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We argue that parton distributions in coordinate space provide a more natural object for nonper-
turbative methods compared to the usual momentum distributions in which the physics of diferent
longitudinal distances is being mixed. To illustrate the advantages of the coordinate space formula-
tion, we calculate the coordinate space distributions for valence quarks in the proton using the @CD
sum rule approach. A remarkable agreement is found between the calculated and the experimentally
measured u-quark distribution up to light-cone distances A = A —A of order 1 fm in the
proton rest frame. The calculation for valence d quarks gives much worse results; the reasons for
this discrepancy are discussed.
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I. INTRODUCTION

Deep inelastic lepton-hadron scattering has proved to
be the best testing ground for perturbative QCD. Thanks
to the celebrated factorization theorems [1],which can be
derived quite rigorously in this case by using the operator
product expansion (OPE), the entire Q2 dependence of
the cross section can be calculated perturbatively, while
all dynamical eKects of large distances are included in a
set of one-particle parton distribution functions given at
a certain reference scale. The determination of the set
of partonic distributions, quark, antiquark, and gluon, is
an ultimate goal for the experimental studies of the deep
inelastic scattering, and also provides a challenging task
for nonperturbative approaches to QCD.

In the past ten years remarkable progress has been
made on the experimental side, and apart &om the region
of small Bjorken x, there is not much controversy regard-
ing the existing parametrizations of parton distributions.
The theoretical progress has been much more moderate.
Apart &om several quark-model or MIT bag model cal-
culations, there have been relatively few attempts to de-
termine parton distributions, e.g. , from QCD sum rules.
The problem has proved to be diKcult for the theory.
The purpose of this paper is to point out that a major
part of theoretical problems in the calculations of parton
distributions is due to the fact that distribution func-
tions in momentum space for each particular value of the

*On leave of absence from St. Petersburg Nuclear Physics
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momentum &action x receive contributions from both
small and large longitudinal distances, which correspond
to different physics and are dificult to treat simultane-
ously. We argue that longitudinal distance distributions
are much easier from the theoretical point of view than
momentum distributions. They can be extracted from
data with marginal complications. In what follows we
shall demonstrate that working with coordinate space
distributions gives us a self-consistent formalism, which
is not more complicated than the standard one and its
relation to the OPE is much closer. We illustrate the
advantages of this approach by the calculation of valence
quark distributions in the framework of QCD sum rules.

Obviously, the longitudinal distance distributions are
simply Fourier transforms of the momentum distribu-
tions. For example for the valence quark distribution
one gets

1

Q i(z, p ) = ducos(uz)q~(u, p ),
0

where u is the momentum fraction. The physical inter-
pretation of the variable z has been discussed in the liter-
ature for a long time [2, 3]. In the center-of-mass (c.m. )
system of the target a deep-inelastic probe p* (photon
or neutrino) is converted into a quark-antiquark pair at
some space-time location. At large Q2 the pair travels
with the speed of light along a lightlike path, interacts
with the nucleon and is converted back into the probe.
The time interval between the conversion points p* —+ qq
and qq ~ p* in the c.m system, so called Ioffe time ~1,
measures the lightlike distance essential for the process.
The Lorentz-invariant variable related to ~1 is denoted
by z. In the c.m. system the relation between these two
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existing models, the @CD sum rules, or the lattice cal-
culations. Note that all parton distributions represented
in Fig. 1 are very smooth at small z, which suggests that
one should be able to reproduce them in this region with
only few terms in the Taylor expansion around z = 0.
These terms are related to the erst few moments of the
momentum distributions, in other words to nucleon ex-
pectation values of a few local operators of low dimension
(see below). The most important question is whether
there exists a "matching window, " where both the Regge
asymptotic formulas and the small z expansion are appli-
cable. Provided the answer is positive, one could hope to
get a quantitative description of the parton distributions
in the whole z range, matching these two diBerent inputs
at a certain intermediate value of z (note similarity with
the usual @CD sum rule program). Thus, the problem
of calculating the parton distributions can be posed as a
problem of calculating the distributions at distances of
order 2—3 fm at the lightcone. As we shall see below, the
standard @CD sum rules are sufficient for this purpose
for the valence u-quark distributions, but fail for the d
quar ks.

Playing around with typical parametrizations for par-
ton distributions which are used. in modern experimental
analysis, one can convince oneself that in all cases the
onset of the Regge behavior corresponds to values of z
5—8, see Fig. 1. Another useful example is given by the
polarized gluon distribution. In this case we define

du u sin(uz) Ag(u, p ),
where Ag(u, p ) is the usual polarized gluon distribution
depending on the momentum fraction u (see Sec. II for
details). Note that the gluon polarization
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FIG. 3. Model of the los-time distributions for polarized
gluon density Ag(u) = Nou (1 —u)~ with n = 0 and P = 4.
The normalization constant NG is chosen in such a way that
the gluon polarization Ag = 0.5. The two short-dashed curves
were obtained by taking P equal to 3.5 and 4.5, respectively,
and keeping cx = 0 and Ag = 0.5 Axed. The long-dashed
curve is the asymptotic expansion (2).

calculation of valence quark distributions in coordinate
space, and compare our approach to the direct calcula-
tion in the momentum space in Ref. [10]. Section 4 is
reserved for a summary and conclusions. Some technical
details of the sum rule calculation are presented in the
Appendix.

dung(u) = dzAG(z) . II. COVARIANT DEFINITION OF IOFFE-TIME
DISTRIBUTIONS AND THEIR Q~ EVOLUTION

A typical shape of DG(z) is shown in Fig. 3. It has been
obtained with a simple model of Ag(u) = N~u (1 —u)~,
and the solid curve corresponds to cr = 0 and P = 4.
The normalization constant %~ is chosen in such a way
that the gluon polarization Ag = 0.5. The two short-
dashed curves were obtained by taking P equal to 3.5
and 4.5, respectively, and keeping o. = 0 and Ag = 0.5
fixed. The corresponding variation of AG(z) is rather
mild, and one can conclude that the behavior of Ag(u)
at small u combined with the value of Lg determine to a
large extent the shape of AG(z). By the same argument,
knowledge of AG(z) up to the point of maximum, which
is again at z 6, is enough to estimate the value of Lg
within, say, 50% accuracy. Note, however, that because
of the more complicated shape of AG(z), asymptotic ex-
pansion shown by the long-dashed curve in Fig. 3 starts
to be valid at larger values of z 10.

