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Abstract

In many mammalian neurons, dense clusters of ion channels at the axonal initial segment and nodes of Ranvier underlie
action potential generation and rapid conduction. Axonal clustering of mammalian voltage-gated sodium and KCNQ (Kv7)
potassium channels is based on linkage to the actin–spectrin cytoskeleton, which is mediated by the adaptor protein
ankyrin-G. We identified key steps in the evolution of this axonal channel clustering. The anchor motif for sodium channel
clustering evolved early in the chordate lineage before the divergence of the wormlike cephalochordate, amphioxus. Axons
of the lamprey, a very primitive vertebrate, exhibited some invertebrate features (lack of myelin, use of giant diameter to
hasten conduction), but possessed narrow initial segments bearing sodium channel clusters like in more recently evolved
vertebrates. The KCNQ potassium channel anchor motif evolved after the divergence of lampreys from other vertebrates, in
a common ancestor of shark and humans. Thus, clustering of voltage-gated sodium channels was a pivotal early innovation
of the chordates. Sodium channel clusters at the axon initial segment serving the generation of action potentials evolved
long before the node of Ranvier. KCNQ channels acquired anchors allowing their integration into pre-existing sodium
channel complexes at about the same time that ancient vertebrates acquired myelin, saltatory conduction, and hinged jaws.
The early chordate refinements in action potential mechanisms we have elucidated appear essential to the complex neural
signaling, active behavior, and evolutionary success of vertebrates.
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Introduction

Most animals, from jellyfish to man, rely on electrical impulses

called action potentials (APs) for rapid, long-distance neuronal

signaling. Although APs are nearly always based on flows of

sodium and potassium ion currents through voltage-gated channel

proteins [1], comparisons across phyla reveal important differenc-

es in the ways that APs are initiated and conducted [2–4]. In jawed

vertebrates (i.e., sharks, jawed bony fish, and tetrapods), the rate of

AP propagation along nerve fibers, or axons, is markedly increased

by myelin, an insulating coating around the axon formed by glia,

and by nodes of Ranvier, small gaps in the myelin where dense

clusters of ion channels boost the AP signal. Most vertebrate

neurons also possess a robust and stereotyped polarity of form and

function, with well-segregated domains for reception and integra-

tion of synaptic inputs (the dendrites, soma and proximal axon),

AP initiation (the proximal axon) and rapid propagation (the

axonal arbor) (Figure 1A). By contrast, invertebrate neurons

typically lack myelinated axons, and their afferent and efferent

processes often branch from a common offshoot of the soma

(Figure 1B). These typical morphological differences between

vertebrate and invertebrate neurons were well appreciated by the

early anatomist Ramon y Cajal [5]. More recently, physiological

studies of invertebrate axons have revealed functional properties

uncharacteristic of vertebrates, such as proximal axons that lack

the ability to initiate APs, spikes whose initiation and propagation

are confined to particular axon branches, and initiation locations

that vary dynamically, depending on the sites and temporal

pattern of synaptic inputs [6–10]. The biophysical and molecular

reasons underlying apparent differences in AP initiation between

vertebrates and invertebrates have been poorly understood.

In mammals, similar membrane-associated protein complexes

mediate AP initiation by the proximal axon and AP conduction by

nodes of Ranvier [11–14]. The axon hillock has no special role in

AP initiation. Instead, at both the ‘‘axon initial segment’’ (AIS), a

10–60 mm long axonal unmyelinated domain bounded by the

hillock and the first internode, and at the nodes, voltage-gated

sodium (NaV) channels are concentrated at high densities,

generating large transient inward currents that rapidly depolarize

the membrane potential. NaV channel concentration at the AIS

and node both depend upon a specialized membrane cytoskeleton

of actin-spectrin modules [12,15–18]. The actin-spectrin network
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is linked via the adaptor, ankyrin-G, to NaV channels, neurofascin

186 (a L1 family cell adhesion molecule), and the voltage-gated

potassium ion (KV) channel subunits, KCNQ2 and KCNQ3

(Figure 1C) [19–21]. KCNQ2 and KCNQ3 (also called Kv7.2 and

Kv7.3) mediate an extensively studied neuronal current (M-

current or IM), which dampens and modulates excitability in many

neurons [22,23]. Indeed, genetic and electrophysiological studies

indicate that KCNQ channels at AISs and nodes of Ranvier

strongly modulate excitability [24–27]. Mutations that diminish

the clustering of NaV and KCNQ channels at AISs lead to

recurrent epileptic seizures [28,29]. The medical importance of

better understanding of axonal NaV and KCNQ channels is

further underlined by the fact that these channels are targets of

many drugs approved and in development for epilepsy, psychiat-

ric, and pain syndromes [30–32].

A model of the molecular mechanisms by which ankyrin-G

clusters mammalian NaV, KCNQ2, and KCNQ3 channels at the

AIS and node has emerged from studies of nerve and muscle cells

in vitro and in transgenic mice, and by analogy with better

understood protein interactions between ankyrin-G homologues

and their binding partners. NaV, KCNQ2, and KCNQ3

polypeptides all possess cytoplasmic anchor motifs that share the

sequence IAxGESDxD/E and are required for their immobiliza-

tion at the AIS (Figure 1C–D) [17,18,20]. Ankyrin-G, like its

homologues ankyrin-R (erythrocytes) and ankyrin-B (expressed

widely), possesses a membrane interaction domain consisting of 24

solenoidal ankyrin repeats. Mutagenesis experiments indicate that

ankyrin-G repeats 13–15 mediate interaction with the NaV
channel anchor (Figure 1C) [17,18,33]. Although the structural

basis for ankyrin-G/channel interaction is unknown, studies of

ankyrin interactions with cytoplasmic domains of the Na/K-

ATPase and erythrocyte band III proteins indicate that adjoining

ankyrin repeats form sites for binding short loops protruding from

membrane protein cytoplasmic domains [34,35]. Available cell

biological data suggests a similar mode of interaction between

ankyrin-G and the NaV and KCNQ2/3 anchor sequences

[13,17,18,20,21,28].

Although colocalization of channels per se is not uncommon,

initial studies raised a series of questions about how mammalian

NaV, KCNQ2 and KCNQ3 channels had evolved such similar

ankyrin interaction sequences [20]. BLAST search identified no

other mammalian proteins bearing the anchor motifs. A first

phylogenetic survey revealed that the NaV and KCNQ anchor

motifs were extremely well conserved through over 350 million

years of vertebrate evolution, from teleost fish to man, but were

absent from the homologous channels of fly, squid and worm

Figure 1. Axonal ankyrin-dependent NaV and KCNQ2/3 chan-
nel clusters and anchor motifs: neuronal cellular and molecular
features associated with jawed vertebrates and absent from
non-chordates invertebrates. (A, B) Cartoons showing characteristic
jawed vertebrate (A) and non-chordate (B) types of neuronal polarity.
Many jawed vertebrate neurons have myelinated axons, and axonal
domains bearing ankyrin-dependent channel clusters, which mediate
AP initiation and conduction (AISs, nodes, and branch points, red). Non-
chordate dendrites and axons arise from a common neurite, and lack
myelin and channel clusters. (C) Proposed molecular interactions
between jawed vertebrate axonal NaV and KCNQ channels, ankyrin-G,
spectrin, and actin. (D) Cartoons showing NaV and KCNQ2/3 channel
topology. Locations of peptide sequences required for KCNQ opener
interaction (Retig., retigabine), tetramerization (SID, subunit interaction
domain), and the axonal anchor motif are indicated. (E) Cladogram
showing some nomenclature and important evolutionary relationships
among animals; timeline is approximate. At right are listed model
species whose channel sequences were previously shown [20] to lack
anchor motifs (red) or bear them (green), and those newly studied here
(black).
doi:10.1371/journal.pgen.1000317.g001

