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Abstract

Fluid-theory calculations are presented of ion collection by

electric probes in strongly magnetised plasmas with parallel

flow. In the first calculations the problem is treated in a one-

dimensional approximation but the cross-field transport of mo-

mentum is included in such a way as to model different ratios of

viscosity to diffusivity. The results show that the flow deduced

from probe measurements is not particularly sensitive to the

assumed viscosity, provided it is finite. However, results with

zero viscosity are qualitatively different from those with

nonzero viscous momentum transport. The second set of calcula-

tions are two-dimensional but only for fixed (unity) ratio of

viscosity to diffusivity. The results are in remarkably good

agreement with the corresponding one-dimensional model.
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1. Introduction

The long-recognised difficulty of electric probe theory in

the presence of strong magnetic fields1 ,2,3,4,5 has received re-

newed attention recently. In part this is because of the in-

creasing use of such probes in the edge regions of magnetic con-

finement fusion experiments 6 to measure such basic parameters as

temperature, density, and potential. In part also, though, it is

because probe measurements are in principle able to determine

other quantities such as flow velocity7 and power flux8 . The

rather crude heuristic approach to probe interpretation which ap-

pears sufficient for the more basic parameters is really not sat-

isfactory for obtaining the other parameters quantitatively.

Therefore there has been a renewed incentive to obtain a more

complete interpretative theory which can indicate whether and how

these other parameters can be deduced from probe measurements.

The basic difficulty with probe theory in a magnetic field

that is strong enough to give an ion gyroradius, pi, substantial-

ly smaller than the probe radius, a, is that ion collection

across the field is diffusive9 . The quasi-neutral presheath re-

gion, in which acceleration of the ions occurs into the sheath,

becomes highly elongated along the field, until the cross-field

diffusion is able to balance the parallel collection flow. In

such a situation the perpendicular flow cannot be modelled by

collisionless probe models of the type pioneered by Langmuir10

because it is governed by the transport processes. On the other

hand, an entirely diffusive theory such as that of Bohmi, in
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which the parallel flow (as well as the perpendicular) is diffu-

sive, is not satisfactory either because for most situations the

parallel ion flow is dominated by inertia not collisions. This is

just as well because if the parallel collection were diffusive

the ion current would be determined by the diffusivity, which is

unknown, rather than the temperature and density, which is what

we usually want to measure first.

The approach that has been widely used in the past for de-

ducing the temperature and density from probe characteristics is

to assume that the electron current is proportional to a Boltz-

mann factor in the region of the characteristic close to the

floating potential and that the ions are collected by parallel

flow at a rate corresponding to the Bohm current density [

/ 2ne(Te/mi) I/2] These assumptions give plausible values of the

electron density (ne) and electron temperature (Te) in , for ex-

ample, the scrape-off layers of magnetic confinement plasmas.

(Although there is rarely any fully independent quantitative ver-

ification of the density deduced.) However, despite its success,

this approach provides no information on another parameter of

considerable interest: the parallel flow velocity.

Recent measurements using directional 'Mach' or 'Janus'

probes 1 1 , 1 2 , 1 3 which measure separately the currents collected

parallel and antiparallel to the magnetic field, have shown that

large differences in these currents often exist. As implied by

the expression 'Mach probe', these differences are usually at-

tributable to plasma flow velocities along the field. However, in

the absence of a detailed probe theory, the deduction of the flow
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velocity can be based only upon ad hoc assumptions about the re-

lationship between flow velocity and, for example, the ratio of

the upstream to downstream ion saturation currents. Proudfoot et

all, have advocated a simple expression for the ion current

ratio: exp(M/0.6), where M is the Mach number. This expression is

based primarily on fits to their observations within the edge re-

gions of the DITE tokamak1 4 . The logical difficulty with this ap-

proach is that no independent measurements of the velocities were

available and so the coefficient was chosen to match the expected

velocities as predicted by edge plasma flow models, which are

themselves probably just as uncertain as the unsatisfactory probe

theories.

