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The use of focused ion beam~FIB! instruments for device modification and specimen preparation
has become a mainstay in the microelectronics industry and in thin film characterization. The role
of the FIB as a tool to rapidly prepare high quality transmission electron microscopy specimens is
particularly significant. Special attention has been given to FIB milling of Cu and Si in the
microelectronics arena. Although FIB applications involving Si have been extremely successful, it
has been noted that Cu tends to present significant challenges to FIB milling because of effects such
as the development of milling induced topographical features. We show evidence that links the
occurrence of milling induced topography to the severity of redeposition. Specifically, Cu, which
sputters;2.5 times faster than Si, exhibits an increased susceptibility to redeposition related
artifacts. In addition, the effects and the mechanism of Ga1 channeling in Cu is used to illustrate that
Ga1 channeling reduces the sputtering yield, improves the quality of FIB mill cuts, and improves
the surface characteristics of FIB milled Cu. Finally, a technique for improving FIB milling across
grain boundaries or interfaces using ion channeling contrast is suggested. ©2001 American
Vacuum Society.@DOI: 10.1116/1.1368670#

I. INTRODUCTION

In recent years, focused ion beam~FIB! instruments have
become extremely useful in the microelectronics industry.
One of the critical applications of FIB instruments is as a
specimen preparation tool for subsequent analysis in scan-
ning electron microscopy, transmission electron microscopy
~TEM!, scanning transmission electron microscopy, second-
ary ion mass spectrometry, and scanning auger microscopy.
Because of the ubiquitous use of Si-based integrated circuits
~ICs! and the push toward using Cu in IC metallizations,
interest has been directed toward the FIB milling properties
of Si and Cu. It is well known that Si exhibits exceptional
FIB milling properties and that Cu is a bit of a conundrum.
For example, Fig. 1 shows scanning electron micrographs of
the difference in milling properties of FIB milled trenches in
both Cu and Si. Cu milling suffers from severe milling arti-
facts ranging from milling induced topography to severe re-
deposition effects in a confined milling geometry.1 The in-
corporation of Cu as a replacement for Al in the
semiconductor metallization process is in progress. There-
fore, it is of vital interest to investigate the milling properties
of Cu and compare them with the well-behaved milling prop-
erties of Si in order to identify the critical mechanism~s!
responsible for the milling artifacts and determine the opti-
mum sputtering parameters for Cu.

The FIB instrument utilizes a finely focused ion beam
from a Ga1 liquid metal ion source to perform imaging and
milling operations. The interaction of the finely focused ion
beam~FIB! with the target material will produce the ejection
of secondary electrons, secondary ions, and secondary neu-
trals. The ions and neutrals can be ejected as individual at-
oms, molecules, or clusters. The imaging capability of the
FIB allows the use of either the secondary electrons or the
secondary ions for image formation. The milling operations
are achieved through site specific sputtering of the target
material. Since sputtering is the basis for the milling opera-
tions, it is important to understand the ion beam–solid inter-
actions and the sputtering process.

An energetic incident ion, upon impact with a target ma-
terial, will produce a collision cascade in the target material.
If a surface atom receives enough of a normal component of
momentum from the collision cascade to overcome the sur-
face binding energy, the surface atom leaves the surface and
is said to be sputtered. The factors that affect sputtering in-
clude the atomic number, energy, and angle of incidence of
the ion beam, the atomic density of the target, surface bind-
ing energy of the target, and crystallographic orientation of
the target.2

Another particularly interesting capability of the FIB is
that it produces ion channeling contrast in the secondary
electron images for polycrystalline samples.3,4 Ion channel-
ing contrast occurs because the secondary electron yield var-a!Electronic mail: briankempshall@sprintmail.com
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ies as a function of crystallographic orientation within the
sample. Channeling can occur when a crystallographic axis
of a particular grain is aligned with the incident ion beam. As
a result, that grain will appear darker due to a decrease in the
number of secondary electrons that are emitted. An example
of ion channeling contrast is shown in Fig. 2. The Cu grain
on the right appears darker than the Cu grain on the left due
to ion channeling contrast. This work investigates the impli-
cations of the ion channeling behavior applied to the milling
properties of Cu.