Author Summary

Because nervous systems generate behavior, innovations
that confer new neuronal signaling functions are important
potential factors in evolution. In mammals, clustering of ion
channels on nerves is essential for electrical impulses used
in rapid signaling. This channel clustering is generally
absent in insects, worms, and other non-chordates. We
traced the evolutionary emergence of mechanisms under-
lying channel clustering on nerves by analyzing the
genomes of primitive chordates and studying the cellular
distribution and functional properties of their channels. We
found that sodium channel clustering evolved early in the
chordate lineage, before the divergence of the earliest
wormlike and planktonic groups (lancelets and sea squirts).
Nerve fibers of the lamprey, a primitive fish, retained some
invertebrate features but possessed dense sodium channel
clusters like in more recently evolved vertebrates. A
potassium channel clustering system evolved, after the
divergence of lampreys, in a common ancestor of shark and
humans. We conclude that the clustering of sodium
channels on axons was the initial pivotal step in a
chordate-specific series of evolutionary innovations, making
nerve impulses more rapid and robust. The refinements in
action potentials we have elucidated appear essential for
the complex neural signaling and active behavior of
vertebrates.

The Evolution of Axonal Excitozones
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(Figure 1E) [20]. NaV and KV channels (including the five

members of the KCNQ subfamily, KCNQ1-5) share a common

ancestor gene, but these channel families diverged very early,

possibly in prokaryotes [1]. How did ancestors of vertebrates,

subsequent to their divergence from insects, mollusks, and

nematodes, evolve such similar sequences playing similar functions

in two unrelated gene families? What was the biological

significance of this apparent molecular convergence [36]? Why

do all mammalian NaV channels possess anchor motifs, but only

KCNQ2 and KCNQ3 among the five KCNQ subunits?

Here, using molecular phylogenetic analysis, we have recon-

structed a sequence of evolutionary events through which

mammalian NaV and KCNQ channels acquired their anchor

motifs. Fly and worm, the model invertebrates most frequently

studied by molecular neurobiologists, are protostomes, separated

from vertebrates by an important evolutionary gap (Figure 1E).

This gap encompasses the Cambrian explosion and its initial

aftermath, when the extant bilaterian phyla and subphylum

vertebrata suddenly emerged [37,38]. By obtaining and analyzing

sequences from newly available basal deuterostome genomes, we

infer how new channel genes and functions arose in early

chordates during the Cambrian and Ordovician Periods (,550–

450 Mya, Figure 1E). We show that the NaV channel anchor

mechanism first appeared early in this interval, in an invertebrate

deuterostome ancestral to all extant chordates. The KCNQ

channel anchor first appeared at the very end of this period, in the

interval between the divergence of extant jawless and jawed fish

(lampreys and sharks). Lamprey axons lack myelin, but those of

sharks possess it [2,39]. Thus, KCNQ anchors appeared during

the evolutionary interval when many other proteins evolved

mechanisms incorporating them into the axo-glial apparatus of

saltatory AP conduction. These findings reveal the stepwise origins

in basal chordates of a distinctive vertebrate mechanism

underlying excitability and polarity. They show that the node of

Ranvier is a secondarily evolved feature, based upon the much

earlier evolution of NaV channel clustering mechanisms in

invertebrate chordates. We suggest (see Discussion) that these

NaV channel clusters be termed excitozones.

Results

The Sodium Channel Anchor Motif Is a Shared Exclusive
Feature of Chordates
NaV channels with rapid opening and closing kinetics are

present on the motor axons and stinging nematocysts of jellyfish,

where they serve in escape swimming, defense, and predation

[40,41]. Although cnidarians appear to possess only a single NaV
channel gene, in many protostomes and deuterostomes, multiple

homologous NaV channel genes derived from a common ancestor

are present (e.g., Drosophila melanogaster, n = 2; Ciona intestinalis,

n = 4; Homo Sapiens, n = 10) [1,42–44]. The 10 mammalian NaV
genes are linked to the four mammalian hox loci, implying that

they all descended from a single gene linked to the ancestral

bilaterian hox locus [37,44,48]. Phylogenetic analysis of the origin

of the anchor motif supported this scenario (Figure 2A–B and S1).

All vertebrate NaV channels unambiguously form a clade

including a single basal chordate NaV gene, called TuNa1 when

first cloned and later renamed NaV1 [43,45,46]. NaV1 is

conserved in the genomes of the tunicates C. intestinalis, Ciona

savignyi, and Halocynthia roretzi and the cephalochordate Branchios-

toma floridae (amphioxus). Significantly, sequence analysis revealed

that these orthologous chordate NaV1 genes all inherited anchor

motifs like those common to jawed vertebrates; all other

invertebrate NaV genes lacked any evidence of such motifs

(Figure 2B, Table S1). The basal chordate anchor motifs and those

in vertebrates were identically located, at a position slightly beyond

the midpoint of the intracellular loop between DII and DIII (the

second and third NaV channel homologous domains, Figures 3

and S2). In B. floridae and tunicates, the NaV anchors were encoded

on a single short exon, and were flanked by poorly conserved

sequences (Figures 3C and S2). The novel ‘‘anchor exon’’ was

absent from protostome NaV genes (e.g., Figure 3B). Whereas non-

NaV1 DII–DIII loops exhibited considerable variability in both

amino acid sequence and length, the chordate NaV1 and

vertebrate DII–DIII loops bearing NaV anchors were highly

conserved in length.

The NaV genes lacking anchor motifs (i.e., all non-chordate NaV
genes and chordate NaV2-4 genes) all appeared basal to, and

exhibited greater sequence divergence than, the NaV1-like gene

clade. Phylogenic relationships among these anchorless genes

appeared complex, which could potentially reflect gene duplica-

tions and losses that remain unresolved (Figure 2A). For example,

the fly NaV gene, Para, appeared phylogenetically close to the

chordate NaV1 genes, but lacked an anchor motif (Figure 2A).

Also, Para is known to be unlinked to the fly hox locus [47],

implying a genetic rearrangement in either the chordate or

protostome lineage. Echinoderms are the non-chordate phylum

closest to chordates (Figure 1E). The echinoderm S. purpuratus (sea
urchin) possessed an orthologue of tunicate NaV2 genes, but no

evidence for a sea urchin NaV1 orthologue was detected,

suggesting gene loss. The genome of C. elegans lacks any NaV
channel gene. By contrast, vertebrate NaV isoforms serving

specialized fast signaling functions in brain, nerve, heart, and

muscle arose from chordate NaV1 and conserved the anchor motif

[44,48,49].

Axon Initial Segment NaV Channel Clustering Is
Prominent in Lamprey
Lampreys are jawless vertebrates, descendants of a lineage that

diverged from other crown vertebrates by the early Ordovician

Period, long before the evolution of myelin and saltatory

conduction [39,50,51]. Searching the genome of the sea lamprey

Petromyzon marinus disclosed 2 NaV channel genes, both bearing

anchor motifs (Figures 2A–B). We immunostained lamprey brain

and spinal cord using mouse monoclonal antibodies against the

highly conserved NaV channel DIII–IV loop that mediates

inactivation gating [52,53]. This revealed intense labeling of long,

thin structures (,20 by 1 mm) similar in appearance to

mammalian AISs, at locations neighboring neuronal somata

(Figure 4). This labeling was abolished by pre-adsorption of the

antibodies with the immunogenic peptide, and staining using a

second, rabbit polyclonal antibody gave identical results (Figure

S3). AIS-like labeling was preserved when staining was performed

on unfixed sections in the presence of 0.2–0.5% Triton-X 100.