A one-dimensional fluid theory has been developed by

Stangeby15, which offers a direct solution for the relationship

between the ion current ratio and the flow velocity. Harbour and

Proudfoot7 compared Stangeby's results with a naive particle

model, which takes no account of ion acceleration in the

presheath, and found a very large difference in the predicted

ratio (by about a factor of ten at M=1). Their ad hoc expression,

cited above, lies about half way between these two extremes.

More recently, Hutchinson 1 6 has argued that Stangeby's model

gives unreliable results because it omits essential cross-field

transport terms that correspond to perpendicular viscosity. This

work, henceforward referred to as IHl, showed that including a

viscosity corresponding to a momentum diffusivity equal to the

particle diffusivity leads to a much larger predicted current

ratio than Stangeby's model. Although the viscosity value in IH1
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is arguably the most plausible one to take, there is no complete

transport model which could provide a precise prescription of the

viscosity because the cross-field transport is inherently

anomalous. [ That is, it is enhanced relative to the classical

collisional theory.] Therefore there remains a degree of uncer-

tainty in the applicability of the IHl results corresponding to

the uncertainty in the viscosity/diffusivity ratio.

The present work develops an extension of the one-

dimensional fluid theory to cases where the viscosity/diffusivity

ratio can take any prescribed value. Thus the present model

encompasses the fluid models of Stangeby and IH1 as particular

cases of a more general treatment. Numerical solutions of the

equations are presented for a range of values of the viscosity.

These show that the zero viscosity case of Stangeby is actually

singular so that the inclusion of any finite amount of viscosity

qualitatively changes the solution. This partly accounts for the

large quantitative differences between the Stangeby and IHl re-

sults. The present results are much closer to the IH1 values,

when the viscosity has plausible values, than they are to those

of Stangeby. The residual dependence of the ion current ratio on

viscosity value is a cause for some concern for velocity diagno-

sis until there is an independent verification of the best value

to adopt. However one might take a more optimistic view and re-

gard it as an opportunity to use probes to measure the viscosity,

in plasmas where the flow velocity is known, using the

interpetative values presented here.

A notable limitation of these theories is that they all use
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a one-dimensional approximation to what is, in fact, a two-

dimensional or even three-dimensional situation. The question has

thus far been open as to how accurate one can expect such theo-

ries to be, given this approximation. Particularly if one wants

to explore the subtleties of the precise viscosity value, one

might find that these effects are swamped by the errors inherent

in making the one-dimensional approximation. For this reason, a

two-dimensional model has been constructed, and solved numerical-

ly, for comparison with the one-dimensional results. Naturally

the difficulty in a two-dimensional analysis far exceeds that of

the one-dimensional approximation. For this reason, the 2-d code

whose results are presented here treats only the case which cor-

responds to IHl: unity viscosity/diffusivity ratio. However the

results obtained show quite remarkable quantitative agreement

with the corresponding l-d results. This agreement lends greatly

increased confidence to the whole one-dimensional analysis and

its results.

A brief preliminary report of the present work has been

given elsewhere1 7 . Here both the methods and results are reported

in more complete detail. Section 2 presents the fluid equations

and their reduction to the one-dimensional approximate forms.

Section 3 gives the solution method and the one-dimensional re-

sults. In section 4 the 2-d code is described and its results

presented. The discussion section seeks to explain some of the

observed results and outlines remaining issues.
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2.Formulation

The equations which we take as governing the ion fluid

around the probe are

V.(niv) = 0 (1)

V.(nimivii ) - _.(71vl1 ) = - Vlipi + ZeniEi (2)

nivi = - DVIni . (3)

Here D and q are phenomenological diffusivity and viscosity, 11

and I refer to the magnetic field direction (z), ni, pi and v are

the ion density, pressure and velocity, and E is the electric

field. These equations are supplemented by an assumption that in

the cases of interest the majority of the electrons are repelled

by the probe so that their density is governed by a Boltzmann

factor. Therefore in the (quasineutral) plasma region the elec-

tric field is related to the ion density via

Eli = - ViI(Te/e)ln(ni/n.] = - (Te/eni)Viini (4)

where the electron temperature, Te, is taken as constant and sub-

script - refers to quantities far from the probe, in the

unperturbed plasma. Finally we need to close the equations with

an ion energy equation. For simplicity we take this to be pian

so that

Vllp1 = yTiViini (5)

where Ti is taken as constant.