II. EXPERIMENT

In order to investigate the effects of ion channeling on the
FIB milling of Cu, a suitable Cu bicrystal was utilized. A Cu
10°/@100# twist bicrystal was mechanically polished using
conventional metallographic techniques to a 1.0mm finish,
and then electropolished with 1:1 mixture of phosphoric acid
and deionized water at 5 V and 2 A inorder to remove any
surface damage. A FEI 200 TEM FIB with a 30 keV Ga1 ion
beam at 1000 pA was used to mill a series of trenches in the
Cu bicrystal on~i! either side of and~ii ! across the 10° twist
grain boundary. Two 5mm35 mm trenches were milled on
either side of the grain boundary and a single 24mm
32 mm trench was milled across the grain boundary at two
different incident ion beam angles. These angles were chosen
to minimize channeling in one grain~reference 0°! and maxi-

mize channeling~a reference of 10°! in the second grain with
respect to the beam direction. Trenches were also milled at
an intermediate angle~reference;5°! to create approxi-
mately even contrast across the grain boundary.

III. RESULTS AND DISCUSSION

The ion channeling contrast showing a distinct change in
Cu milling properties is evident in Fig. 3. Figure 3~a! shows
the sample at 0° tilt with the twist grain boundary delineating
the contrast change in the center of the image. The@100#
direction of the grain on the right-hand side of Fig. 3~a! is
aligned with the ion beam and appears darker than the grain
on the left-hand side. Alternately, in Fig. 3~b! the same
sample is tilted 10° so that the@100# direction of the grain on
the left-hand side is now aligned with the ion beam and
appears darker than the grain on the right-hand side. The flip
flop in contrast is due to the effects of ion channeling
contrast3,4 previously described. The interesting feature to
note in Fig. 3 is the correlation between the ion channeling
contrast and the milling characteristics. When a grain is ori-
ented to the@100# channeling direction, the milling charac-

FIG. 1. Comparison between the FIB milling of Cu and Si using 30 keV
Ga1 ions at 1000 pA.

FIG. 2. An example of ion channeling contrast of a Cu bicrystal in the FIB
using 30 keV Ga1 ions.

FIG. 3. Effects of channeling on the FIB milling of a Cu 10° /@100# twist
bicrystal at~a! 0° tilt and ~b! 10° tilt.
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teristics of the Cu improve as evident by the flat trench bot-
toms and clean trench walls. Conversely, the trench milled in
the grain that is not aligned with the@100# direction has poor
milling characteristics as evident by the rough trench bottom
and the sloped trench wall. Furthermore, it is clearly evident
by the differing depths in the 24mm32 mm trench that the
nonchanneled side of the trench mills quicker than the chan-
neled side of the trench. Since the ion channeling contrast
has been shown to be directly proportional to the sputtering
yield,3 the differences in milling characteristics can be ac-
counted for by looking at the mechanism that affects both the
contrast and the sputtering yield, specifically, channeling.

It has been well established that the sputtering yield is a
function of crystallographic orientation.3–9 As the ion beam
becomes incident in a channeling direction, the sputtering
yield will decrease. The main reason for the decrease in the
sputtering yield is that the channeled ions undergo mostly
electronic energy losses as opposed to nuclear energy losses
and are able to penetrate deeper into the crystal lattice. The
deeper penetration and the lower probability of nuclear col-
lisions near the surface extremely limits the probability that
the ion will cause a collision cascade that will contribute to
the sputtering of surface atoms.TRIM10 simulation plots of 30
keV Ga1 incident ions into amorphous Cu and Si provide a
visual comparison of the effect of the depth of penetration
and resulting depth of the collision cascade as shown in Fig.
4. According toTRIM simulations, the sputtering yield for
amorphous Cu is;2.5 times greater than the sputtering yield
for amorphous Si. This difference is primarily due to the
proximity of the collision cascade to the surface, that is, the
larger number of collisions closer to the surface will enable
more atoms to be sputtered. Since the FIB mills Si relatively
cleanly, it is reasonable to infer that if the sputtering yield
can be reduced in Cu, then it will also mill cleanly in the
FIB. Referring back to Fig. 3, the effects of redeposition are
reduced and the quality of the trenches are improved in the
trenches that are milled in the channeled direction because
the Cu sputtering yield has been reduced through channeling.
Assuming a constant incident ion energy, the actual magni-
tude of the decrease in sputtering yield depends on factors
which include the specific channeling direction, the polished

surface condition of the crystalline target material,7 the qual-
ity of the crystalline target material, and the collimation of
the ion beam. The surface condition, the quality of the crys-
tal, and the beam collimation all tend to lessen the effect of
the decrease in the sputtering yield due to channeling. Since
the surface of the 99.999% pure Cu bicrystal was mechani-
cally polished, electropolished, and subjected to a well de-
fined and collimated focused ion beam, the effects of the
surface condition, crystal quality, and beam collimation on
channeling are negligible in this model.

Using the Lindhard–Onderdelinden5,6 approach for
monocrystalline sputtering, the channeling directions and
critical angles are calculated for 30 keV Ga1 into Cu using
the following seven equations as applied by Palmeret al.8

The channeled sputtering yieldYuvw is related to the amor-
phous sputtering yieldYamorph with the nonchanneled frac-
tion xuvw and a fitting parameterhhkl as shown in Eq.~1!:

Yuvw5hhklxuvwYamorph. ~1!