Such detergent-resistance is characteristic of mammalian AIS-

resident proteins due to their association with cytoskeleton

[17,20,54].

We confirmed the labeled structures to be AISs by combining

immunostaining with dye-filling of identified motor system

neurons [55]. In lampreys, as in jawed fish, giant Mauthner cells

of the medulla project to contralateral spinal motoneurons,

mediating the C-bend, a rapid escape behavior [56]. Mauthner

dye-fills showed large somata and dendrites, and giant (40–80 mm

diameter) distal axons, but markedly narrowed (,5 mm diameter)

proximal axons (Figure 4A, 4C, 5A). Intense membrane-associated

NaV channel staining was localized at the beginning of these

narrowed axon initial segments (Figure 5B). The spinal motoneu-

rons, which were previously shown by intracellular recording to

The Evolution of Axonal Excitozones
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Figure 2. Phylogenetic analysis reveals that anchor motifs evolved sequentially in chordates (NaV channel) and jawed vertebrates
(KCNQ2/3). (A) Phylogram (minimal evolution) of NaV channels, showing that all vertebrate channels are derived from chordate NaV1. The branch
on the phylogram in which the anchor motif first evolved is shown in red. Key nodes, associated with gene duplications, have red dots. Nodes are
labeled with bootstrap values. (B) Alignment of NaV channel DII–DIII loop sequences, showing presence of anchor motifs in chordate NaV1 and all
vertebrate channels (below dotted red line). The anchor motifs are boxed (red). Shading indicates each residue’s conservation within the aligned 28
NaV sequences: bins represent #10, 11–20, 21–30, 31–45, 46–60, and 61–100% conservation. (C) Phylogeny of KCNQ channels, based on analysis of
amino acids encoded on exons 5–7. Novel genes identified or cloned in this study are highlighted (named in red) As in A, key nodes associated with
gene duplications are highlighted with red dots, and branch marking the inferred first appearance of the anchor motif is shown in red. (D) Alignment
of KCNQ2 and KCNQ3 C-terminal intracellular sequences near the anchor motifs. Break (vertical black line) indicates location of 5–8 omitted, poorly
conserved residues. The KCNQ2/3 anchor motif (red boxed region) is similar but non-identical to that of chordate NaV genes. Otherwise no homology
to the NaV DII–DIII loop sequence shown in B is evident. Shading indicates conservation within the 7 KCNQ sequences aligned: shades represent#15,
15–30, 31–45, 46–60, 61–75, 76–90, and 91–100% conservation. (E–F) Aligned sequences at key functional sites for genes compared phylogenetically
in C. Shading: grey, conserved in all KCNQ subunits; yellow, conserved in jawed vertebrate KCNQ1 subunits; red, conserved in jawed vertebrate
KCNQ2-5 subunits. (E) Peptide sequence at the border of the S4-5 pore linker and the S5 pore helix, including (in KCNQ2-5 orthologues) the W
residues required for retigabine interaction. (F) A portion of the tetramerization, or subunit interaction, domain. Scale bars: substitutions per residue.
doi:10.1371/journal.pgen.1000317.g002
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initiate APs in their proximal axons [57], also exhibited patches of

clustered NaV channels at the beginning of narrowed AISs

(Figure 5C–D). These membrane specializations, combining

morphological narrowing with a high density of immobilized

NaV channels, would be expected to create a zone of high

excitability. However, in both these neuronal types, morphological

AIS narrowing was considerably lengthier than the location where

channels were found at high density. Lamprey dorsal interneurons,

which were shown in classical anatomical studies to lack severe

narrowing at their bipolar AISs, nonetheless showed intense NaV
channel labeling at these sites (Figure 4Bi). Numerous other AIS-

like profiles were seen in spinal cord (Figure 4Bii) and brain (data

not shown). The lamprey lineage is basal to a large diversity of

jawless fish taxa that, though now extinct, flourished in the

Ordovician, Silurian, and Devonian Periods [50,58]. Our

molecular phylogenetic and immunostaining results suggest that

in these early Paleozoic vertebrates, NaV channel clustering was

widely deployed as the mechanism for rapid AP initiation in the

proximal axon.

Invertebrates Possess KCNQ1 and KCNQ4/5-Like
Channels That Lack Anchor Motifs
Although the five mammalian KCNQ genes are paralogues,

only KCNQ2 and KCNQ3 genes possess anchor motifs (reference

[20] and Figures 1B–C, 2C–D). Therefore, these motifs either

evolved in an earlier KCNQ common ancestor gene, but were lost

subsequently by evolution of KCNQ1, KCNQ4 and KCNQ5, or

appeared first in a gene ancestral only to KCNQ2 and KCNQ3.

To delineate evolutionary relationships among the KCNQ

channels and the origin of the KCNQ2/KCNQ3 anchor, we

reconstructed KCNQ phylogeny from known invertebrate and

vertebrate sequences, as well as novel KCNQ sequences we

identified from three basal chordates (C. intestinalis, C. Savigyni, B.

floridae), a jawless fish (P. marinus), and a cartilaginous fish (the

elephant shark, Callorhinchus milii). Mammalian KCNQ genes

possess critical sites that confer distinctive capacities for tetra-

merization and drug sensitivity on non-neuronal (KCNQ1) and

neuronal (KCNQ2-5) subunits (Figures 1C, 2C–F). We traced the

evolutionary emergence of these sites and the anchor motif in

parallel with computational phylogenetic analysis of subunit amino

acid sequences.

Residues within an intracellular subunit interaction domain (SID)

unique to the KCNQ channels (Figures 1C, 2F) dictate

tetramerization rules, preventing cross-tetramerization between

KCNQ1 and KCNQ2-5 subunits, and allowing some but not all

combinations of KCNQ2-5 to co-assemble [59,60]. Invertebrate

KCNQ sequences fell into two groups, one with SID sequences

like mammalian KCNQ1 (honey bee Apis mellifera KCNQ,

Caenorhabditis elegans KQT-3, and C. intestinalis KCNQ1)