Some discussion is in order, about the anticipated validity

of this fluid approach. The treatment of the perpendicular dynam-

ics by a fluid approach will be justified, as is well known, pro-
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vided that the ion gyro radius is much smaller than the perpen-

dicular length scales of interest: in this case the probe trans-

verse dimension, a. The fluid treatment of the parallel dynamics

will be less satisfactory unless the ion-ion collisionality is

high. This requires the ion-ion mean-free-path, Iii, to be much

shorter than the length of the collection presheath, Lc, say.

This is in fact the case in many of the magnetic fusion applica-

tions of interest, but even if it were not, the fluid model turns

out to give quite good agreement with kinetic collisionless cal-

culations, as indicated by comparisons of one-dimensional

sheaths, for example1 8 ,1 9 ,2 0 . A more important issue involves

ion-electron collisions, which are ignored in the model. This

will be satisfactory if lie/Lc>>l, which again is usually well

satisfied in fusion plasmas. If ion-electron collisions were not

negligible then the ion collection would be diffusive and the

present theory would be inapplicable. In order for the quasi-neu-

tral approximation to be satisfied over the relevant domain re-

quires that the sheath thickness be small. Since the sheath has a

thickness typically a few times the debye length, XD, this re-

quires XD/a<<l. Again generally easily satisfied.

The viscosity, n, is generally anisotropic. However we shall

drop the viscous terms arising from parallel gradients, V11"Vivi1 ,

so the viscosity appearing in Eq. (2) is to be taken as that for

perpendicular transport of parallel momentum. It is this step

which strictly requires the ions to be self-collisional.

The ion energy equation (5) is capable of describing a lo-

cally adiabatic or isothermal ion fluid but, since the problem is
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nonlinear, we are not fully justified in adopting Ti = constant

unless the ions are isothermal. Thus we must regard this as a

simplifying assumption and the precise value of y as open. In

justification of this approach it may be noted that the dominant

term on the right hand side of Eq. (2) is often the second, and,

even if we knew the 'correct' value for y, probe measurements do

not generally give Ti so we should still be uncertain as to how

to account correctly for the ion pressure term. Within the pres-

ent theoretical context we avoid having to decide this issue be-

cause we write the left hand side of Eq.(2) as -mc2Vini , where

cs = /[(ZTe + yTi)/mij . (6)

Then we assume that it is sufficient to express velocities as

multiples of the sound speed, cs.

one other major limitation to the applicability of the

treatment should be mentioned, namely that no volumetric particle

sources are included. This exclusion of the effects of ionization

and recombination is usual in Langmuir probe theory. It will only

be justified in general if the mean free path for ionization (in)

of the neutrals formed by recombination at the probe surface is

much bigger than the probe dimensions. Otherwise the local build-

up of combined neutral and ion density will tend to perturb the

results.

As a numerical example of the typical situation in magnetic

confinement edge plasmas consider a case where Te=Ti=lOeV,

ne=101 9m- 3, B=4T, a=.002m, and D=Te/16eB (the Bohm value). The

presheath length is approximately Lc=csa 2 /D and the different

characteristic lengths are then: XD=8X10' m, pi=8x10~ 5 m,
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A i=8x10-2 m, lie-100 M, 'n-5x10-2 m, and Lc=2 m. These charac-

teristic lengths confirm the remarks made above about the typical

validity of the fluid approach.

We now perform the following nondimensionalizing transforma-

tions:

Z' = f dz X'= , y'
a ac sa 2(7)

n =n/n. ,M = VI/cs

Substituting for the perpendicular velocity from Eq. (3), ignoring

perpendicular derivatives of D, and dropping the primes on the

new coordinates for brevity, these transformations bring the

equations into the form

(nM) - V 2 = 0 ;()a 2 =0 (8)

S(nM2 + n) - V .MV n - V - V M = 0 . (9)
a-. -1L -1 min.D-1

Now, for the purpose of reducing these equations to approximate

one-dimensional forms, we substitute for the perpendicular deriv-

atives of any quantity, 0, via IVI| (O-) and Vf4+(q.-4) . We

also ignore derivatives of 7 . The one-dimensional equations we

then get are

dn dM
M + n- = n - n (10)

d =dz

dn + =~r (M )1- i, (11)
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3.One-dimensional Solutions

We recognise that the viscosity in a medium where transport

is via particle exchange has a value n = mnD. It has been argued

in IH1 that this value seems the most plausible one in the usual

situation of probe measurements, where the cross-field transport

is dominated by turbulence. However, our purpose here is to allow

different values of viscosity so as to explore its effect. There-

fore we put

n= aminiD (12)

and regard a as a constant. The case a = 0 is essentially that of

Stangeby 1 5 and a = 1 is IH1.

