(establishing growth in 6 and not growing in 3) out of
a total of 21. Moreover, as show in Table 1, the i0OD907
positive-growth predictions agreed with CBS-KNAW for
8 additional carbon sources in which no growth was indi-
cated with the Biolog experiments (surprisingly, this list
includes one of the carbon sources in which K. lactis is
known to thrive, D-galactose, unlike other yeasts such as
S. cerevisiae). On the other hand, as show in Table 1, the
i0OD907 model matched growth with the Biolog experi-
ments for 2 other carbon sources in which CBK-KNAW did
not establish growth. In addition, there is 1 carbon source,
which is reported by CBS-KNAW to be a viable carbon
source, for which growth could not be identified in either
the in silico strain or the Biolog experiments (L-lysine).
Again, surprisingly, the in silico strain was able to use D-
gluconate as sole carbon source for growth, despite the
fact that both Biolog and CBS suggest no growth in in vivo
experiments.
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It should be noted that the ability to grow in a partic-
ular carbon source is often dependent on not only the
enzymatic and transport capabilities of the organism, but
also the presence or absence of other medium compo-
nents. A possible explanation for the discrepancies found
between the experiments is the different setups of each
test, i.e. the absence or presence of other nutrients.

In conclusion, the compatibility of the results from the
in vivo growth tests performed by Biolog and CBS-KNAW,
and the in silico simulations are fairly positive since it
encompasses 9 out of 21 possible carbon sources. Within
these carbon sources, there was inconsistency between
the two in vivo data sources and the model predictions in
one case, an agreement between in silico and Biolog in
three cases and between in silico and CBS-KNAW in eight
cases. All the carbon sources for which the results of the
in vivo tests were inconsistent should thus be double
checked to confirm or refute the in silico prediction.

3.5 Maintenance ATP fitting

The depletion of ATP by processes not directly associat-
ed with growth, like futile cycles or turnover of molecules,
was represented in the model by an equation that forces
ATP consumption via a specific flux. The boundaries of
this flux were inferred by fitting the in silico predictions of
the model to experimental in vivo data from Kiers et al.
[50].

The model was used to predict growth, oxygen con-
sumption and carbon dioxide production yields using the
same environmental conditions utilized in that work, and
limiting the carbon source (glucose) availability to the
actual glucose uptake rate, using different maintenance
ATP flux values (1.0-5.0 mmol.h™'-g™). Table S13 (addi-
tional file 2 of the Supporting information) lists the results
for the simulations performed with OptFlux.

The predictions of the models for each maintenance
ATP value were fitted to the in vivo data. The linear
regression slopes and y-intercept values for each mainte-
nance ATP regression are depicted in the Supporting
information, Fig. S2 (additional file 3).

The analysis of the above-mentioned figure shows
that the ATP used for maintenance should be set to
2 mmol.gDW™!-h™ as this value provides the best overall
fitting to the in vivo data on all the predictions.

3.6 Knockout analysis

The results of several gene deletions performed in in vivo
experiments were collected and the corresponding phe-
notypes compared to the in silico predictions of this mod-
el to assess the model reliability. The result of this com-
parison is shown in Table S14 (additional file 2 of the Sup-
porting information).

As shown, over 90% of the model predictions are in
accordance with the simulation results, thus confirming
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the accuracy of the model. The model correctly predicted
25 true positives and 15 true negatives. On the other
hand, the in silico simulations predicted 2 viable mutants
for which there was no growth in vivo and only 1 false
negative.

One of the main differences between K. lactis and
S. cerevisiae is the former's viable RAGZ mutant pheno-
type [63, 72]. The viability if this mutant is correctly pre-
dicted by the iOD907 model. The simultaneous deletion of
RAGZ2 and TAL1, although not impairing growth in non-
fermentable carbon sources in vivo [73], is lethal for K. lac-
tis in silico (false negative). As shown in Table S14 (addi-
tional file 2 of the Supporting information), the deletion of
these genes separately is not critical, because the other
gene can be used to bypass the deletion; however, the
deletion of both genes impairs glycolysis and gluconeo-
genesis. Such discrepancy might be associated to the
strain used in the in vivo study (HK5-2B), which was not
the one used to develop the in silico model (NRRL-Y1140/
CBS 2359/ATCC 8585).