(Figure 2F, yellow shading) and the other with sequences

intermediate between KCNQ1 and the mammalian neuronal

KCNQs (e.g., D. melanogaster KCNQ, C. elegans KQT-1, and the

beetle Tribolium castaneum KCNQ). Opening of mammalian

KCNQ2-5 channels by retigabine, an anticonvulsant, is associated

with a conserved sequence (TAW) at a critical position within the

S5 transmembrane helix that links voltage-sensor movement to the

channel pore [61–63] (Figures 1C, 2E). In mammalian KCNQ1

channels, which are retigabine-insensitive, the TAW-equivalent

position residues are TTL (Figure 2E, yellow shading). All non-

chordate KCNQ genes we identified had KCNQ1-like pore-linker

sequences; none had the W residue obligatory for retigabine action

(Figures 2E–F). C. elegans possesses at least two functional KCNQ

subunits, one a clear orthologue of vertebrate KCNQ1, the other

grouped with chordate KCNQ2-5 genes (Figure 2C) [64]. This

indicates that two ancestral KCNQ1 and non-KCNQ1 genes

arose by duplication early in metazoan evolution, before the last

common ancestor of arthropods, nematodes, and chordates. Non-

chordate KCNQ genes most closely related to mammalian

Figure 3. The NaV channel DII–III intracellular loop is poorly conserved in invertebrates lacking the anchor motif, and highly
conserved in vertebrates. (A) Plot showing lengths of DII–III loop sequences of NaV channels, deduced from cDNA clones. Stick bars show range,
grey boxes show 2nd and 3rd quartiles, and red diamond shows average length. Black diamonds show lengths of loops from species indicated. (B–D)
Cartoons depicting the degree of sequence conservation and exon borders (red bars) of orthologous NaV channels from D. melanogaster (para), C.
intestinalis (Nav1), and H. sapiens (Nav1.1) in the region between D II S6 and DIII S1. Each shaded circle is one amino acid. In non-chordates (e.g., fly),
the transmembrane and very membrane-proximal portions of the intracellular loop show high conservation with vertebrates, but the remainder of
the loops are poorly conserved in sequence and length. In protochordates (e.g., C. intestinalis), a series of highly conserved residues (VPIAAIESDLDN,
residues labeled) appears on a short, novel exon (red line in C); the rest of the loop is poorly conserved like other invertebrate genes. However, the
mean length of the 4 known protochordate NaV1 loops is nearly identical to those of vertebrates. Among vertebrate genes (e.g., human Nav1.1), the
entire loop is more highly conserved, and has a simplified exon structure, with the anchor motif part of the same, exceptionally long exon as the
conserved DII6 transmembrane segment. The shading scheme is based on alignment of the indicated sequence and six vertebrate NaV channel
sequences. Shading scale represents, from darkest to lightest, matching of 5–6 of 6, 3–4 of 6, 2 of 6, and 0–1 of 6 vertebrate sequences.
doi:10.1371/journal.pgen.1000317.g003

The Evolution of Axonal Excitozones

PLoS Genetics | www.plosgenetics.org 5 December 2008 | Volume 4 | Issue 12 | e1000317



The Evolution of Axonal Excitozones

PLoS Genetics | www.plosgenetics.org 6 December 2008 | Volume 4 | Issue 12 | e1000317



Figure 5. Lamprey motor system axons have narrow initial segments with NaV channels clusters. (A) Detail of lamprey left
rhombencephalon region whole mount showing large reticulospinal Mauthner (Mth) and Müller (Mu) neurons, backfilled via their spinal axons by in
vivo FITC-dextran injection (green), then fixed and immunostained against NaV channels (mouse Pan NaV, red). AISs of two Mth and Mu neurons are
marked (arrowheads). (B) Higher magnification view of red-boxed region in A, showing NaV channel immunolabeling at membrane of Mauthner
neuron AIS. (C) Lamprey spinal cord whole mount showing several motoneurons filled in vivo via their distal axons with FITC-dextran (green), then
fixed and immunostained against NaV channels (red). (D) Higher magnification view of red-boxed region in C, showing dense clustering of NaV
channels at narrow proximal AIS of a motoneuron axon. Scale bars: 40 mm (A), 10 mm (B), 20 mm (C), 10 mm (D).
doi:10.1371/journal.pgen.1000317.g005

Figure 4. NaV immunostaining of lamprey brain and spinal cord reveals linear profiles similar in appearance to mammalian AISs. (A)
Transverse cryosection through lamprey spinal cord immunolabeled for NaV channels (yellow). Nuclei are stained using DAPI (blue). Large distal
Müller and Mauthner axons show little NaV channel membrane immunolabeling, but small intensely labeled profiles have morphology suggestive of
AISs, and are clustered near the motor column. Red lines and box indicate approximate location, plane and orientation of adjoining higher
magnification horizontal (Bi, Bii) and transverse (Biii) section images. (Bi) Dorsal sensory neuron, with a bipolar axon. Both rostral and caudal axon
branches show increased NaV channel immunolabeling in their proximal portions (arrows). (Bii) AIS-like profiles are abundant in oblique horizontal
sections near grey matter. (Biii) Higher magnification view of AIS-like NaV channel immunostaining near motor column in spinal cord cross-section. (C)
Low power view of lamprey rhombencephalon in whole mount. Reticulospinal neurons have been back-filled via their large descending axons.
Somata, narrowed initial segments, and large distal axons of Müller and Mauthner cells are indicated. Box encloses the location shown at higher
magnification in panel D. (D) Widefield epifluorescence image of lamprey rhombencephalon whole mount showing soma and AIS of Mauthner
neuron immunolabeled for NaV channels (yellow). Scale bars: A, 125 mm; Ai, 20 mm; B, Bi, Bii, 25 mm, Biii, 12.5 mm.
doi:10.1371/journal.pgen.1000317.g004
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KCNQ2-5 have a similar tetramerization domain, but lack

residues critical for retigabine modulation and the distal C-

terminal domain that contains the anchor motif (Table S2).

C. intestinalis KCNQ4/5 Has Many Properties
Characteristic of Vertebrate KCNQ2-5 Subunits, but Lacks
an Anchor Motif
We cloned C. intestinalis KCNQ1 (GenBank FJ461775), and one

additional gene, previously called Ci KCNQ2/3/4/5 [43], but

more closely related to vertebrate KCNQ4/5 than KCNQ2/3

genes (Figures 2C, S4, S6). Ci KCNQ4/5 (GenBank FJ461778)

possessed a pore-linker region of identical sequence to vertebrate

KCNQ2-5 subunits, including the W required for retigabine

action (Figure 2E). In situ hybridization revealed, remarkably,

widespread expression of C. intestinalis KCNQ1 in central and

peripheral neurons (Figure 6A–C). Ci KCNQ4/5 was conspicu-

ously detected in the developing notochord, but showed minimal

neuronal expression (Figure 6D–F). Ci KCNQ1 expressed

robustly in Xenopus oocytes, generating non-inactivating currents

with slow activation and deactivation (Figure 7A). Ci KCNQ4/5

also expressed currents, though at low levels only slightly above

background (Figure 7B, 7E). Although mammalian KCNQ3 is

unable to traffic to the cell membrane when expressed alone in

these oocytes, mammalian KCNQ2, KCNQ4 and KCNQ5 can

co-assemble with KCNQ3 to form heteromeric channels that

traffic to the surface and conduct very robustly [65]. Ci KCNQ4/

5 possesses a neuronal-type tetramerization domain (Figure 2F),

and its ability to conduct was increased several-fold by coexpres-

sion with mammalian KCNQ3 (Figure 5). Such coexpression also

right-shifted and steepened voltage-dependence (compared to Ci

KCNQ4/5 alone, Figure 7D, F–G), indicating that Ci KCNQ4/5

can co-assemble with mammalian KCNQ3 via a functional

KCNQ2/3/4/5-type tetramerization domain. Thus Ci KCNQ4/

5 shares ancestry with mammalian neuronal KCNQ2-5 subunits

and exhibits functional features characteristic of those subunits,

even though Ci KCNQ1 is the predominant KCNQ channel in C.

intestinalis neurons. Searches of the amphioxus genome database

also revealed fragments of 2 KCNQ genes, KCNQ1 and

KCNQ4/5-like (Table S1), but both these genes and the entire

amphioxus genome lack sequences encoding a KCNQ-type

anchor domain. In cephalochordates and tunicates, the KCNQ

gene divergence leading towards the KCNQ2/3 genes had begun,

but remained incomplete.