With this substitution we follow the approach of IH1, reduc-

ing Eq.s(10) and (11) to

dn (1-n) M - (M0,- M) 1 - n (1-a)]

dz2 1 (13)

dM (M- M) 1 - n (1-a) ]M - (1-n)

dz- n(M - 1)

and hence obtaining

dn (1-n)M - (M- M)[1 - n(l-a)]
dM (MM- M)[1 - n(l-a)]M - (1-n) . (15)

The sheath edge is the point at which d/dz4-, i.e. M 2 =1. Choosing

the positive sign to denote flow towards the probe, the boundary

condition at the probe is thus M=1. Naturally we anticipate that

the density there will be n<1, since an accelerating potential

drop will be required to draw in the ions at the sound speed. At

z--, far from the probe, we take n=1 and M=M.. Then, in order to

11



integrate Eq. (15) from M=M. to M=1, we require the slope at M=M..

Expanding the solution about that point and substituting in the

equation, we discover that

dMn - [M.(-a) ± /M(1-a)2 + 4a)] . (16)

Now consider the nature of the solution in the M-n plane.

The plane is divided into different regions by the boundary

curves ndn/dz=o and ndM/dz=O. In each of these regions the slope

of the solution has a specific sign and the sign changes if it

crosses a boundary. The point M=M., n=1 is at a point of inter-

section of the boundary lines. It may be shown that this is the

vertex of a region which extends uninterrupted as far as the line

M=1, O<n<l. The upper boundary of this region is ndM/dz=O, the

lower boundary is ndn/dz=O and the slopes of both boundary lines

are negative at the vertex for a>O. These facts are sufficient to

guarantee that any solution of the differential equation which

passes through the vertex into the region will remain within the

region and extend monotonically to the boundary M=1, O<n<l. Fur-

ther analysis indicates also that there is no other continuous

solution which links M=M., n=1 to M=1, O<n<l, again provided a>0.

Therefore the correct choice for the boundary condition is the

negative sign in Eq. (16) which gives the required solution at the

vertex. When a=O the angle at the vertex becomes zero because

the two boundary lines become n=1. This causes a singularity in

the solution and the only numerically stable solution is obtained

with the positive sign in Eq. (16). This problem will be discussed

further later.

Equation (15) is solved for n as a function of M, given M.
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and the boundary conditions discussed, by simple finite differ-

ences supplemented by conditions which prevent the solution from

crossing the boundaries of the region indicated above. These con-

ditions assist in stabilizing the solution in the vicinity of the

vertex but otherwise have no effect.

Figure 1 shows a sample of the solutions for the density, n,

as a function of Mach number, M. Each of the sub-figures is for a

specific value of a. The family of curves shown corresponds to

solutions with different values of M.. Each curve starts at the

point n=1, M=M. and ends at M=1. Thus the starting points give

the external flow field, with negative M. corresponding to the

downstream side of the probe and positive M, to the upstream

side, while the end points give the value of the density at the

sheath edge. Since the velocity at the sheath edge is equal to

the sound speed, the density also gives the ion flux into the

sheath, and hence to the probe.

Solutions like Fig. 1 are sufficient to give the measurable

quantities required for probe interpretation. If we want instead

to obtain the variation of density (or potential or velocity)

with position then we must integrate Eq.(13) or (14), regarded as

an equation for z in terms of n, M. An example of this process

was shown in IH1; it gives the presheath structure in space and,

as expected, gives a presheath in which the perturbation falls

off in a characteristic distance -csa 2/D and tends to zero (n=l,

M=M.) as z tends to infinity.