The amorphous sputtering yieldYamorph is dependent on the
angle of incidenceu and the energy of the incident ionE.
The nonchanneled fractionxuvw is just the statistical fraction
of the beam that contributes to sputtering in the axial chan-
neling direction and is dependent on the critical channeling
anglecc and the incident ion energyE. The fitting parameter
hhkl will be assumed as unity in order to analyze just the
channeling effects. According to the Lindhard–
Onderdelinden approach, the non-channeling fraction at nor-
mal incidencexuvw

0 can be calculated using the Thomas–
Fermi potential for the ion–atom interaction as shown in Eq.
~2!:

xuvw
0 5pNtuvw

3/2 F 3A2Z1Z2S e2

4p«0
D

E
G 1/2

. ~2!

The distance between atom positions along the index direc-
tion @uvw# is tuvw . The elemental chargee is 1.60
310219C and permittivity constant «0 is 8.85
310212C2/N*m2. The nonchanneled fraction depends on
both the atomic densityN and the atomic numberZ2 of the
target material, the atomic numberZ1 and energyE of the
incident ion, and the Thomas–Fermi screening lengthA
shown in Eq.~3!. ~Note again that this model neglects the
effects of planar channeling.!

A5

S 9p2

128D
1/3

3a0

~Z1
2/31Z2

2/3!1/2. ~3!

The Thomas–Fermi screening lengthA depends on the
atomic number of both the incident ion and the target mate-
rial Z1 andZ2 and the Bohr radiusa0 .

a05
\2

me

e2

4p«0

50.529177 Å. ~4!

FIG. 4. TRIM simulation plots of 30 keV Ga1 into both Cu and Si showing
the differences in the size of the collision cascade and the depth distribution
of Ga ions.
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Plank’s constant divided by 2p \ is 1.05310234J*s and the
mass of the electronme is 9.11310231kg. With the estab-
lishment of the nonchanneled fraction at normal incidence
xuvw

0 the channeling directions can be calculated for a given
energetic incident ion and a target material. Next, the angular
width of the channeling directions, called the critical angle
cc , can be calculated.

cc5F 3A2Z1Z2S e2

4p«0
D

Etuvw
3

G 1/4

, ~5!

E,E15

2Z1Z2S e2

4p«0
D tuvw

A2 . ~6!

Equation~5! is valid as long as the energy of the incident ion
is less thanE1 , which is the upper limit for Lindhard’s low
energy approximation according to Eq.~6!. The calculated
upper limit for the case of 30 keV Ga1 into Cu is ;5.8
MeV. As the ion beam deviates from the direct channeling
direction, the nonchanneled fraction will increase toward
unity as channeling becomes less statistically possible. The
polar angle resolved nonchanneled fraction is then denoted
asxuvw as shown in Eq.~7!.

xuvw5
xuvw

0

12~12xuvw
0 !S c

f cc
D 2 . ~7!

The polar angle from normal incidence along a channeling
direction @uvw# is c. The fitting parameterf is included in
order to accurately fit the model to experimental data.

Tables I and II summarize the calculated values for chan-
neling in 30 keV Ga1 irradiated Cu and Si. The first column
denotes the axial channeling direction for the given target.
The next column is the angle between@100# and the axial
channeling direction in the first column. The following two
columns are the normalized distance between two lattice
sites in the given axial channeling direction and the actual
distance between the lattice sites, respectively. The last two
columns include the calculated values for the critical angle
for channelingcc and the nonchanneled fraction of incident
Ga1 ions x0 . Comparing the calculated channeling values
from Tables I and II, it is evident that 30 keV Ga1 can
channel in more axial directions in Si than in Cu. However,
the effects of channeling on the FIB milling of Si are not as
evident as compared with the FIB milling of Cu. Even
though the relative amounts of channeling in a given direc-
tion are similar for both Si and Cu, the actual difference in

TABLE I. Calculated critical channeling anglecc and nonchanneled fractionx0 for Cu.

30 keV Ga1 into Cu
Direction Angle from@100# tuvw /a tuvw ~nm! cc x0

@110# 45 0.71 0.26 9.87 0.13
@100# 90 1.00 0.36 7.61 0.22
@112# 35.3 1.22 0.44 6.54 0.30
@130# 18.4 1.58 0.57 5.40 0.44
@111# 54.7 1.73 0.63 5.04 0.50
@123# 36.7 1.87 0.68 4.76 0.57
@114# 19.5 2.12 0.77 4.33 0.68
@120# 26.6 2.24 0.81 4.16 0.74
@150# 11.4 2.55 0.92 3.77 0.90
@125# 24.1 2.74 0.99 3.58 1.00
@113# 25.2 3.32 1.20 3.10 1.34

TABLE II. Calculated critical channeling anglecc and nonchanneled fractionx0 for Si.