The KCNQ2/3 Anchor Is a Shared Feature of Extant Jawed
Vertebrates
In addition to KCNQ1, the genome of the lamprey P. marinus

contains sequences suggesting the existence of four other KCNQ

genes (Figure 8B; Table S2). Each possesses TAW sequences

associated with retigabine sensitivity and non-KCNQ1-type SID

regions mediating tetramerization (Figure 8, Figure 2E–F). We

cloned brain cDNAs encoded by two of these genes (Figure S5).

Phylogenetic analysis revealed these cloned cDNAs (GenBank

FJ461777 and FJ461776) to be likely orthologues of KCNQ4 and

KCNQ5 (Figure 2C, Supplementary Figure 6). Phylogenetic

analysis of predicted polypeptide sequences indicated that the two

remaining genes were most closely homologous to KCNQ4

(Figure 2C). Attempts to obtain cDNAs for these additional genes

were unsuccessful, suggesting either developmentally or spatially

restricted mRNA expression, or that they may be variant KCNQ4

alleles (heterozygosity in individual lamprey is reported to be very

high, [66]). Nonetheless, sequence encoding a KCNQ-type anchor

motif is absent from these predicted genes and from the entire

5.96-redundant lamprey genome database. By contrast, although

only sequenced to 1.46 redundancy (estimated 75% coverage)

[67], the elephant shark genome database contains an exon

encoding one KCNQ2/3 anchor motif and nearby conserved

residues (Figures 2D and S7), and pairs of exons that appear

orthologous to vertebrate KCNQ2 and KCNQ3 genes, respec-

tively (Figure 8C and Table S3).

The NaV and KCNQ Anchor Motifs Appear To Be
Topologically Analogous
In the chordate NaV1 and co-orthologous vertebrate NaV

genes, anchor motifs lie in the sodium channel intracellular loop

between homologous domains II and III, at a highly conserved

distance from the DIII S1 (,9763.1 residues) and DII S6

(11367.9 residues) transmembrane segments (Figure S2, see

Methods). The KCNQ2 and KCNQ3 anchor motifs are about

450–500 residues distant from the end of the S6 membrane helix.

Figure 6. C. intestinalis KCNQ1 is more prominently expressed in neurons than is KCNQ4/5. Subunit mRNA expression was detected using
whole mount in situ hybridization. Animals were allowed to develop at 18uC for the indicated times after fertilization in vitro, then labeled with
antisense RNA probes for C. intestinalis KCNQ1 (A–C) or C. intestinalis KCNQ4/5 (D–F), and stained using NBT/BCIP. (A) At 10.5 hours post-fertilization,
a pair of tail dorsal midline neurons are stained (arrowhead). (B) At 11.6 hours post-fertilization, numerous dorsal and ventral epidermal sensory
neurons in tail and trunk (arrowheads, left), and labeling of the cerebral ganglion (right), is apparent. (C) At 17.2 hours post-fertilization, continued
staining of central and peripheral neurons of free swimming larva is apparent C1. Strong staining of caudal portion of cerebral ganglion (arrowhead).
C2. Staining of epidermal sensory neurons (arrowheads). (D) At 10.5 hours post-fertilization, KCNQ4/5 staining is strongly apparent in the notochord,
but absent from central and peripheral neurons. (E) At 11.6 hours post-fertilization, strong notochord staining persists, and weaker staining of ventral
cerebral ganglion is detectable. (F) At 15.5 hours post-fertilization (immediately before hatching), weak staining is detected in the posterior-ventral
half of the cerebral ganglion. eTB, early tailbud; mTB, mid-tailbud; lTB, late-tailbud; hL, hatched larva. Scale bar, 100 mm.
doi:10.1371/journal.pgen.1000317.g006
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However, approximately the first 300 of these residues are

believed to have a compact ternary structure near the membrane

(Figure S7), based on mapping of conserved adjoining regions for

interaction with the membrane lipid phosphatidyl inositol 4,5

bisphosphate and calmodulin, and for subunit interaction [59,68–

70]. Among 16 vertebrate KCNQ2 and KCNQ3 subunits, the

polypeptide portion between the SID end, and the start of the

conserved domain containing the anchor motif, has low sequence

conservation and no known function, but a conserved length of

12967.5 residues (Figure S7). This is similar to the conserved

distance between the membrane and anchor motifs in NaV
channel polypeptides. Thus, NaV, KCNQ2, and KCNQ3 channel

anchors appear to have ‘‘mooring lines’’ of similar, conserved

length, allowing them to access ankyrin immobilized below the

membrane surface (Figure 1B).

Discussion

In many mammalian neurons, clustering of ion channels at the

AIS and nodes of Ranvier is the basis for rapid, reliable, and

precisely-timed action potential initiation and conduction [3,11–

14]. Our investigation of the evolutionary origin of this clustering

yielded three main findings (Figure 9). First, evidence of

inheritance of the NaV channel anchor motif is present in the

earliest-diverging extant chordate (amphioxus), as well as in

multiple ascidians, indicating this motif appeared at least before

the last common ancestor of living chordates, in the early

Cambrian Period. Second, clustering of NaV channels at narrow

AISs is present in lamprey, an early agnathan, indicating that this

specialization mediating AP initiation was present long before

myelin and nodes of Ranvier evolved. Third, signals for clustering

KCNQ channels appeared considerably later than in NaV
channels, after sequential gene duplications that first yielded

KCNQ4 and KCNQ5, then the inferred common ancestor gene,

KCNQ2/3. The KCNQ2/3 gene appears absent in lamprey. In

shark–the next available model organism after lamprey and

earliest of extant jawed vertebrates–KCNQ2 and KCNQ3

paralogues are both present. Thus, the NaV and KCNQ anchors

both evolved in recently duplicated genes (Figure 2; Figure 9, red

arrows), exemplifying the important principal that relaxed

selection experienced by paralogues after their birth affords

transient opportunity for evolutionary innovation [72,73]. The

specific evolutionary mechanisms in evidence include both

subfunctionalization (i.e., the restriction of expression of duplicated

channel genes to neural and non-neural cells) and neofunctiona-

lization (i.e., the evolution of new intracellular domains bearing

the anchor motifs) [74].

Multiple Functions of NaV-Ankyrin Interaction: Inward
Current Density Elevation, Capacitance Reduction, Cell
Polarization
Ankyrins have earlier-evolved roles on axons, predating the

divergence of arthropods, nematodes, and chordates, which,

though incompletely understood, include the mediation of L1-

family cell adhesion molecule (L1-CAM) signals for pathfinding,

cell-cell interaction, and synaptogenesis [75–78]. L1-CAMs of fly,

worm, and vertebrates share a conserved intracellular ankyrin-

binding motif, FIGQY, required for these functions. C. intestinalis
possesses one ankyrin gene, ancestral to the three vertebrate

ankyrin paralogues [45,79]. The evolutionary co-optation of

Figure 7. C. intestinalis KCNQ4/5 gives small currents in Xenopus oocytes, but forms heteromers with mammalian KCNQ3 that
express more efficiently. (A) Family of large KCNQ1 currents elicited by voltage steps. (B) Family of small C. intestinalis KCNQ4/5 currents elicited
by voltage steps. (C, D, F, G, H) Co-expression of C. intestinalis KCNQ4/5 with rat KCNQ3 results in expression of heteromeric currents with altered
kinetic properties. Expression of rat KCNQ3 only resulted in currents (not shown) undistinguishable from uninjected oocytes (E). Co-expression of C.
intestinalis KCNQ4/5 with rat KCNQ3 produced currents that were larger in amplitude than C. intestinalis KCNQ4/5 alone (C, F), activated at more
depolarized membrane potentials (D, G), and had steeper voltage-dependence (H).
doi:10.1371/journal.pgen.1000317.g007
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axonal L1-CAM/ankyrin/spectrin/actin complexes for clustering