The exception to this behaviour is the a=0 case. As shown by

Fig.1(d) the solutions in this case are qualitatively different

13



from the finite-a cases, in that they are not monotonic. More-

over, for M,<o the solutions all pass through the point n=1, M=O.

[ The curves of Fig.l(d) were actually generated by the same nu-

merical code used to solve the other cases but the results are

the same as the analytical solution given by Stangeby.] The re-

sult of an integration of Eq.(14) to express the results in terms

of spatial variation shows that the branch of the M,<o curves

from M=1 to M=O transforms to the interval z=O to z=--. In other

words, the point n=1, M=1 corresponds to the point at infinity.

Mathematically this is because dM/dz-0 there. What this result

indicates is that M does not tend to the external value, M,, as

z-. Rather, the presheath length, from the viewpoint of veloci-

ty perturbation, is infinite, even though the density-perturba-

tion length is finite. The physical explanation for this inter-

esting result is that, in the complete absence of viscosity, the

only momentum transport is by convection. Thus if the particle

transport tends to zero, because there is no density difference

between the inside of the presheath and the surrounding plasma

outside, then momentum transport also tends to zero even if there

is a velocity difference. The inner velocity can thus tend to a

value different from M,, and it does: to zero. Clearly, the

slightest amount of viscosity prevents this behaviour; so a=0 is

a singular case. Stangeby showed solutions in which the M<O part

of the curve was at finite distance from the probe. This was be-

cause he assumed that the source of particles in the sheath, mod-

elling the cross-field flux, was a positive constant, independent

of space. This is clearly an unphysical assumption because it
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would imply particle diffusion un the density gradient. Our pres-

ent formulation avoids this assumption and, as a consequence, the

M<O part of the a=O solution no longer has any physical signifi-

cance.

The important results of a series of solutions of the type

shown in Fig. 1 can be summarised by plotting the density at the

sheath edge (M=l) versus flow Mach number (Me) for various values

of a. This is shown in Fig. 2. Note how the a=0 results deviate

substantially even from the a=0.01 results when M.<0. Note also

that the a=0.1 case is closer to the case a=1 at M,~-1 than it is

to a=O. These facts just emphasize that for any finite viscosity

the a=O solution is a bad choice.

The important quantities for diagnosis are the mean value

and the ratio of the ion collection flux densities upstream and

downstream. In Fig. 3 is shown the mean ion flux, normalised to

the product n.cs, as a function of plasma flow velocity, for sev-

eral values of the viscosity ratio, a. The mean flux proves to be

a relatively weak function of both M. and a. This is fortunate

because it means that density measurements using the Bohm formula

for ion saturation current,

Isi = 0.5 eneAf(ZTe/mi) , (17)

will give reasonably accurate results, even in the presence of

parallel flow, using for A the area of the projection of the

probe in the parallel direction. One anticipates that the values

of flux rather less than 0.5ncs for a-1 are partly compensated

by the extra term yTi within the definition of cs, as discussed

in IH1.
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The ratio of the fluxes to the upstream and downstream sides

of the probe are shown in Fig. 4. Such curves enable one to de-

duce the velocity from measurements, for any specific choice of

a, using the flux ratio, which will be the ratio of ion satura-

tion currents. Notice that the uncertainty in deduced flow Mach

number arising from uncertainty in a is about ±15% for ratios

less than 5 if a lies between 0.1 and 1. We exclude the a=0 case

because of its singularity. It is interesting to note that Har-

bour and Proudfoot's ad hoc formula, exp(M/0.6), lies extremely

close to the a=0.1 curve. Although this in itself is no real in-

dication of its appropriateness.

Another way of showing the a-dependence of the result is

given in Fig. 5, where we show the slope at M,=0 of the flux

ratio versus Mach number curve, dR/dM, 0, plotted as a function

of a. This parameter determines the velocity 'calibration' of a

Janus probe at low velocities. We include a values up to 2, since

there is no reason in principle why values greater than 1 should

be excluded.

4.Two-Dimensional Calculations.