Our presentation is organized as follows. In Sec. II we
discuss the theoretical framework for the introduction of
parton distributions in coordinate space as matrix ele-
ments of nonlocal operators, and we describe their Q
evolution. The presentation in this section mainly fol-
lows Refs. [8, 9]. In Sec. III we give the @CD sum rule

An intuitive discussion of the space-time picture of
deep inelastic scattering in the late 1960s can be put
on a rigorous footing using the formalism of the operator
product expansion (OPE). We are going to demonstrate
that the IoKe-time distributions arise naturally in this
framework as reduced matrix elements of nonlocal string
operators on the light cone. Our presentation essentially
follows Refs. [8, 9].

It is well known that the deep-inelastic ep scattering
cross section is related to the matrix element:

d'g exp('qg)(P I T[j~(g)'j-(0)]
I »

where
~
P) represents a proton with momentum P and

j is an electromagnetic current operator. This quantity
describes the hadronic part of the process. The opera-
tor product expansion applied to T[j(y)j(0)] gives rise to
its systematic expansion in powers of the small parame-
ter A jQ where A is the @CD scale of the order of 200
MeV and Q2 = —q2 is the virtuality of the deep-inelastic
probe. To the leading, twist-2 accuracy, i.e. , when all
powers of A2 jQ2 are neglected, the quark and gluon op-
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erators appearing in the OPE of T[j(y)j(0)] have the
form

distribution functions q(x), q(x), and g(x):

0,"'"'""(o)= —,'@(0)(~"' D"'' D"'"), 0 (o),
o" '-(o) = -'(G" (0)iD" 'D~-- G~-(0)} (6)

((Oq))„.=

((0,"))~ = dxx g(x, y, ) . (9)

dxx" '
[q(x, V')+ (—1)"q(* V')] (8)

where D" = 8" —igA" denotes covariant derivative,
and 4 and G" are the quark field and the gluon field
strength, respectively. The subscript ST denotes the
symmetric and traceless part of a Lorentz tensor.

The operators defined in (6) form an irreducible rep-
resentation of the Lorentz group. Their reduced matrix
elements ((0 )) and ((0 )) are defined by

(P
I o, -(o)

I
P) = ((0,"))(P~ . "P~-)

(P
I &,"' " (0) I

P) = ((0,"))(P"' "P"-)s/ (7)

According to the standard analysis, the matrix elements
are related to the moments of familiar quark and gluon

Equation (9) holds only for even values of n. Note that
through renormalization the operators (6) acquire a scale
dependence, which is related to the scale dependence of
the parton distribution in (8) and (9).

An alternative representation for relations (9) and (8)
has been noticed in [8] long ago, and we want to introduce
it now. For that purpose let us define two lightlike vectors
n" and AI', such that n = A = n. 4 = 0. Our conven-
tion is such that and for any vector a, n a = a+ = a +a .
The vector L is just proportional to n, A = zion, where
b = 4 = A —A is the distance along the light cone.
Following Ref. [8] we can write

(P I e(a)[z;0]e(0) I P)„.= 2(P n)
1

du q(u, p ) exp (iuz) —q(u, y, ) exp (—iuz)

for quark distributions and

(P
I
G„g(A)[A;0]G~(0)

I
P)„2n"n = 4(P n) dug(u, p )ucos(uz)

for gluons. In the above formulas z = P 4 and we have introduced the notation [4;0] for the path-ordered exponential,

[4; 0] = P exp igAt dsA~(As)

which is necessary for gauge independence of the parton distributions considered. An easy way to obtain the relations
(10), (11), and (13) is to insert the complete set of intermediate light-cone quark or gluon. states between the field
operators at the right-hand side (RHS) working in the Schwinger gauge: A A(A) = 0. Taylor expansion in A of both
sides of (10) and (11) gives exactly the set of relations (8) and (9) between the matrix elements of local operators and
the moments of structure functions. Note that because n and A are lightlike and proportional, the local operators
arising here automatically are of twist 2.

Fourier transformation of (10) and (ll) gives a gauge-invariant definition of parton momentum distributions in
terms of reduced matrix elements of leading twist nonlocal operators at the lightcone [8]. On the other hand, it is
possible to demonstrate that the usual program of the OPE can be formulated directly in terms of nonlocal light-cone
operators [9]. Thus, this formalism is consistent. For completeness, we quote the definition for the polarized gluon
distribution [11,12], see discussion after Eq. (3):

(P, S
I

G g(A) [A; 0]G~ (0) I
P, S)„n~n = 4i(P n)(S . n) du Ag(u, p )u sin (uz), (13)

where S is the nucleon spin vector normalized by 5 = —M~.
Taking C-odd and C-even combinations of the left-hand side (I.HS) of (10) we arrive at the definitions involving

C-odd (valence) and C-even combinations of parton densities:

(P I @(A)ye[A; ]0@( )0l P)„.+ (A m —A) = 4(P n) duqv(u, p ) cos(zu) (14)

and

(P I e(A) yi [A;0]e(0)
I
P)„—(A —i —A) = 4i(P n) du [q(u, p2) + q(u, p )] sin (zu), (15)

where qv(u, p ) = q(u, p )
—q(u, p ), and g = n„p".

As mentioned above, the conventional procedure is to Fourier transform the above formulas ending up with the
parton distributions in momentum space. The main thrust of our paper is to point out that the matrix elements
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appearing on the LHS of Eqs. (10)—(15) have a clear physical interpretation as the parton distributions in the lon-
gltudlnal coordinates, and are more adequate for the appllcatlon of nonperturbatlve methods, retalnlng at the same
time the whole physical content of the momentum space description. IVe de6ne Ioffe-time distributions by

(P I e(a) &[a;0]e(0) I P)„.+ (Z ~ —a) = 4(P. n) Q.

(P
~
4(A) yk [E;0]4(0)

~
P)„,—(A ~ —4) = 4i(P . n) Q(z, y, ')

for quarks, and

(P
~
G„t.(A)[4;0]G~(0)

~
P)„.n"n = 4(P n) G(z, pz),

(P, S
~
G„t(b)[A;0]G~(0)

~
P, S)„2n"n =4i(P. n)(S n)AG(z, p ),

(16)

(18)

(19)

for nonpolarized and polarized gluon distributions, respectively. Comparing to (10)—(15) we arrive at the relations
between the momentum and coordinate space distributions in (1), (3).

According to the standard discussion the scale dependence of the longitudinal momentum parton distributions is
governed by the Gribov-Lipatov-Altarelli-Parisi (GLAP) equations written in momentum space. However, it is also
possible to derive the corresponding evolution directly in coordinate space [8, 9]. The coordinate-space version of the
leading-log approximation (LLA) evolution equations has been obtained in [9] in the form of equations describing
the normalization-point dependence of the nonlocal operators (10) and (11). Taking the forward nucleon matrix
element and making use of relations (ll), (14), and (15) one can derive evolution equations for Ioffe-time distributions
Q ((z, p2), Q(z, y2), and G(z, p2).