of NaV channels resulted in several new advantages. Because rapid

AP propagation depends on a low ratio of membrane capacitance

to axial conductance, invertebrates lacking myelin rely on large

diameter axons to increase conductance speed [3]. However,

initiation of APs in such giant axons is necessarily slowed, since the

rate of depolarization from rest is dependent on membrane

capacitance, and therefore, axonal circumference at the initiation

site. The spectrins are large, extensible molecules that can be

linked into a submembranous network by short filamentous actin

hubs [15,80]. Where NaV channels are linked by dense spectrin-

actin networks, local inward conductance density can be very

markedly elevated [13]. Furthermore, spectrin behaves as a

molecular spring that preferentially adopts conformations about

half its fully extended length, a property which contributes to

erythrocyte mechanical resiliency [80]. At nodes of Ranvier,

spectrin shortening appears to function like a corset, constricting

the diameter overlying axonal membrane [16], simultaneously

reducing the total membrane capacitance and increasing channel

density. Placing this molecular complex in the AIS provides very

rapid depolarization at this location, and thus, precise spatiotem-

poral control of initiation [14]. Finally, in erythrocytes, epithelial

cells, and mammalian axons, actin-spectrin networks and ankyrin-

bound transmembrane proteins form a dense barrier that retains

proteins bound within and excludes non-bound proteins, thereby

helping maintain subcellular domains containing distinctive

populations of proteins and lipids [15,81]. Thus, achieving

strongly preferential AP initiation at the AIS through this

mechanism divides the neuron into distinct upstream (somatoden-

dritic) and downstream (axonal) domains, both morphologically

and functionally [13,14].

Voltage-Gated Sodium Channel Clusters as ‘‘Excitozones’’
In clarifying the evolutionary relationship between channel

clustering at the AIS and at the unmyelinated gap in the node of

Ranvier, our studies highlight the need for clearer distinction

between the membrane-associated protein complexes themselves

and these two axonal subcellular domains. Although NaV channel-

interacting complexes are conspicuous at vertebrate AISs and

nodes, these subcellular locations contain multiple additional

components (e.g., AISs have synapses, fasciculated microtubules,

and cisternal organelles; nodes have paranodal septate-like

junctions, etc.). Also, NaV channel complexes have recently been

found in mammals at sites of AP initiation and reinitiation other

than AISs and nodes, including at the afferent endings of sensory

nerve fibers, the dendrites of olfactory bulb neurons, and cell-cell

junctions in cardiomyocytes [33,82,83]. Finally, the axons of

protostomes must possess a point of origin, and thus have ‘‘axonal

initial segments.’’ Because discussion is hampered by lack of

adequate terminology, we suggest that this crucially important,

chordate-specific membrane-associated complex, i.e., NaV chan-

nels clustered via ankyrin and cytoskeletal interaction, be called

the excitozone, which is succinct. The excitozone is a not a

particular subcellular domain, but a modular (and therefore,

scalable and pluripotent) membrane-cytoskeletal assemblage,

deployed at a variety of locations on vertebrate (and, possibly,

invertebrate chordate) excitable cells for AP generation and

regeneration.

Figure 8. The KCNQ ankyrin-interaction domain evolved in the transition between ancestral jawless and jawed vertebrates. (A)
Human (H. sapiens, Hs) KCNQ2 exon structure, numbered based on previous reports [107]. Grey boxes indicate locations of functionally conserved
domains (6TM, the six transmembrane segments and pore region; CaM, the discontinuous calmodulin-binding IQ domain; sid, the subunit interaction
domain mediating tetramerization; ank, the conserved domain containing the ankyrin-interaction motif). (B) Diagram summarizing lamprey (P.
marinus, Pm) KCNQ genomic analysis and cDNA cloning indicating that lampreys possess KCNQ1, KCNQ5, KCNQ4, and, possibly, two additional
KCNQ4-like genes. Exons (renumbered as indicated) linked in silico by overlapping of genomic sequencing traces are shown in identical colors. Exons
linked by cDNA cloning are connected by heavy black bars. Unlinked exons are shown in white. Two different exon 1 traces had start codons that
could not be determined (due to poor conservation, dotted borders). KCNQ1 exons were confirmed by reciprocal BLAST analysis versus vertebrate
and invertebrate genomes. Five different non-KCNQ1 39 exons (exon 13) were identified; two were represented in the genomic traces by sequences
with different stop codon positions (asterisks). This may be the result of heterozygosity in the source genomic DNA [66]. (C) Diagram of shark (C. milii,
Cm) KCNQ gene family as elucidated from the partially sequenced genome. Exons containing orthologues of mammalian KCNQ1 through KCNQ5,
identified by reciprocal BLAST search, are indicated. One trace contained the ankyrin binding domain (distal exon 13 region) of KCNQ3.
doi:10.1371/journal.pgen.1000317.g008
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Why Do NaV and KCNQ2/3 Channels Bear Similar Anchor
Motifs?
Although the NaV and KCNQ2/3 anchor sequences are very

similar, they are non-identical. Within the motifs, 7 of 10 residues

implicated in ankyrin interaction are shared [17,18,20]. These

motifs are contained within longer sequences that are highly

conserved within the respective vertebrate NaV and KCNQ2/

KCNQ3 genes, but completely distinctive between the two

channel families (Figures 2B, 2D, S2, S7). Three mechanisms

might allow KCNQ genes to acquire anchors subsequent to the

appearance of similar motifs in NaV channels: transfer of the NaV
sequence by retrotransposition and subsequent divergence,

transfer without retrotransposition (e.g., exon shuffling) and

divergence, or convergent evolution [84]. The first two mecha-

nisms would make the NaV and KCNQ anchors homologous, i.e.,

derived from common ancestral DNA. Under the third, the motifs

would be independently evolved, i.e., analogous or homoplasic.

KCNQ2 and KCNQ3 gene sequences encoding the anchors lie

near the 39 end of exceptionally long exons (Figure 8, Supple-

mentary figure S7). Because the 59 portions encode subunit

interaction domain sequences absolutely required for channel

function [59], these exons cannot be lost, but their 39 vary widely

in sequence and length in KCNQ4 and KCNQ5 genes. By

mutation, the inferred common ancestor gene, KCNQ2/3, might

have acquired a sequence weakly analogous to the NaV anchor at

the 39 end of this obligatory exon, causing these channels to first be

retained at excitozones. Natural selection based on the physiolog-

ical advantages conferred by colocalization of NaV and KCNQ

channels, and partial sequence convergence, is a plausible

alternative mechanism to transfer of the preexisting NaV motif

and divergence. Although examples of functional convergence are

common in biology, we are unaware of convergence between

unrelated proteins occurring simultaneously at the level of amino

acid sequence, molecular mechanism, localization, and function

[36], as may have occurred in this instance.

Each ankyrin-G molecule possesses one docking site for

interaction with the NaV anchor motif [33]. The high sequence

similarity in KCNQ and NaV anchors suggests they compete for

these ankyrin-G sites, thereby conferring precise control of the

number and ratio of the two channel types at AISs and nodes.

Voltage-clamp studies show a 40:1 ratio of NaV and KCNQ

conductance at mammalian peripheral nodes of Ranvier [85].

However, because KCNQ channels have a higher open

probability than transient NaV channels in the voltage range

between resting membrane potentials and AP threshold, and close

very slowly once opened by depolarization, a small proportion of

KCNQ channels can significantly dampen excitability [25,27,86].