Since the one-dimensional results involve an approximation

whose accuracy is uncertain, it is of considerable interest to

obtain some results based on fully two-dimensional solutions to

the fluid equations (8) and (9) , which can be compared with our

1-d results. For this purpose a code has been developed to solve

the equations corresponding to the a=1 case. Although much more
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general codes exist (such as that developed by Braams 21 ) which

include general electron and ion momentum and energy equations,

their generality is more of a handicap than an asset when han-

dling a simplified model such as this. The equations that are in-

tegrated by the present code are

an+ Mn r = 1 0at +CjI r 8r 0
(18)

a a 2 i
-Mn + -(Mn + n) - r Mn = 0at az rrar

These are the cylindrical forms of Eqs.(8) and (9) with the sub-

stitution n = nimiD, including the time derivative terms omitted

previously. The solution is obtained by stepping forward in time

until convergence, which the gives the steady state.

The method used to advance the equations is to. regard them

as conservation equations for the two dependent variables n and

p = nM. An alternating direction scheme is used, in which the

perpendicular direction step is implicit and in the parallel di-

rection a two step Lax-Wendroff scheme, of the type described by

Richtmyer and Morton 2 2, is used. This has the merit of treating

the shock transition at the probe quite accurately but the disad-

vantage of requiring small timesteps for stability. The equations

are solved on a spatial mesh which is uniform in the r-direction

but nonuniformly spaced, a I z|1/2, in the parallel direction,

with size 16x40 over the region O<r/a<2, -4<z<+4 . Tests with

different mesh spacings and solution-domain extents show that the

results are adequately converged with these choices.

The boundary conditions used are

8/ar = 0 at r = 0 ; n = n. , y = ui at r = 2;
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M = g/n = tl at z = 0 , r < 1 ;

n , A continuous at z = 0 , r > 1 ;

n n., at z = 4.

These conditions are sufficient for the order of the equations.

It should be noticed that no explicit boundary condition on A is

required at z=±4. An implicit condition, necessary for the numer-

ical scheme, is derived from the first of Eqs.(18): ay/8z=O.

The steady-state solution for the density and flux are shown

in Fig. 6 for the case of zero flow, M.=0. This case, of course,

gives rise to symmetric density and antisymmetric flux solutions

about the line z=0. Because of the scaling of the parallel mesh

proportional to I z 1 /2, the singularities there are removed. The

density then has finite slope and the flux has zero slope at

IzII/2=0. When there is nonzero flow in the plasma, the solution

is no longer symmetric,, as Fig. 7 illustrates. For flow Mach num-

bers greater than about 0.5, the upstream flux is very little

perturbed by the probe. Thus in Fig.7(a) the flux is almost uni-

form for z<O. On the downstream side, however, an increasing flux

variation requires, as expected, an increasing potential and

hence density depression. The presheath also lengthens in the

downstream direction to the point where the boundary condition

begins to introduce artificial oscillations in the parameters.

These should not be considered physically significant. They do

not appear to change noticeably the flux at the probe, which is

the parameter of experimental significance.

Three values of the ion collection flux, as a function of

flow Mach number, are shown in Fig.8 : the mean value across the
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probe of the probe flux from the two-dimensional calculations,

the value of the flux at r=O, and for comparison the one-dimen-

sional result from Fig.2 for a=l. The remarkable fact about this

comparison is that the three values are so similar. For the two

two-dimensional results this reflects the fact, evident in Figs.

6 and 7, that the flux is very uniform across the surface of the

probe. The experimental significance of these two flux values is

that a simple probe can measure the mean flux, while some types

of 'Mach' probes are designed with collector elements located at

the probe axis which are much smaller than the entire probe

shield; thus they measure the flux at r=O. The excellent agree-

ment with the one-dimensional calculations provides greatly in-

creased confidence that the one-dimensional results for a variety

of viscosity values, presented in section 3, are good approxima-

tions to what would result from a two-dimensional calculation.

Focussing on the differences, which are most important at

large flow velocities on the downstream side, the progressive

falling off of the mean value below that at r=O reflects the in-

creasing importance of reduced flux at the probe edge. The flux

just beyond the edge is close to the external value, which is di-

rected away from the probe. The large radial gradient of the flux

which is thus necessary at the probe edge leads to an important

boundary effect on the mean collection flux.