To one-loop accuracy the scale dependence of the valence quark Ioffe-time distribution (16) is governed by

2 1

Q )(z; p2) = Q )(z; y, , ) — Cy ln —
2 du K(u)Q„)(uz;p, ,).

2'7t Pl 0

The kernel K(u) is given by

(2o)

K(u) = —8(u) —u —2
2 VL +

where u = 1 —u and, for any function f (u),
l

tL
du — f (u)—:

Vl +

'll« =9'(u) —&(1)] . (22)

In the Havor-singlet channel the evolution mixes, as expected, quark and gluon distributions Q(z, p2) (17) and
G(z ~') (»):

Q(z ~2)

zG(z; @22)

Q(z; pj. )

zG(z; pi)

2 1
P2ln —

2 du
2m pl 0

C~Kgg(u) NyKg~(u) Q(uz; pz)

C~K~g (u) Wc-K«(u) zG(uz; pz, )
(23)

where

vl
Kgg(u) = —8(u) —u —2

2

K«(u) =
I

—+ —
I ~(u)

(1 1&pl
q6 3 m~y
1- -2Kg~(u) = ——u(2u + 3u),

KG.g (u) = —8(u) —2u,

—2 — +2(u —u ),3 —2

tL +

(24)

where N~ is the number of colors and Ny is the number of active Qavors. Equations (20) and (23) allow for a
systematic study of the evolution of Ioffe-time parton densities exactly in the same manner as the conventional GLAP
equations do for the longitudinal momentum parton densities. Indeed, let us rewrite (20) and (23) as the evolution
equations for Bavor nonsinglet and Qavor singlet distributions:

p Q„i(z; p, ) = — Cy du K(u)Q„i(uz; p, )
~s(~') 2

Op 2' 0
(25)
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Q(z; u')

zG(z; p2)

»(v')
27r

CFKqq (u) Nf Kqc(u) Q(uz; p2)

CFKaq(u) NcKca(u) zG(uz; p )
(26)

F(z) m P(v) = dz z" F(z) .

which can be identified as the renormalization group
equation (RGE) for twist-2 IofFe-time distributions.

A beautiful feature of the RGE equations (25) and
(26) is that they explicitly show the relevance of the
short distance expansion: To calculate the /CD evo-
lution of the distributions, one needs to know them at
a certain reference scale at smaller values of the Ioffe
time. Stated differently, the evolution equation for the
nonlocal operators (10)—(13) involves these operators at
quark-antiquark distances smaller than the initial separa-
tion. This is in contrast to the evolution of fragmentation
functions, which is essentially nonlocal in the coordinate
space [13].

As is well known, the integrodifFerential equations (25)
and (26) can be transformed into ordinary difFerential
equations by Mellin transformation:

Equation (27) has the well-known solution

/'
( 2) ) 7( v—+1))/b

Q-~(v I') =
I

Qval(vi p1) )

4 ~s(IJ, ) )

C+ COO

F(v) m F(z) = . dv z "F(v) .
271 L

Explicitly, one gets [9]

2
Q )(z; p2) = ( ( 2) ) P(1/2 iv)/—b

~~ &~, (&',))

where in @CD 6 =
2

—sN~. The Ioffe-time distribu-
tion at the scale p& can be obtained with the help of the
inverse Mellin transformation:

where we have introduced the function

du K(u)u" (2S)

As a consequence we obtain, in the flavor nonsinglet case,

2

V'&, Q--~(v V') = — ~(—v —I)Q-~(v V')

(27)

du u'" / Q„i(uz; p1) .

Typical results of the low-scale evolution i.e. , in the
low p range, are illustrated in Figs. 4 and 5. Figure
4 shows valence and gluon Gluck-Reya-Vogt (GRV) [4]
Ioffe-time distributions evolved between p = 4 and 20
GeV . Figure 5 shows the same for u- and d-quark dis-
tributions. Note that in this range of scales the evolution
affects mainly the large-z behavior of the distributions.

8 I I I I
I

I I I I
I

l I ~ I
I

~ ~ y I

1.5
1.5—

Q„(z,Q')

0.5
0.5 z, Q')

0 l l I I I k I I I I s ~ a I s I l

10 15 20
0

0
I I ~ I I I I I I I

10 20

FIG. 4. Evolution of valence U ~(z, Q ) and D ~(z, Q ),
and gluon G(z, Q ) Ioffe-time distributions. GRV [4]
parametrization has been used. The solid line corresponds
to Q = 4 GeV, the dashed line to Q = 20 GeV, respec-
tively.

FIG. 5. Evolution of up and down quark Ceven
QU(z, Q ) and Qo(z, Q ) Ioff'e-time distributions. GRV [4]
parametrization has been used. The solid line corresponds to
Q = 4 GeV, the dashed line to Q = 20 GeV, respectively.
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III. VALENCE QUARK DISTRIBUTIONS
FROM QCD SUM RULES

We can now summarize our discussion in the follow-

ing way. We have analyzed the reduced matrix elements
of QCD string operators of twist 2 as a function of the
lightlike separation between fields. We have found very
smooth behavior which makes such objects convenient for
theoretical studies. It can be also shown that the large
separations are dominated by the asymptotics of the cor-
responding structure function at small values of Bjorken
x. Once this asymptotics is known from e.g. , the Regge
arguments, the remaining nontrivial information is con-
tained in the domain of moderately large separations.
This region could be accesible to presently developed an-
alytical methods such as QCD sum rules, instanton mod-
els of QCD vacuum [14], or lattice calculations.

In this paper a QCD sum rule calculation is carried out

for the valence quark distributions. In the last decade
the QCD sum rule approach has been applied succesfully
to a variety of problems, including estimation of hadron
masses and couplings, elastic and transition form factors,
etc. In the context of this paper it is necessary to men-
tion the calculation of the fraction of proton momentum
carried by gluons in Refs. [15, 16] and the calculation
of structure functions at intermediate values of Bjorken
variable in Ref. [10]. In what follows, we shall often re-
fer to this latter analysis to compare the calculations in
coordinate and momentum space.