The mechanism setting the excitozone NaV:KCNQ channel ratio,

and its potential for plasticity, deserves further study. The critical

importance of this ratio is illustrated by mutations that disrupt the

function of the AIS-localized NaV and KV channels in humans

and transgenic mice, causing conspicuous neurological pheno-

types: myokymia, neuromyotonia, episodic ataxia, and epilepsy

[24,29,87–90].

Figure 9. Anchor motifs evolved sequentially in NaV and KCNQ channel families. Diagrams summarize the evolutionary history of KCNQ
channels (left), NaV channels (right), and their anchor motifs. In each gene family, three steps are highlighted: (step 1, red arrows) gene duplication
preceding appearance of the anchor, (step 2, blue arrows) evolution producing the anchor motif, and (step 3, green arrows) additional duplication
resulting in parologues conserving the motif. Representative species studied are listed in the center. Genes possessing anchor motifs are shaded grey.
The NaV channel motif arose before the common ancestor of amphioxus and tunicates. In KCNQ channels, an inferred KCNQ2/3 gene acquired the
motif, after lamprey but before the duplication producing shark KCNQ2 and KCNQ3. Where 3 or more genes are shown arising from an ancestor
gene, an unresolved sequence of gene duplications (i.e., polytomy) is present. Genes apparently lacking orthologues in more recently evolved phyla
are indicated by asterisks. Genes identified genomically without cDNA confirmation have dashed border boxes. Lamprey KCNQ4a/b genes are drawn
lightly, indicating their uncertain status (see Results). Shark NaV genes (not characterized in this study) are omitted. Hox-linked vertebrate NaV genes
underwent lineage-specific genome duplications, as indicated by boxed gene groups. Associated hox clusters are labeled [44,48]. Ankyrin interaction
with L1 CAMs on axons evolved before the deuterostome-protostome divergence [75–78].
doi:10.1371/journal.pgen.1000317.g009
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The Excitozone and the Divergence and Success of
Vertebrates
The excitozone has evolved, in its components, cellular

distribution and function, in parallel with the chordates. The

localization of NaV channels in B. floridae and C. intestinalis neurons

is unknown. Recent morphological studies have shown that many

of the neurons of C. intestinalis have polar morphology of the

vertebrate type, with long, branched dendrites or afferent endings

that converge upon somata, and a single axon arising from the

soma and innervating the efferent targets [91] (i.e., Figure 1A,

though without myelin). However, no C. intestinalis neurons exhibit

conspicuously narrowed AISs [91]. Although rapid conduction

may not be required given the small size (,1 mm) and relatively

modest behavioral repertoire of short-lived (1 day) planktonic C.
intestinalis larvae, it will be interesting to learn if excitozones

contribute to AP initiation, either in sensory afferents or efferent

AISs. Compared to C. intestinalis larvae, ancient jawless fish were

larger and longer-lived, and engaged in far more rapid and

complex behavior [92]. The presence of both NaV channel

clustering and axonal diameter narrowing at AIS in lampreys,

extant representatives of a very basal jawless vertebrate group,

indicates that these AP initiation mechanisms were well-estab-

lished during the Ordovician through Devonian agnathan heyday.

Sharks and other jawed fish possess myelin, and co-clustered

spectrin and NaV channels have been demonstrated at teleost

nodes of Ranvier [93]. Our phylogenetic evidence strongly

suggests the additional presence of KCNQ channels. Although

only the inferred ancestor gene KCNQ2/3 evolved an anchor

motif so similar in sequence to that of NaV channels, further

studies will likely show how other channels and regulatory proteins

resident in or interacting with mammalian excitozones (e.g.,

MAGUKs, Kv1 channels, Ik-Ba, see [11,94–96]) evolved their

own localization mechanisms. Analysis of fossil cranial nerve

foramina suggests that rapid saltatory conduction probably

appeared in the interval between armored but jawless, primarily

bottom-feeding osteostraci and predatory placoderms with hinged

and toothy jaws [51,58]. Although many issues remain for future

work, it is already apparent that the intricately interwoven

structure and mechanisms of the vertebrate myelinated axon

illustrates not irreducible complexity, but instead, the outcome of a

series of incremental evolutionary steps.

Thus, our findings indicate that the clustering of NaV channels

on early chordate axons was a pivotal innovation, preceding and

making possible the subsequent evolution of mechanisms for

compact, energetically-efficient, rapid, and reliable AP initiation

and conduction deployed by all extant jawed vertebrates [3,14].

This conclusion represents an addendum to the influential ‘‘new

head’’ hypothesis linking neural crest and ectodermal placode

evolution to vertebrate origins and success [92,97,98], comple-

menting ongoing studies of systems level morphological reorgani-

zation and its genetic control [99,100] with a new focus on

subcellular, intrinsic, neuronal electrical signaling. The new head

required more elaborate mechanisms for sensation (e.g. eyes and

ears), neural computation, and behavior (e.g., improved motor

control and jaws). Evolution and deployment of the excitozone

proceeded in parallel with and enabled a cascade of related

changes integral to the new head. Localizing preferential AP

initiation to a single neuronal site at the AIS conferred new

polarity, uniformity, and robustness to signaling by individual

neurons [13,14]. This reorganization of the neuron ultimately

allowed for signaling both by active dendritic AP back-propaga-

tion and axonal saltatory conduction. Integration of such neurons

in larger networks of interconnected circuits made possible the

more diverse, active, and sometimes predatory behavior of

vertebrates, and a new ecological order [101]. This view of the

excitozone, as an evolutionary ‘‘watershed’’ [102,103], can be

tested by further analysis of the distribution and function of

excitozones in basal chordates and vertebrates.

Methods

Identification of NaV and KV Channel Sequences
Complementary DNAs for C. intestinalis KCNQ1 and KCNQ5

clones were amplified by a combination of PCR, 39 RACE, and 59

RACE, using a full-length cDNA pool derived from hatched

larvae. To identify KCNQ channel sequences, the P. marinus

NCBI WGS trace archive and Ensembl Pre assembly were

searched using mammalian and C. intestinalis KCNQ channel

sequences. To identify NaV and KCNQ sequences from S.

purpuratus (sea urchin), B. floridae (amphioxus), and Callorhinchus milii

(elephant shark), databases at NCBI and the Elephant Shark

Genome Project website (http://esharkgenome.imcb.a-star.edu.

sg/) were similarly searched. Genomic DNA hits were translated

and aligned using CLUSTAL to identify exon-intron junctions.

In Situ Hybridization and Xenopus Oocyte Expression
Adult C. intestinalis were collected at Nishiura port in Gamagori

(Aichi, Japan). C. intestinalis ova were fertilized in vitro and

subjected to whole mount in situ hybridization, mounted and

imaged under differential interference contrast optic using a Zeiss

Axioplan microscope. Xenopus oocytes were isolated, cRNA

prepared and injected, and two to five days later, two electrode

voltage-clamping was performed as described previously [104].

Immunostaining
Lampreys were obtained from streams feeding Lake Michigan,

and housed and handled according to procedures approved by the

University of Pennsylvania Animal Use and Care Committee.