The ion flux ratios corresponding to these three cases are

shown in Fig.9. Again, these are the 'calibration curves' for the

use of Janus type probes for velocity measurements. In the inter-

ests of having a convenient approximate analytic form for use in

19



probe interpretation, one can fit these curves with equations of

the type used by Harbour .et a|. The one-dimensional approximation

is well fitted by exp(M,/0.41) and the two-dimensional (r=0) by

exp(M.,/0.45). Thus the deduced velocities using these two curves

would differ by -10%. The curve of mean flux is less well fitted

by this functional form.

5. Discussion

The results we have given show that it is indeed possible to

obtain the parallel flow Mach number from probe measurements,

provided we can decide an appropriate value to take for the ratio

of the viscosity to the diffusivity. It has been argued in IHi

that a-l is the most plausible value to take when the diffusion

is anomalous. In support of this contention one may cite also the

brief discussion of the turbulent case by Braginskii 2 3 in his

classic paper on collisional diffusion in plasmas. Nevertheless

some uncertainty remains, and the present results show how the

viscosity uncertainty translates into velocity uncertainty.

It is worth emphasizing again that our treatment has shown

that the neither the absolute value nor the spatial variation of

the diffusivity has any direct influence on the ion collection

flux, provided the conditions discussed in section 2 are satis-

fied. This fact, which is demonstrated by the ability to trans-

form the diffusivity away in our choice of nondimensionalised

parallel distance ( Eq.7), can be used to help understand why the
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one-dimensional approximation seems to give such good agreement

with the two-dimensional calculations. The argument is as fol-

lows.

Consider Eqs. (18). They are in the form of conservation

equations. Therefore if we consider a tube of radius r=a and in-

tegrate these equations over the perpendicular direction, we ob-

tain equations for the average parameters within the tube. The

cross-field terms are then in the form of derivatives an/ar and

8/ar(Mn) evaluated at the tube boundary. The one dimensional ap-

proximation replaces these derivatives by differences (n,-n)/a

etcetera. Clearly, this is in itself a relatively poor approxima-

tion, because the perpendicular scale-length (at r=a) far from

the probe becomes considerably less than that near z=O, as Figs.

6 and 7 show. However, this variation of the perpendicular scale

length with z is similar to parallel variation in D. It can be

transformed away by a new scaling of the parallel coordinate.

Thus the resulting probe flux values are unaffected by it. Actu-

ally it cannot be completely scaled away because the scale-length

for n and for Mn need not be identical. Nevertheless the scale-

length variation is qualitatively similar to diffusivity varia-

tion in causing a variation primarily in the parallel extent of

the presheath.

There may well be occasions when the presence of the pre-

sheath itself affects the value of the diffusivity, by exciting

additional instabilities, for example. In these cases too it

seems likely that the probe flux value should be little affected

by this process because there is no direct dependence of the re-
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sults on diffusivity.

It should be noted that the present results are limited to

subsonic flow velocities. The upstream side collection can rea-

sonably be taken as equal to the unperturbed flux in supersonic

cases, such a value representing a straightforward recognition of

the fact that no presheath need necessarily form. However, nei-

ther the one-dimensional nor the two-dimensional numerical

schemes can deal with the downstream side of the probe when the

external plasma flow velocity exceeds cs. It seems that this dif-

ficulty is associated with the formation of shocks in the pre-

sheath. Mathematically it manifests itself as instability in the

two-dimensional code and as the absence of continuous solutions

in the one-dimensional analysis.

6.Conclusion

A theoretical study has been presented of ion collection by

probes in strong magnetic fields, using a fluid description of

the plasma. The results obtained allow quantitative interpreta-

tion of Janus type probe measurements to give the parallel flow

velocity. Limited two-dimensional calculations agree very well

with the one-dimensional approximate treatment, giving greater

confidence in the wider one-dimensional study. Some uncertainty

remains in the precise value of the ratio of viscosity to dif-

fusivity that should be used. The sensitivity of the results to

this ratio is not excessive, provided that the singular case of

zero viscosity is avoided. However some independent experimental
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measurements of flow velocity would be helpful to verify whether

the ratio advocated here is indeed appropriate. The results indi-

cate that the dependence on Mach number of the upstream/downstre-

am ion current ratio, required for the velocity measurement, may

be described approximately by the expression exp(M/M.) where the

calibration Mach number, Mc, lies in the range of about 0.4 to

0.45.
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Figurs Captions

Fig.1 Solutions for density as a function of the Mach number in

the presheath. Different values of viscosity/diffusivity ratio

are shown: (a) a=1, (b) a=0.1, (c) a=0.01, (d) a=O.