The basic idea of the QCD sum rule technique is to use
duality between hadronic and partonic representations of
a suitable correlation function to extract the quantity of
interest by requiring that the two descriptions match each
other at intermediate scales. To calculate the valence
quark distributions, we choose to work with

II"' =i d ed eeixpgp. e+iq y) 0 7 ei(e)e)(O)Oe'
~

yi- —;ei——
~ 0),u, d .2 4 4

2 2)
where

—,( A') „A A;(0s
I y+ —y ——

I

= @'
I y+ —

I
&~n" y+ —'y ——@*

I y ——I+ (& ~ —&).2) E 2) 2 2. & 2)

(33)

where u(x) and d(x) denote u- and d-quark fields, respectively and a, b, c are color indices.
n

According to Eq. (16) the proton matrix element of 0'(y + 2, y —
2 ) defines the valence quark distribution. In

the following we choose a special kinematics taking the momentum transfer q~ to be lightlike q = 0 and orthogonal
to the interquark separation i.e. , 4 . q = 0. In this case, the nucleon contribution to the correlation function (31) can
be extracted in the form

Here i = u, d denotes quark flavor, n" = (1,0, 0, —1) is the "unit" lightlike vector, n = 0, and the splitting Z" is
lightlike and proportional to n".

Finally, )7(x) is the standard interpolating current for the proton [17]

g(x) = e u (x) Cp„u'(x)ps'"d (x),

dug. '"(u) cos (up A) + continuum, (34)

where p2i = p2 and p2 = (p+ q) . The coupling A~ is
defined by

(0
I g(0) I

P, K) = A~u~(P),
where u~(P) is the nucleon spinor.

Note that the operator 0 in (32) is essentially the
point-splitted vector current. In the limit A = 0 a Ward
identity relates the three-point correlation function (31)
to the derivative of the two-point correlation function of
two nucleon currents U )(0) = duq„(u) = /V" = 2,

I

in the proton. The derivation of (35) and of a more gen-
eral Ward identity for arbitrary separation 4 is given in
the Appendix. Note that

1 (2) A~—Tr yf II (p) =
2 (p n) + continuum. (36)

4 p

Substituting (36) in (35) and comparing to (34) one ob-
tains the normalization conditions

II"'"(A = 0) = N"" 1

dvn„ llf l(p+ vq),
PQ

(0) duq„(u) = K" = 1, (37)

ill'&(p) = i d x exp (ip x)(O
I
T [p(x)r)(0)] I 0),

(35)

where N" = 2, %" = 1 are the numbers of valence quarks

which are exact in the QCD sum rule approach, provided
the Ward identity is not spoiled by the continuum sub-
traction (see below).

The main task is the calculation of the correlation
function (31) in QCD. If both p2 and q2 are sufficiently
large (and negative) the dominant contributions come
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from small distances x and y of order 1/ —p2 and 1/ —q,
respectively. Thus the standard machinery of the short-
distance expansion is applicable, allowing to express the
result as a power series in terms of vacuum quark and
gluon condensates. In the case of the forward matrix el-
ements (i.e. , for q = 0) the situation is more involved
because the relevant distances in the t channel are not
constrained by the external momenta and can be arbi-
trarily large.

The solution to this problem was first formulated by
Balitsky [18]. The operator product expansion of the cor-
relation functions of the type (31) has a twofold struc-
ture. Terms of the erst type come from the region x
y 1/ —p and are proportional to vacuum expectation
values (VEV's) of local gauge invariant operators, mul-
tiplied by coefFicient functions depending on pz, p&. In
the following we refer to these terms as to local power
corrections (LPC's).

Terms of the second type are called bilocal power cor-
rections (BPC's) and correspond to the contributions of
large y )) x 1/p . In order to treat these terms for
arbitrary q in the "Bjorken limit" p q - p —+ oo one
should expand the T product of nucleon currents,

T[n( )n(0)] = ) c„'(*')s"(*;0),

in a series of nonlocal, gauge-invariant "string" operators
of increasing twist n S (x; 0), cf. [9]. This expansion can
be inserted into the correlation function (31), producing
a power series in 1/p with coefficients given by the cor-
relation functions of two nonlocal light-cone operators

-„,(i dyexp(iq y)(O ~

T 0"'
~ y+ —;y ——

2 2~

To this end, the Borel transformation is applied to both
sides of the sum rule, improving the convergence of the
operator product expansion series and suppressing expo-
nentially contributions of higher resonances. The ratio-
nale for keeping nonzero value of the momentum transfer
q in the above discussion is that in this kinematics one
can consider pz

——p2 and p22
——(p+ q) as independent

variables and perform the Borel transformation in both
momenta. The advantage of this procedure is that in the
double dispersion relation

p(si, s2)ds,ds2, " ', +, (40)

where p(sz, s2) denotes the spectral density, one can ig-
nore subtraction terms and contributions corresponding
to nondiagonal transitions with singularities in only one
of the two variables. In the standard duality approxima-
tion higher resonances and the continuum contribution
are taken into account by the following model for the
physical spectral density:

p(sj, s2) = AN. h(sq —M~)b(s2 —M~)
x(N, p) i

0"'"
i pg, N)

+O(sy —80)e(s2 —sp) p~(sy, 82),

where p (sq, s2) is the corresponding spectral density cal-
cutated in perturbative QCD. Thus, by assumption, sub-
traction of the continuum contribution corresponds to
constraining the integration region in (sq, s2)-plane to the
duality region si, s2 ( so.

In the theoretical part of the sum rule the double Borel
transformation is performed using the general formula

(42)

xS"(2:; 0) i
0). (39)

In general, calculation of the correlator (39) requires con-
struction of a specific sum rule and may be very compli-

'

cated. Remarkably, we have found that the most im-
portant BPC's of dimension 6 can be evaluated exactly
(i.e. , related to the quark condensate) by using the equa-
tions of motion. The derivation essentially uses the Ward
identity which we obtain in the Appendix.

It should be noted that the OPE for the correlation
function (31) for q = 0 is given by the sum of both
LPC's and BPC's. In general only this sum has a physical
meaning and is regularization scheme independent.

Apart from these general remarks, we shall not go into
details of the calculation which is relatively straightfor-
ward. A few more remarks are necessary, however, con-
cerning the specific techniques used in the QCD sum rules
approach to suppress contributions of higher states and
further taking them into account in the duality approxi-
mation.

where t denotes the symmetric combination of Borel pa-
rameters Mq and M2.

M2M2

with 8 = 1 —v. In the symmetric case M& ——M2 ——2t the
subtraction of the continuum contribution corresponds to
the replacement

t" ~ t"E„(t,s, );
so 1E(t so) = 1 —e "~' 1+ —+

(n —1)!

in all terms of the OPE containing positive powers of the
Borel parameter t.