Lamprey brain and spinal cord cryosections were prepared

without fixation as described previously [20], and stained for

NaV channels using either mouse monoclonal (Sigma) or affinity-

purified rabbit polyclonal (Millipore) antibodies against the

conserved NaV channel DIII–IV intracellular loop. Peptide pre-

absorption control experiments were performed as described

[105]. Prior to whole mount immunostaining, reticulospinal

neurons were backfilled by surgically exposing and transecting

the spinal cord at the level of the 4th gill slit, and inserting a

gelfoam piece soaked in 5% FITC-dextran solution in PBS

(10,000 Da; Invitrogen). Spinal motoneurons were backfilled by

injecting dorsal muscle with FITC-dextran using a 25 gauge

needle. Two to five days later, the central nervous system was

removed, fixed for 30 min using 4% paraformaldehyde, and then

immunostained using the monoclonal antibody, Pan NaV. Stained

samples were imaged by widefield immunofluorescence microsco-

py (Nikon E80i, KE Spot 740 cooled CCD camera and Spot 4.0

software) or confocal microscopy (Leica SP2).

Sequence Comparisons and Phylogeny Construction
Sequences were aligned using the Clustal algorithm using

MEGA V4.0 [106], and adjusted manually. Phylograms and

bootstrap values were calculated using minimal evolution,

maximal parsimony, and neighbor joining algorithms. Calcula-

tions of mean (6S.D.) NaV DII–DIII linker and KCNQ C-

terminal sequence lengths, and distances between transmembrane

segments, tetramerization domains, and anchor motifs, were based

on genes (n = 16, each group) for which cDNA sequences were

available.
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Supporting Information

Figure S1 Alternative algorithms give similar NaV channel

phylogenies. Figure 2A shows NaV channel phylogeny resulting

from minimal evolution algorithm. As shown here, analysis using

maximum parsimony (A) or neighbor joining (B) algorithms results

in very similar phylogenies.

Found at: doi:10.1371/journal.pgen.1000317.s001 (0.20 MB TIF)

Figure S2 Location of anchor motifs in the NaV channel DII–

III intracellular loop. (A) Cartoon showing NaV channel topology.

The four homologous domains (I–IV), each with 6 transmembrane

segments, and the DII–III loop (shaded) are labeled. (B) Sequence

alignment of 12 non-chordate, chordate and vertebrate DII–III

loops. The locations of the conserved distal DII S6, anchor motif,

and proximal DIII S1 segments are indicated.

Found at: doi:10.1371/journal.pgen.1000317.s002 (1.81 MB TIF)

Figure S3 Lamprey AISs are immunolabeled by two different

NaV channel antibodies. (A) Alignment of the sp-19/Pan NaV

epitope used for antibody generation [52,53] with lamprey

sequences. (B) Unfixed transverse cryosection of lamprey spinal

cord, immunostained with affinity purified mouse monoclonal Pan

NaV primary antibodies and Cy3-conjugated secondary antibod-

ies (false colored yellow). DAPI (blue) shows location of cell nuclei

in grey matter region of the cord. (C, D) Monochrome display of

sections processed in parallel, stained using primary antibodies

that were preincubated for 1 hr. with (D) and without (C, same

section shown in color in B) a 25-fold molar excess of the synthetic

peptide immunogen. In D and C (unlike B), image intensities have

been increased linearly and identically to reveal the weakest

detectable staining. As a result, B best shows selective labeling of

putative AISs in locations adjoining neuronal cell bodies, C reveals

saturated AIS profiles and examples of higher-than-background

labeling continuing (in putative axons) beyond AISs, and D shows

that both AIS and weaker axonal labeling is undetectable after

peptide preadsorption. For B–D, mouse primary antibodies were

detected with affinity purified, species preadsorbed Cy3-conjugat-

ed anti-mouse IgG secondary antibodies. (E) Unfixed transverse

cryosection of lamprey spinal cord, immunostained with affinity

purified rabbit polyclonal (sp-19) primary antibodies and affinity

purified, species preadsorbed Cy3-conjugated donkey anti-rabbit

IgG secondary antibodies (false colored yellow). DAPI (blue) shows

location of cell nuclei. AIS profiles identical to those seen using

monoclonal Pan NaV are detected.

Found at: doi:10.1371/journal.pgen.1000317.s003 (1.86 MB TIF)

Figure S4 Sequence alignment of C. intestinalis KCNQ1 and

KCNQ5 with orthologous human genes. Full length C. intestinalis

KCNQ1 and KCNQ5 sequences were obtained by PCR using

primers derived from the partial genomic sequence, followed by 39

RACE and 59 RACE to identify start and stop codons and the

polyA tract. Deduced sequences are shown aligned with human

KCNQ1 and KCNQ5. Locations of functional domains of the

polypeptides are indicated.

Found at: doi:10.1371/journal.pgen.1000317.s004 (0.90 MB TIF)

Figure S5 Alignment of derived sea lamprey and human

KCNQ4 and KCNQ5 polypeptide sequences. (A) Cartoon

depiction exon structure of P. marinus KCNQ4 and KCNQ5,

deduced by cDNA cloning (colored boxes connected by black bars,

limits marked by blue arrows) and genomic contigs (unlinked

exons). (B) Alignment of human and P. marinus genes. Functional

regions are labeled, and limits of cDNA clones are marked by

arrows as in A.

Found at: doi:10.1371/journal.pgen.1000317.s005 (1.34 MB TIF)

Figure S6 KCNQ gene family phylogeny (minimal evolution)

based on analysis of exons 4–14. Nodes are labeled by bootstrap

values, scale indicates changes per residue. The branch on the

phylogram in which the anchor motif first evolved is shown in red.

Nodes associated with gene duplications are indicated by red dots.

Results are similar to those derived from analysis of conserved

exons 5–7 only (shown in Figure 2C). C. intestinalis and P. marinus

KCNQ genes cloned here (red text) appear orthologous to

KCNQ1, KCNQ5, and (P. marinus) KCNQ4.

Found at: doi:10.1371/journal.pgen.1000317.s006 (0.26 MB TIF)

Figure S7 KCNQ exons encoding the C-terminal region begin

with conserved sequence encoding the subunit interaction domain,

but are otherwise poorly conserved in length and sequence except

for the domains of KCNQ2 and KCNQ3 bearing the anchor

motif. Aligned peptide sequences corresponding to the entire 39

coding exons of 15 representative vertebrate and invertebrate

KCNQ genes are shown. Except for the initial ,15 residues

(forming part of the subunit interaction domain), only the distal

domains containing anchor motifs, which are exclusive to jawed

vertebrate KCNQ2 and KCNQ3 sequences (blue lettered

subunits), are conserved. Codon lengths for the exons are given

at bottom right; the 59 portion of sequence for shark is unknown.

Found at: doi:10.1371/journal.pgen.1000317.s007 (2.67 MB TIF)

Table S1 Database of NaV and KCNQ channel genes used in

this study.

Found at: doi:10.1371/journal.pgen.1000317.s008 (0.14 MB

XLS)

Table S2 Lamprey exon sequences identified in this study.

Sequences were identified by BLAST search of the NCBI whole

genome database and Ensembl contig database. Sequences of

exons linked by cDNA cloning, or in silico by genomic DNA

assembly, are enclosed in same-colored boxes.

Found at: doi:10.1371/journal.pgen.1000317.s009 (0.02 MB

XLS)

Table S3 Shark KCNQ channel exon sequences identified in this

study. Sequences were identified by BLAST search of the Elephant

Shark Genome Project (http://esharkgenome.imcb.a-star.edu.sg/)

database. Tentative orthologies were assigned by BLAST of

mammalian database with identified shark exons. Sequences of

exons linked by genomic assembly are enclosed in same-colored

boxes.

Found at: doi:10.1371/journal.pgen.1000317.s010 (0.02 MB

XLS)
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