Fig.2 Variation of the density at the sheath edge with the exter-

nal flow velocity, for various viscosity/diffusivity ratios. The

flow velocity at the sheath edge is equal to the sound speed.

Therefore the collection flux-density is equal to this density

(times the sound speed).

Fig.3 Average of the upstream and downstream flux densities to

the probe as a function of the external flow velocity.

Fig.4 Ratio of the upstream to downstream ion collection flux

versus external flow velocity.

Fig.5 Slope of the ion-current-ratio (curves of Fig.4) at the

point M=O, plotted against the viscosity/diffusivity ratio, 0.

Fig.6 Axonometric plot of the two-dimensional solution in the

case when the external flow is M,=O. (a) Density, (b) Parallel

flux.

Fig.7 Plots corresponding to Fig.6 except that the external flow

velocity is nonzero, M,=0.6.
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Fig.8 Ion collection flux as a function of external flow velocity

for three cases of interest: The two-dimensional solution value

at "r=0", its "mean" value across the probe surface, and the "1D"

one-dimensional solution for corresponding a.

Fig.9 The current ratios for the three solutions of Fig.8.

27



1.0

0.8

0.6

0.4 a = 1.00

0.2

-1.0 -0.5 0.0 0.5 1.0

Mach No

FIGURE 1(a)



1.0

0.8

0.6

0.4 = 0.10

0.2

0I 0 1 I I ,

-1.0 -0.5 0.0 0.5 1.0

Mach No

FIGUPE 1(h)



1.0

0.8

-0.5

Mach No

FIGURE l(c)

a =0.01

I I I I I i I i i I i i i i I i i e i

.4-,

0.6

0.4

0.01
-1 .0 0.0 0.5 1.0



- a =0.00

I I I I I I

-0.5

I I I I - I I I I I I - I I I

0.0 0.5

Mach No

FIGURE 1(d)

1.4

1.2

1.0

0.8

S0.6

0.4

0.2

A A

-1 .0 1.0

'



z

0 o

0 4

LO

It)

6 c6

AI!su9e q4BleqS



'I

I I

0.6

Flow Mach No.

FIGURE 3

II I -
0.7

0.6

I-

0.5

x

0

-0.00

.0.10

- I

I I

0

0.4

0.3

0.21
0. 0.4 0.8 1.0

I

I I

-1.00



14 a=

- -2.00

12 -

1.00

10

0

8 -0.50

Pro 6

0 0.10

4-

- 0.00

2

01
0.0 0.2 0.4 0.6 0.8 1.0

Flow Mach No.

FIGURE 4



0
,0

0 0
co .t-j

4-)

co

N>

0

0
oN

co0 Cl)
qq *4

O=H q adoS O~D8-q aJ~n



%IN.

NsS

NI0

AlHSUeP uoi

(NJ

0
It

S

~I)

C

H

V

0

0
0~

0
U*)

0
m

0
~-4

C
C
C,

0
0

C
C
U-)

I



0
II

S

I

I ILI I I I I I I
I~~~~ I

0

CD
0
0
co

0

0 C
C
N

0
0
0

I I

0

Cj
I .

xnlj lal .Jod

IN.

0

'IN 4 0

;3,0

C

U)

c

-0

0

10
0-

lb



CC

'IN

IN

110

CD

0 0
C

I

-4

C
C

0
C)
C'J

Li

AiISUeP UQi

4H

-4



;00

IN.

N0 N 0

'-4

x nh I Ia Ioj od

0~

H
rz.~

0
L.

0

I I

%-i IRT



0u

0

E

t0

(0
r"

L

lo

EE

00

0 0
01

V 0

xnlA U T43alO3 I.



EC~

N L

~0

40

0
ai C0

o~qo~ quajn3 uo