An explicit calculation leads to the sum rule for the
valence quark distributions:

+ "' z, t, so o., vr G + 6' z, t gg

+ fs '"(z, t) (qq) (qcrgGq) + (45)
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where we keep contributions of perturbation theory and. operators up to dimension 8. The coeKcient functions are
given by diagrams shown in Fig. 6. For the bilocal power corrections, examplified in Fig. 7, we take into account
all contributions related to contact terms, and neglect contributions of correlation functions involving explicitly the
gluonic fields in addition to quark fields which arise from the first term in the Ward identity in (A4).

We And

1 3
fp (z) = t Es(t, sp) du(9uu + u ) cos (uz),16~4

1 1

fp (z) = t Es(t, sp) du(3uu + u ) cos (uz),16~4

1 1 123
f4 (z) = tEi(t, sp) du[(4b(u) + 6u —1 + —z u ) cos (uz) + zu u sin (uz)],

96vr3 '
o 3

1 1 123
f4 (z) = tEi(t, sp) du[(2b(u) + 3u —u + —z u ) cos (uz) + zu u sin (uz)],

96vr3 '
o 3

f;() =-'. ,

fs (z) = s cosz,

fs (z) = t (—&
cos z + s4z sin z) .

(46)

(47)

(48)

To keep the correct normalization of parton densities (37) the coupling A~ in (45) should be substituted by the
corresponding sum rule [17],

1 2 2 2 —1e ~ A~ —— t Es(t, sp) + tEi(t, sp)((ri /7l)G ) + —(qq) — t (qq) —(qogGq) +32 ' 32 ' 3 9 (5o)

keeping the same terms in the OPE and using the same values of the Borel parameter t and the continuum threshold
sp as in (45). Note that the coefficients in front of the dimension 8 terms in (49) and (50) differ slightly from the
corresponding ones in [10] and [17]. The reason is that the authors of [10, 17] evaluate the vacuum expectation
values of nonlocal operators such as iII(0)ill(x)ili(0)@(x) reducing them to ((@(0)4'(x))) using the hypothesis of
the dominance of the vacuum intermediate state, while we use this hypothesis in the calculation of local operators,
such as @Dz@'@4',only. This leads to extra terms as compared to [10, 17]. These terms are, however, suppressed as
1/K&, K& being the number of colors, and the difFerence is not important numerically.

Please note that all coefficient functions in the sum rule in (45) are smooth functions of the Ioffe time, in contrast
with the sum rules for the momentum fraction distributions given in Ref. [10] which contain expansions involving
singular functions. Indeed, making a Fourier transform of our expressions, we obtain the following sum rule for
momentum fraction distributions of valence quarks:

e ~ A~q&' (u) = f,',i(u, t, sp) + f4'"(u, t, sp)((n, /7r)G ) + fs ' (u, t)(qq) + fs ' (u, t)(qq) (qo'gGq) +

with the coefBcients

fp (u) = t Es(t, sp)(9uu + u ),
1

fp(u) = t Es(t, sp)(3uu +u ),

f4 (u) = tEi(t, sp) 3h(u) + 6u-
96vrs u +)

(
f4 (u) = tEi(t, sp) h(u) + 4u-

96vrs '

( u2
+~

fs (u) = —:~(u)

fs"(u) = —'.~(G),

fs (u) = —p8(u)t

f ()= t ( ~()+ ~())
where, for any test function f(u),

(52)

(53)

(54)

(55)

2tt

1

[f(u) —f(O) -uf'(O)]

(56)

It is easy to see that in high orders of the OPE the series
of power corrections to the sum rules in coordinate and
in momentum space will have the typical behavior

(A)" „A)"(„)
tn ! tn ~!

z" cos(z) m 8(")(u),t"n! t"n! (57)

where (A) is the typical scale of vacuum ffuctuations, of
order (several hundred MeV), and the n! suppression
is due to the Borel transformation. For this reason the
sum rules for IoKe-time distributions can be justified the-
oretically at small values of z, while in the momentum
space one faces a problem of the summation of the series



IOFFE-TIME DISTRIBUTIONS INSTEAD OF PARTON. . .

Pl P2 P2

P2 p2

p2 Pl l p2

FIG. 6. Typical diagrams contributing to the OPE of the
correlator (31).

Pl l P2

FIG. 7. Generic form of a bilocal correction in the OPE
of the correlator (31).

containing singular functions.
Let us now elaborate on this point. The calculation

of parton distributions in coordinate space is essentially
on the same theoretical footing as the calculation of mo-
ments as matrix elements of local operators. Mathemati-
cally, information about the moments is coded in deriva-
tives of the coordinate space distributions at z = 0. Pro-
vided OPE converges fast enough, the z distribution is
well defined and can be calculated at suKciently small z
by present nonperturbative approaches to @CD. In the
particular technique of @CD sum rules, the results of cal-
culations are usually assumed to be reliable provided con-
tributions of vacuum condensates are sufBciently small,
say stay within 30—40% of the total. It turns out that
for valence quark distributions this criterium is satisfied
for z ( 3. We shall see that in practice the sum rule
for u-quark distributions works in a larger interval, and
for d-quark distributions for a shorter interval; for other

approaches, e.g. , lattice calculations, the limitations can
be difFerent. Our point is that for sufFiciently small z
one does not need to invoke any additional assumptions.
The contributions of dimension 6 in (49) are respectable
smooth functions at small z and must be taken into ac-
count, independent of their bad behavior at large z which
produces b functions after the Fourier transform.

In momentum space, the calculation of parton distri-
butions pointlike in the Bjorken variable applies much
more severe requirements to nonperturbative techniques,
and in practice requires additional assumptions. In par-
ticular, the approach of Ref. [10] assumes that singular
terms in the OPE do not aBect calculation of parton dis-
tributions at intermediate values of momentum fraction
u, and thus in this region all singular terms in the OPE
can be neglected altogether (see also [19]). This would
be true if summation of singular contributions produces
a rather narrow smooth function with the support either
in u 0 or in u 1 regions. Our task in this paper
is not to criticize this particular assumption, but rather
to make clear that assumptions of this kind are always
necessary to deal with parton distributions in momentum
space, and thus provide an additional input.

In fact, the assumption of Ref. [10] is nontrivial, and
to our opinion requires a better justification than given
there. Mathematically, the statement about calculability
of coordinate-space distributions at suKciently small z
does not imply calculability of momentum-space distri-
butions at intermediate values of u. We find the neglect
of singular contributions disturbing, since they are 100%%uo

essential for calculation of the moments, see Refs. [15,16].
Since the calculation of the parton distributions along the
lines of Ref. [10] (and this paper) is only justified as the
analytic continuation from the corresponding calculation
of the moments [9], it is difficult for us to imagine that
important contributions to the moments of the structure
function will not show up in the distribution itself. Phys-
ically, the assumption about the small smearing of sin-
gular contributions implies existence of a certain second
scale in the hadrons, affecting the momentum distribu-
tions. We feel that a further study of this question is nec-
essary, to prove that smearing of singular contributions
does not afFect the whole region of the Bjorken variable.
Again, we repeat that the advantage of coordinate space
formulation is that it avoids making any assumptions of
this kind, since singular contributions to not appear.