Another distinction from S. cerevisiae is that the PDC'1
(pyruvate decarboxylase) null mutation in K. lactis, for
growth on glucose, attains the same yield as the wild type
[74], which is also predicted in this model. In addition, this
mutant did not accumulate ethanol under oxygen-limited
conditions (oxygen flux limited to 1 mmol.gDw !-h™?),
accumulating pyruvate instead.

Surprisingly, the in vivo deletion of each of the phos-
phofructokinase (PFK) subunits by themselves did not
impair K lactis growth on fermentable carbon sources.
Jacoby and colleagues [73, 75] claimed that “This could be
caused by a residual PFK activity conferred by the
remaining subunit in vivo that escapes detection by in
vitro enzymatic determinations”. Indeed, the two PFK
subunit sequences have a similarity of over 40%, which
means that the deletion of one subunit may be partially
bypassed by the remaining subunit. However, in this
model, the deletion of either of the subunits will remove
the reactions associated with this complex, since there is
a gene rule that associates the presence of both genes to
that enzymatic activity. Nevertheless, the non-growth in
fermentable carbon sources for the PFK1 mutant in con-
junction with the TAL1 knockout is correctly predicted by
the i0D907.

Similarly, the separate deletion of the ARG8 and LYS2
genes generated auxotrophic mutants on arginine and
lysine, respectively. This phenotype was also observed in
silico. The in silico deletion of the ICLI gene produced
mutants that did not grow on ethanol, which is in accor-
dance with the in vivo data. However, the in vivo data
deletion of FBP1 does not agrees with the in silico predic-
tion. Just as in glycolysis the deletion of the RAGZ2 gene
or the phosphofructokinase complex is bypassed by the
pentose phosphate pathway (PPP), in the gluconeogene-
sis the deletion of FBPI may be bypassed by the inverse
route in the PPP. In silico, the lack of data on the reversibil-
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ity of the reactions in the PPP can be compensated by an
alternative route for the generation of glucose from
ethanol when the fructose-1,6-bisphosphatase is deleted.

As the iOD907 is a stoichiometric model, the predic-
tions of the decreased growth rate when the dominant
acetyl-coenzyme A synthetase copy (ACS1 gene) is delet-
ed or the less-decreased growth rate provided by the
ACS2 knockout, could not be verified, although the via-
bility was confirmed for these single deletions. The dou-
ble mutant lethal phenotype was verified in silico, as the
model did not predict growth on glucose, acetate or
ethanol.

The in silico growth rate (on glucose) of the PDAI
knockout mutant was decreased when compared to the
wild type, which, although not the fourfold reduction
found by Zeeman et al. [76], is in accordance with the in
vivo experiments. The deletion of the only gene encoding
an invertase in K. lactis (INV1) did not impair growth on
glucose, but it was lethal for growth on raffinose.
Although in the K lactis annotation this is the only
enzyme able to hydrolyze polysaccharides, the authors of
the study [34] only report defective growth on raffinose
when the gene encoding this enzyme is knocked out.

The knockout of the TPS1 gene prevents K. lactis from
growing on glucose or fructose, both in vivo and in silico.
However, this mutant is viable when using o,0-trehalose
as carbon source. Again, the stoichiometric nature of the
model cannot predict the reduction of the growth rate in
this mutant proposed by the in vivo experiments, as this
reduction may arise from a decreased affinity for o, 0-tre-
halose uptake, among several other factors.

In contrast to S. cerevisiae, for which the deletion of
the TPI1 gene is lethal, the phenotype of the deletion of
this gene in K. lactis is viable. In the latter case, this muta-
tion increases the glycerol yield under oxygen-limited
conditions (oxygen flux limited to 1 mmol-gDw™-h™),
which can be verified in silico. The in silico strain cannot
predict the formation of glycerol in the presence of this
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gene, because all the glycerone phosphate produced by
the fructose-bisphosphate aldolase is redirected to gly-
colysis by this enzyme, instead of generating glycerol.
The viability of this mutant is related to the bypassing of
the glycolytic flux through the PPP, as previously clarified
in [B3].