30 keV Ga1 into Si
Direction Angle from@100# tuvw /a tuvw ~nm! cc x0

@110# 45 0.71 0.38 6.39 0.11
@100# 90 1.00 0.54 4.93 0.19
@112# 35.3 1.22 0.67 4.23 0.25
@111# 54.7 1.30 0.71 4.05 0.27
@130# 18.4 1.58 0.86 3.49 0.37
@123# 36.7 1.87 1.02 3.08 0.47
@114# 19.5 2.12 1.15 2.80 0.57
@120# 26.6 2.24 1.21 2.69 0.62
@113# 25.2 2.49 1.35 2.49 0.73
@150# 11.4 2.55 1.38 2.44 0.75
@125# 24.1 2.74 1.49 2.31 0.84
@221# 48.2 3.00 1.63 2.16 0.96
@140# 14.0 4.12 2.24 1.70 1.55
@331# 46.5 4.36 2.37 1.63 1.69
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the magnitudes of the sputtering yields due to channeling
appears to be more important. According toTRIM simula-
tions, the amorphous sputtering yield is;2 for Si and;8 for
Cu. Assuming a 50% reduction in the sputtering yield due to
channeling for both materials, the sputtering yield will
change from a value of 2 to 1 for Si and from a value of 8 to
4 for Cu. The magnitude of the change in sputtering yield is
only 1 for Si but it is 4 for Cu.

A @001# stereographic projection channeling map for 30
keV Ga1 irradiated Cu is shown in Fig. 5~a! in order to

visualize the data from Table I. The center of the circles
correspond to the axial channeling direction and the radius of
the circles is the critical angle for channeling. Figures 5~b!
and 5~c! show how the calculated nonchanneled fraction
changes as the crystal is tilted in the^100& and ^110& direc-
tions. Note that Fig. 5~b! corresponds with the tilt direction
in Fig. 3 and that the 10° tilt from the@100# corresponds to
the transition from channeling to nonchanneling in Fig. 5~b!.
The difference in ion channeling contrast and hence the mill-
ing quality across the grain boundary in Fig. 3 correlates well
with the variation of the calculated nonchanneled fraction
from 0° tilt to 10° tilt shown in Fig. 5~b!.

The application of the effect of ion channeling on the
sputtering yield and the correlation with the ion channeling
contrast is shown in Fig. 6 for the preparation of a cross
section TEM lift-out11 specimen from the Cu bicrystal inter-
face. When the ion channeling contrast across the boundary
is not uniform as shown in Fig. 6~a!, the result is differential
sputtering as well as trench wall sloping from redeposition
on half of the specimen. Since the TEM specimen must be a
uniform thickness, a modified milling technique must be em-
ployed in order to achieve a quality TEM lift-out specimen.
Using the ion channeling contrast as a guide, the sample can
be tilted a few degrees until the ion channeling contrast
across the boundary is uniform as shown in Fig. 6~b!. The

FIG. 5. ~a! A @001# stereographic projection with the axial channeling direc-
tions and critical channeling angles superimposed for 30 keV Ga1 into Cu.
The variation of the nonchanneled fraction with tilt angle along the~b! ^100&
and ~c! ^110& tilt directions.

FIG. 6. Using ion channeling contrast as a guide, the differential milling in
~a! is eliminated by titling the sample until the ion channeling contrast is
uniform across the grain boundary~b!.

753 Kempshall et al. : Ion channeling effects on the FIB milling of Cu 753

JVST B - Microelectronics and Nanometer Structures



differential sputtering is eliminated and the effects of rede-
position have been reduced in order to achieve the desired
uniform thickness of the specimen.

IV. SUMMARY

The FIB milling of Cu tends to present interesting prob-
lems that are not experienced with FIB milling of other ma-
terials, such as Si. The effects of ion channeling on the FIB
milling of Cu can be used advantageously to alleviate some
of the problems encountered with the FIB milling of Cu.
Since ion channeling contrast is directly proportional to the
sputtering yield, this contrast can be used as a guide to elimi-
nate differential sputtering and reduce the effects of redepo-
sition when milling is performed across a grain boundary or
interface in polycrystalline or polyphase material. A modi-
fied cross section TEM lift-out technique has been estab-
lished for use on crystalline interfaces using ion channeling
contrast as a guide to create uniform milling properties
across the boundary.
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