Let us proceed to the description of our results. In the
numerical analysis we use standard values of the param-
eters accepted in the @CD sum rules for the nucleon, i.e. ,
t 1 GeV and so ——(1.5 GeV), and the following val-
ues for the condensates (the normalization point 1 GeV
is implied):

(qq) = (250 MeV)

((o../vr) G ) = 0.012 GeV',

(qo gGq) = mo(qq); mo ——0.64 GeV

which correspond to the standard ITEP values rescaled
to the normalization point p ~ M~2 1 GeV .

The @CD sum rule prediction for the valence u-quark
Ioffe-time distribution in the proton U ~(z, y2 1 GeV2)
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FIG. 8. QCD sum rules calculation of the valence u-quark
Ioffe-time distribution function U ~(z, p, ) at p, 1 GeV
The thick solid line results from the OPE with operators with
dimension 0, 4, 6, and 8. Thick dashed lines correspond to the
leading-order QCD analysis of Ref. [20] at the scales p, = 0.5
and 1 GeV, respectively. The solid line marked (a) is the
perturbative contribution to the sum rule. Lines (b) and (c)
describe, respectively, the sum rules with operators of dimen-
sion 4 and 6 taken into account. Note that VEV of dimension
8 already gives a small contribution.

is shown as the thick solid. line in Fig. 8 and com-
pared with an "experimental" distribution. The latter
has been obtained from the leading-order parametriza-
tion of Gluck, Reya, and Vogt [20] normalized at 0.5
GeV & p & 1 GeV . We find remarkable agreement
up to rather large values z & 4, corresponding to lon-
gitudinal distances in the proton rest frame of nearly 2
fm. When this @CD sum rule result is augmented by the
assumption that U ~(z) is a sufficiently smooth function,
and combined with large-z behavior implied by the Regge
theory [see Eq. (2)] it allows for complete reconstruc-
tion of U ~(z) and therefore of the distribution function.
Lines marked as (a), (b), and (c) illustrate the relative
importance of difI'erent contributions to the sum rule, and
are obtained keeping in (45), (50) the perturbative terms
only (a), adding the gluon condensate contribution (b),
and adding in addition also the (qq) terms (c). Note that
the U ~(z) distribution decreases at large z more slowly
than the perturbative prediction, which is mainly due to
bilocal corrections arising from large distances in the t
channel. The latter can be calculated as contact terms.
We reinind that these terms are discarded altogether in
the approach of Ref. [10].

Figure 9 shows stability of our prediction when the
Borel parameter t is varied between 1 GeV (upper curve)
and 1.5 GeV2 (lower curve). One may conclude that in
the region z & 4 the valence u-quark sum rule converges
very fast and it is numerically stable.

A sum rule similar to the one given by Eq. (45) can be
written for a nonzero value of the momentum transfer q

FIG. 9. Stability of the sum rule for U„~(z)against vari-
ation of the Borel parameter t. The upper curve corresponds
to t =- 1 GeV, the lower to t = 1.5 GeV .

in the t channel, allowing to study the radius of the va-
lence quark distributions (cf. [21]). We have checked that
the radius of the valence u-quark distribution obtained
from the sum rule in (45) is close to the measured elec-
tromagnetic radius of the proton, which is encouraging.

The situation is not so good, unfortunately, for the
valence d-quark distribution, see Fig. 10. The sum rule

I I I I
i

I I I I
i

I I I I
)

I I I I I I ~ I

0.8—

0.6—
l—I

0.4—

0.2—

0
0

FIG. 10. QCD sum rules calculation of the valence d-

quark Ioffe-time distribution function D ~(z, p, ) at p 1
GeV . The thick solid line results from the OPE with opera-
tors of dimension 0, 4, 6, and 8. Thick dashed lines correspond
to the leading-order QCD analysis of Ref. [20] at the scales
p, = 0.5 and 1 GeV, respectively. The solid line marked (a)
is the perturbative contribution to the sum rule. Lines (b)
and (c) describe, respectively, the sum rules with condensates
of dimension 4 and 6 taken into account.
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prediction for D i(z), shown as the thick solid line, is
rather far from the leading-order GRV [20] parametriza-
tion, and is much more short range. As in Fig. 8, we also
show contributions of various terms in the OPE to the
final result. It is seen that taking into account the gluon
condensate contribution (b) improves the prediction con-
siderably compared to the perturbative result (a), but
this tendency is destroyed by the contributions of dimen-
sion 6 (c) and dimension 8. In the case of the d-quark
distribution the bilocal corrections corresponding to the
contact terms are absent, and the problem arises because
of the diagram in which all nucleon momentum is carried
by a single quark, see Fig. 6 (d), which contributes a term

cos(z) (49). In the momentum space this contribution
is proportional to b(1—u), where u is a fraction of longitu-
dinal momentum carried by the quark, see (55). Another
reason is the absence of the bilocal power correction of
dimension 6, contributing a term 8(u) in (55), suggest-
ing that terms of higher dimension h(u), 8'(u), . . . can
be important.

It turns out that the d-quark distribution is very sensi-
tive to the numerical values of condensates of dimension
6 and 8 because of strong cancellation between corre-
sponding terms. If we took qq = —(240 MeV) and
mp ——0.8 GeV2, which correspond to the normalization
point p, = 0.5 GeV, we would obtain perfect agreement
with the experimental analysis up to values of z of or-
der of 1, where the sum rules prediction would abruptly
turn down. Such a strong normalization-point depen-
dence makes our prediction for d quarks less reliable.

A favorable structure of the OPE for the u-quark dis-
tribution and the complications for d quarks have, pre-
sumably, no physical relevance, and are due to the par-
ticular structure of the interpolating current (33). This
choice is standard, but, as it follows from our analysis,
not very convenient for the study of the d-quark distri-
butions, since it implies that the correct behavior of this
distribution is due to higher order power corrections.

A more detailed analysis of this problem goes beyond
the scope of this paper. One could try a difFerent interpo-
lating current to improve the results for the d-quark dis-
tributions, or calculate radiative corrections to the sum
rule, which generally tend to soften the parton distribu-
tions (i.e. , make them more extended in. the IofFe time)
and are expected to be especially important for d-quarks,
see [10].