3.7 K. lactis versus other yeasts

As shown in Table 2, K. lactis has very distinctive charac-
teristics when compared to other yeasts for which
genome-scale models are available. K. lactis is an obligate
aerobic respiring yeast, as are S. pombe, Scheffersomyces
stipitis (Pichia stipitis) and P pastoris. However, this par-
ticularity could not be mimicked by the model because, as
shown previously, when deprived of oxygen and supple-
mented with certain metabolites, anaerobic growth can
be achieved in silico. Therefore, its obligate aerobic
nature has to be associated by regulatory phenomena.

The Crabtree-negative nature of K. lactis is only
shared with the two Pichia species, since S. pombe, like
the facultative anaerobe S. cerevisiae, is Crabtree posi-
tive. These characteristics cannot be confirmed in this
model, because the internal fluxes are unrestricted. The
restriction of the internal fluxes implies fluxomics studies,
which would allow setting maximum flux values in spe-
cific reactions.

K. lactis is the only yeast that can metabolize xylose,
lactose and galactose, a fact that is confirmed by iOD907.
Although P stipitis is also supposed to grow on these
three carbon sources, growth on lactose was reported as
variable. All other yeasts discussed above are reported as
not growing on these sugars. We could not find knockout
mutant studies for the Pichia species. For the yeasts with
available mutant phenotype assays, K. lactis is the only
one that has a viable RAG2 mutant that is also replicated
in the genome-scale model. The knockout of the PDC'1
and TPI1 genes generated viable phenotypes in K. lactis

Table 2. Comparison of particular metabolic characteristics of yeasts with currently available metabolic models?

Property iOD907 KLA SCE SPO PST PPA
Crabtree effect - Negative Positive Positive [77] Negative [77] Negative [78]
Full anaerobic growth Yes No Yes No [79] No [80] No [81]
Alternate carbon sources
Xylose Yes Yes No No [46] Yes [43] V [82] / NoP)
Lactose Yes Yes No No [46] V [82] No [82]")
Galactose Yes Yes No No [46] Yes [82] No [82]")
RAG2 Yes Yes No No [46] N/A N/A
Viable mutants
PDC1 Yes Yes No Yes [46]9) N/A N/A
TPIN Yes Yes No Yes [46] N/A N/A

a) KLA, Kluyveromyces lactis, SCE, Saccharomyces cerevisiae, SPO, Schizosaccharomyces pombe, PST, Scheffersomyces stipitis (Pichia stipitis), PPA, Pichia pastoris,

V, variable.

b) http://www.cbs.knaw.nl/collections/BioloMICS.aspx?Table=Yeasts%20species&Name=Pichia%20pastoris&ExactMatch=T

c) Has paralogues.
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and S. pombe. All viable phenotypes in K. lactis were pre-
dicted by the iOD907 model.

3.8 Other properties

The presence of folate in the environmental conditions is
not mandatory; however, its exclusion from the growth
medium has a side effect: the mandatory production of
glycoaldehyde. In the folate biosynthesis pathway the
reaction catalyzed by the dihydroneopterin aldolase
(4.1.2.25), which produces 2-amino-4-hydroxy-6-hydrox-
ymethyl-7,8-dihydropteridine that is needed to produce
folate, generates glycoaldehyde. However, this metabolite
is not reused in the network, and thus has to be excreted
by the cell. Although this is also observed in the S. cere-
visiae model, to the best of our knowledge there is still not
an experimental evaluation of this phenomenon.

The net conversions for the three environmental con-
ditions utilized in this work are available in Table S15
(additional file 2 of the Supporting information). Likewise,
the reactions and respective fluxes for these environmen-
tal conditions are described in Table S16 (additional file 2
of the Supporting information).