However, it is worthwhile to demonstrate, at least
semiquantitatively, that the higher order contributions
indeed tend to smoothen the h(1 —u) contribution
of dimension 6 in the d-quark sum rule, and are poten-
tially able to bring it to the agreement with the data.
To this end we use the concept of nonlocal condensates,
introduced in [22], which allows us to consider the efFects
of the final correlation length in the @CD vacuum, the
property that is missing in the local operator product
expansion.

Note that the contribution of the diagram in
Fig. 6 (d) is essentially proportional to the vac-
uum expectation value of the nonlocal operator
[u (x)Cpgu (x)][u (0)Cpgu (0)] which produces the
expansion

([ (*)C&4 '(*)][ (0)C74 ' (o)])

= ——(qq)' dvel* / l f(v) . (60)

Moments of the function f (v) are determined by vacuum
expectation values of local operators. The first few of
them in the factorization approximation are fixed to be

dvf(v) =1,
1 (qga Gq) 1

dvvf(v) = ———:—mo. (61)
0 2 (qq) 2

On the other hand, one generally expects that the cor-
relation functions in @CD decrease exponentially in Eu-
clidian space, suggesting that

([u (x)Cp(u (x)][u (0)Cpgu (0)]) - exp[™DQ—x ]

(62)

at large x ~ —oo, where MD is the correlation length
which, loosely speaking, may be associated with the di-
quark mass. It is easy to see that this behavior corre-
sponds to the asymptotics

f ( )
—M~/v (63)

at small v. Note that the expansion into the sum of
local operators corresponds to the expansion of f (v) in 8
functions at v = 0.

The efFect of using the nonlocal condensate in the sum
rules is easy to evaluate. In coordinate space, insertion of
(60) amounts to the substitution of the coefficient func-
tion fs in (49) by

duuf(ut) cos(uz).

In momentum space this replacement is simply

fs(u) = sb(u) m f~lc(u, t) = -tuf(ut) .

For numerical estimates we choose a simple model
(M2 )a—2

f( )
'L Dj 1—a —M~/v
I'(a —2)

(65)

(66)

with two parameters M~ and a. Equation (61) leads to
the constraint

M2
Q —3=2 2 (67)

7A p

so that we only need to specify the correlation length. Its

= ——', (qq)'[1+ —,'m,'x' + .], (59)

where we have assumed the factorization to evaluate the
coefricients. It is the expansion into the sum of local
operators that generates the series of power corrections
proportional to derivatives of b(l —u) in the sum rule for
the momentum fraction distributions. As noted in [22],
this expansion misses an important property of the corre-
lation functions in Euclidian space, which is in existence
of the final correlation length in the physical vacuum.
To illustrate this point, let us consider the exponential
parametriz ation

([. (*)C ( )][ (o)C (o)])
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value has a direct physical meaning and is related to the
difference between masses of heavy baryons, containing
b quark and the uu pair, and the mass of the 6 quark. 3

In Fig. 11 we show the right-hand side (RHS) of (65)
as a function of the momentum &action u for the Borel
parameter t = 1 GeV and for two choices of MD ——700
MeV and 1 GeV. We see that the main efFect of the fi-
nite correlation length is to push nonperturbative effects

(qq)2 away from the region u 1. This may seem
contrary to the physical intuition, but not necessarily so,
because the eff'ects of the quark condensate are qualita-
tively similar to the introduction of the constituent mass.
We remark that this picture contradicts the expectations
of Ref. I10]: Summation of singular contributions not
only fails to produce a narrow function with a support
concentrated at u —+ 1, but, on the contrary, the non-
perturbative contributions die away at u -+ 1 faster than
any power of 1 —u. We stress that this is a direct con-
sequence of the final correlation length in the @CD vac-
uum. Our model estimates presented in Fig. 11 show
that the resulting contributions are important at least
up to u ~ 0.6.

Numerical results for the valence d quark distribution
D„(z)with the nonlocal condensate are shown in Fig. 12.

4, I I I
I

I I I
I

1 I ~
I

I I I
I

~ I I

I I I I I I I I I
I

I ~ I I
I

I I ~ I
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o.e
sI

0.4
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2 3

FIG. 12. QCD sum rules calculation of the valence d-
quark Ioffe-time distribution function D„&(z) (solid lines).
VEV of dimension 6 and 8 has been replaced by the
phenomenological model of nonlocal four-quark condensate,
Eq. (60). Labels (a) and (b) refer to the diquark mass pa-
rameters MD = 0.7 and 1.0 GeV, respectively. Thick dashed
lines correspond to the leading-order QCD analysis of Ref. [20]
normalized at p = 0.5 and 1 GeV, respectively. The dashed
line shows results of the standard sum rule (45).

0 I ~

0 0.8 0.4 o.e 0.8

FIG. 11. The nonlocal condensate contribution to the d-
quark sum rule, see Eq. (65). Lines marked as (a) and (b)
correspond to the diquark mass parameters M~ ——GeV and
1.0 GeV, respectively. Borel parameter t = 1 GeV .

We see that the situation improved somewhat at z ) 2,
although this type of contributions alone is not able to
restore the agreement to the data. A better agreement
can be obtained by choosing a larger value of the mixed
condensate parameter mo, but this possibility is not very
attractive. We expect, however, that the results will be
substantially improved by taking into account radiative
corrections. An inspection shows that the sum rule for d
quark distributions can also be saved by a large bilocal
power correction, contributing a term z2 in coordinate
space (alias b"(u) in momentum space) . These cor-
rections are diKcult to evaluate, however, and we do not
attempt this task in the present paper. An experience
of @CD sum rule calculations generally suggests that if
there are indications that the sum rule is afFected by con-
tributions of high order in the OPE, it is advisable to
use different interpolating currents for the participating
hadrons.

XV. SUMMARY AND CONCLUSIONS

We do not discuss this issue in detail, referring to a well-
known relation between the asymptotics of the quark propa-
gator at large distances in Euclidian space, and the difference
between heavy meson and quark masses in the heavy quark
limit [23]. This difference is usually denoted by A and is one
of the main observables in the heavy quark effective theory.
For baryons the situation is quite similar. The range of values
of M~ used here corresponds to the estimates found in the
literature.

We suggest to use Ioffe-time distributions, the distri-
butions of invariant longitudinal distances z essential in
a deep-inelastic scattering process, as a suitable alterna-
tive to the conventional description in terms of momen-
tum fraction parton distributions. The advantage of this
formulation is that contributions of large and small lon-
gitudinal distances that correspond in fact to difFerent
physics, become in this approach separated. The large
distances of distributions in coordinate space are gov-
erned by the Regge theory, and can be taken as an in-
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put, while the calculation at moderate distances can be
within reach of current nonperturbative approaches, e.g. ,
the lattice QCD. We illustrate these advantages using
the QCD sum rule technique to calculate valence quark
distributions, and compare it to the corresponding cal-
culations in the momentum space. Although the sum
rules derived in this paper are rather preliminary and can
be improved significantly by taking into account further
corrections, we obtain a very good description of the u
quark distributions. The results for the d quark distribu-
tions are worse, the reason is an unfavorable structure of
the operator product expansion series in this case, where
higher order terms are important.

We believe that our results can be improved by making
a state-of-the-art QCD sum rule analysis, or with differ-
ent techniques. In particular, we expect that Ioffe-time
distributions may be feasible for lattice calculations and
for instanton models of the QCD vacuum of the type sug-
gested in Ref. [14]. It would be most interesting to con-
strain in this way the polarized gluon distribution which
is poorly known.

;&/+ 2 8 S;&J 2 ,'&/+
2 S H;lJ

X
l 0

FIG. 13. Graphical illustration of the Ward identity,
Eq. (A5). Dashed lines denote path-ordered exponentials.
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In addition, it makes normalization properties of valence
quark distributions explicit.

In our special kinematics vectors n„and q„are pro-
portional:

APPENDIX
n x

gp.g'X (A1)

In this Appendix we derive a Ward identity for the
correlation function (31) useful in practical calculations.

Replacing p„n~ in the definition (32) of 0' by
' p„q"

and integrating by parts over d4y in (31) we get

II' = i d x exp(ip. —x) d y exp(iq. y) g'X
t9 ; t'

n(*)@*
l
v+ —l~, u+ —;u——@*

l
u ——

I ~(o)) ")+ (& ~ —~)
Og~ 2) " 2' 2 ( 2) (A2)

The next step is to evaluate the derivative 0/Oy„explicitly. One gets

0 —,( Al A A;(@*
I
y+ —

f v, y+ —;y——
2)

= DC'

Zg

2

;f A& —;f Al A A -;(
I
y+ —

I
y+ —y ——@'I y ——I+~'I y+ —

I y+2) 2 2 ( 2) ( 2) 2' 2 ( 2)
( A) A A (

2) 2' 2 q 2) 2' 2 q 2) '«@'I y+ —
I y+ —y+&—~ & G-~

I
y+& —

I
y+& —;y——@

I y ——
I

where G p is the gluon field strength.
Inserting the right-hand side of (A3) into (A2) we note that terms contairung D@ and D@ lead to contact terms.

To this end it is convenient to have in mind the functional integral representation of the correlation function in (A2),
and use the identity

exp
~

i 8 d x
~
D@(y) = — exp

~

i 8 d x
~) ~@y & ) (A4)

where 8 is the QCD Lagrangian. Making an integration by parts in the functional integral we obtain the b function
h(x —y+ 2 ) which allows to perform the integration over variable y explicitly. The net result can be written as a
Ward identity:
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11 4 n'xII' = — d z exp (ip z) dy exp (iq . y)
2 g X

df 0 T(q)z)4*
~
y+ —

~2)
( 4) A A, f'

x u+ —;@+4 —
uw &~G-p

I
v+6 —

I
v+( —v ——@'

I v ——In(o)) +
2 2 ( 2 2 2 ( 2)

+N'i d x exp (ip x) exp (iq z)(O I
T(q'(z; —A)g(0)) I 0)

g X

—(~ I
T(n(z)~*(0; &)) I ~) + (& ~ —&) (A5)

where ¹= 1 and 2 for d and u quarks, respectively. The nonlocal currents g'(z; —A) are defined as

g (x; —A) = e 'u (x) Cp„u (z)p, p" [x;x —A]'f d~ (z —A),
g" (x; —4) = e 'uf (x —A)Cg„[z—A;x]f u (z)ps'"d'(z) . (A6)

The outcome of Eq. (A5) is that the complicated correlation function in (31) is written as a sum of several simpler
terms. The last two terms contain one integration less compared to the original expression, and therefore they cannot
generate bilocal power corrections. The first term contains explicitly a gluon field. Thus, the OPE for this term starts
with higher orders in the coupling and (or) the dimension of the corresponding operators. By an explicit comparison
of the OPE applied to the correlation function (31) and to its equivalent form in (A5) one can make sure that several
important BPC's are transformed in this way to the LPC's related to vacuum expectation values of local operators,
see Fig. 13 for the illustration. In fact, the last two terms in (A5) presumably collect a)tl BPC's which can be reduced
to vacuum condensates by low-energy theorems. Experience of practical calculations in the sum rules shows that
these terms are typically the most important ones numerically. In this paper we do not take into account additional
BPC's from the expansion of the term with an extra gluon in (A5).

In the limit 6 —+ 0 the last term disappears and we are left with the correlation function

II* = N*i d xexp [ip. z] [exp(iq x) —1](A
I

T(q( z)g( 0))
I
0) .

g X

Equation (A7) can further be simplified writing

(A7)

[exp(iq x) —1] = iq x dv exp (ivq . x), (As)

so that we finally obtain

II' = N' dv n„ i d x exp (ip z)(O
I

T (q(z)q(0)) I
0)

Pp

dv n„n~'l(p),
Pp

where p = p + vq, arriving at the equation in (35).
As an illustration of the use of the identity in (A5) in practical calculation, let us consider the leading perturbative

contribution (PT) to the correlation function (34) for u quarks, shown in Fig. 6(a). First we note that owing to the
explicit presence of the coupling in the gluon field, the first term in (A5) can to this accuracy be neglected. Since

(n I
T(~"(z; -Z)~(0)) I ~)» = (~ I

T(n(x)n" (0; &)) I ~)»,
the remaining contribution can be rewritten as:

(A10)

IIEET ——N"i d z exp (ip. z) [exp (iq z) —1](& I
T(p" (z; —&)p(0)) I

f1)pT .
X

(A11)

and further using (A7), as

II~~ = X"' dv d z exp (ip . z)(n z)(O
I
T(q" (z; —A)q(0)) I

0)» . (A12)

A straightforward calculation of (A12) using dimensional regularization produces
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1 - l—Trg II" = (p ri)
I'(3 —d)

[ SP2 vP2] s—d
du (9uu + u ) cos uz . (A13)

Comparing with equation (34) and performing the Borel transformation according to (42) we finally arrive at the
u-quark coefBcient function in Eq. (47).
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