4 Concluding remarks

This model was developed semi-automatically using mer-
lin 2.0 and a previous genome-wide re-annotation of the
K. lactis genome, allowing a fast reconstruction (in a cou-
ple of months).

The excretion of by-products during growth under
hypoxic conditions in i0OD907 was assessed. It was shown
that the only by-product with robust fluxes in this model
was ethanol. The production of all other metabolites is
facultative, as it not appear to lend any significant advan-
tages to this organism.

The iOD907 in silico model performed well when com-
paring the positive growth of K. lactis to ordered Biolog
experiments and to an online catalogue of strains (CBS-
KNAW) that also provides information on growth-associ-
ated carbon sources. The model was in agreement with
both data sources for 9 carbon sources. Consensus
between Biolog, CBS-KNAW and in silico simulations
could not be obtained for 12 other carbon sources, mean-
ing that there is room for improvement of this model,
although there are also errors arising from the Biolog
growth assays, e.g. lack of growth on galactose.

The iOD907 model was able to predict phenotypes for
more than 90% of the knockouts from several experiments
published over the last three decades. Moreover, it pro-
vides reasonable results for quantitative simulations of
chemostat experiments, as shown in the previous sec-
tion. Those knockouts include experiments that mark the
difference between K. lactis and S. cerevisiae, such as the
viable PDC'1 and TPI mutants, which were predicted by
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i0OD907. These results clearly demonstrate that, despite
having similarities with the baker's yeast model, the
K. lactis model has its peculiarities and clear distinctions
from the S. cerevisiae models.

This model will allow insights on the metabolism of
milk yeast, as well as identifying engineering targets for
improving the production of products of interest by per-
forming in silico simulations. It is freely available on the
following website: www.merlin-sysbio.org/files/iOD907.
xml (additional file 1 of the Supporting information).
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Supporting information

Additional file 1 — File with the model in SBML format.
www.merlin-sysbio.org/files /iOD907.xml

Additional file 2 — File with additional tables in Excel format.
www.merlin-sysbio.org/supplemental_material/additional_file_2.xlsx

Table S1. Biomass components other than the proteins, deoxyribonucleotide and ribonucleotide contents (* mol of biomass
component.g biomass™).

Table S2. Average fatty acid composition (* mol of specific fatty acid.mol average fatty acid™).

Table S3. Average protein composition (* mol amino acid.g biomass™. Values used in the iIMM904 model are also shown for
reference).

Table S4. Deoxynucleoside monophosphates contents in the biomass (mol deoxynucleoside.g biomass™. Values used in the
iMM904 model are also shown for reference).

Table S5. Nucleotide contents in the biomass (mol nucleotide.g biomass™. Values used in the iIMM904 model are also shown
for reference).

Table S6. Mannan and 1,3-B-D-glucan contents in the cell (* mol of polysaccharide.g biomass™; ** g polysaccharide.g bio-
mass~'. Values used in the iIMM904 model are also shown for reference).

Table S7. In silico formulation of the Verduyn and other media used for simulating Kluyveromyces lactis growth in this work.
The upper and lower bounds are presented in (mmol-g™'-h).

Table S8. Genes that had their annotation updated.

Table S9. UniProt status of the genes used to develop the iOD907.

Table S10. Genes associated to sterols uptake in S. cerevisiae and corresponding K. lactis homologues.
Table S11. Reactions not from KEGG or not associated to genes in the model.

Table S12. K. lactis growth assessment from in vivo experiments (Biolog Phenotype MicroArrays), from the CBS-KNAW cata-
logue and from in silico simulations (i0D907) using several carbon sources.

Table S13. Analysis of the model response to different maintenance ATP requirements.
Table S14. Comparison of the behavior of the in silico model to the in vivo knockout experiments.
Table S15. Net conversion of the metabolites available in three environmental conditions utilized in this work.

Table S16. Reactions and respective flux for the three environmental conditions utilized in this work.

Additional file 3 — File with additional data in PDF format.

1.1 Model curation protocol

1.2 Carbon sources assessment
1.3 Additional figures

1.4 Additional References
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