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state energy eigenfunction of the inversion problem. 
Numerical solution of the approximate energy eigenvalue 
problem again has been made by infinite matrix diago- 
nalization. For illustration we give below the lowest tor- 
sional energy levels for CH3NH2 based on barrier values 
reported by Itoh37938 and Lide;39 for this work V3 = 691.1 
cm-l has been chosen. 

r(o+)(g=i): 144, 600, 926, 1577, 2519 
r(o-)(g=i): 414, 910, 1577, 2519 
r(l)(g=2): 144, 408, 637, 773, 1105, 1325, 1860, 2174 

Supplementary Material Available: The complete 
Table I1 containing the 66 experimental points displayed 
in Figure 2 (1 page). Ordering information is given on any 
current masthead page. 
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Ion Distributions in Lamellar Liquid Crystals. A Comparison between Results from 
Monte Carlo Simulations and Solutions of the Poisson-Boltzmann Equation 
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Monte Carlo (MC) simulations have been performed for an ionic system between two parallel uniformly charged 
plates modeling the conditions found in lamellar lyotropic liquid crystals. The results are used to assess the 
accuracy of the statistical-mechanical approximations leading to the Poisson-Boltzmann (PB) equation. In 
general there is a good agreement between the MC simulations and the results obtained from the PB equation. 
This applies to the ion distribution and to a lesser extent to the energy. In particular the PB equation predicts 
the correct asymptotic behavior as the distance between the plates is increased. In the MC simulations there 
is a slight increase in the ion concentration close to the walls compared to the PB solution. This is due to the 
fact that in the MC simulations one allows for correlations between the ions,’whereas the PB equation is derived 
under the assumption that the pair correlation function is constant. It is shown that the accumulation of ions 
close to the walls is solely due to the repulsions between the ions, and it is argued that ion binding in a 
polyelectrolyte system can be understood as caused by the incapability of the bulk solution to sustain a substantial 
net charge over moderately large distances. 

Introduction 
The physical-chen?ical properties of charged macro- 

molecules and aggregates in an aqueous medium are 

strongly influenced by electrostatic effects. A large species 
having a high surface charge will attract counterions to 
reduce the electrostatic repulsions a t  the surface. When 
studying the ion binding in such systems, one either can 
be directly interested in the ion distribution as it is probed 
in a spectros~opic~-~ or kine ti^^?^ experiment or can focus 
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Figure 1. A schematic illustration of the structure of a lyotropic lamellar 
liquid crystal (lower figure). The amphiphilic molecules form bilayers 
which are intercalated with aqueous lamellae containing the counterions. 
The upper figure shows the model of the aqueous region used in the 
MC simulations. 

the attention on the energetic effects of the electrostatic 
interactions. These influence ion ac t iv i t ie~ ,~!~  osmotic 
pressures,6s8 macromoleculeg or aggregatelOJ1 conforma- 
tions, phase equilibria,l2J3 and interparticle forces.14 

The counterion distribution in polyelectrolyte systems 
has in recent years been thoroughly investigated, and a 
number of remarkable invariance properties have been 
found. The counterion binding is mainly determined by 
the surface charge density a t  the polyelectrolyte, and it is 
largely independent of salt concentration, polyelectrolyte 
concentration, and temperature. These properties, which 
are sometimes summarized as manifestations of an ion- 
condensation behavior,16-17 can be derived from the 
Poisson-Boltzmann e q u a t i ~ n , ~ v ~ J ~ J " ~ ~  but alternative de- 
rivations also exist.16i21 There is in general a very good 
agreement between these predictions about the ion dis- 
tribution and experimental investigation~.~~~J~~~~~~~ For 
quantities related to energies, the agreement between 
theory and experiment is somewhat less satisfactory. For 
phase e q ~ i l i b r i a l ~ , ~  the Poisson-Boltzmann equation gives 
a remarkably good description, whereas for ion activities 
and osmotic pressures there is qualitative but not quan- 
titative agreement.6-8 

In the present paper we aim at finding some of the 
reasons for the success of the simple theory based on the 
Poisson-Boltzmann (PB) equation. The problem is ap- 
proached by formulating the statistical-mechanical ap- 
proximations of the PB equation. We then study a model 
system consisting of two charged plates with an intervening 
solution containing only counterions by using the Monte 
Carlo (MC) simulation technique. This model system 
conforms closely to the conditions found in lyotropic la- 
mellar liquid crystalsz6 (see Figure 1). 

Poisson-Boltzmann Equation for Inhomogeneous 
Systems 

In a statistical-mechanical treatment of ions distributed 
in a medium of constant permittivity ereO, the Poisson- 
Boltzmann equation 

(1) 

is usually derived by assuming that the potential of mean 
force for an ionic species a is Zae9 where 2, is its valency, 
e the unit charge, and 9 the mean electrostatic potentiaLZ6 
However, to increase the physical insight and to obtain 

-ere0 V2@ = CZaenOa exp(-Z,e@/kT) 
a 

explicit expressions for the correction terms, we have re- 
derived eq 1 with special emphasis on inhomogeneous 
systems. 

In an inhomogeneous system the one-particle distribu- 
tion function ne(?) describes the concentration variation 
of species CY relative to the fixed center. According to the 
first member of the Yvon hierarchy?' for the equilibrium 
particle distribution functions one has 
-kTa In (na(7)) = a Ua(F) + 

where Ua(7) is the external potential for particles a, 
UaP(F,F? is the interaction potential for particles of species 
a and /I, and n,,Jr',t? is their two-particle distribution 
function. Equation 2 may be rewritten by expressing nap 
in terms 6f particle correlation functions 
nap(?,?? = ne(?) np(r'? g,,(?,F') = 

na(R np(Vf1 + h,p(r',??l (3) 

The right-hand side of eq 2 is now split into three terms 
-kTa In (n,(?)) = 

a Ua(F) + X J ( a  UaP(F,7?) no(?') dr" + 
E){v UaP(7,7')) np(7') hap(?,?') dr" (4) 

where the first term is due to the external potential, the 
second term represents the average interaction of all 
particles with a particle of type a at F, and the third term 
is the correction due to particle correlations. If the in- 
teraction is purely electrostatic and 

P 

then the integral 

C Uap(F;r'? nP(r") dr" = Z,e ai(?) (6) 

where a,(?) is the mean electrostatic potential due to the 
mobile ions in the system. If the third term in the 
right-hand side of eq 4 is neglected, i.e., if g,,(?,r'? = 1, the 
equation can be integrated directly to give 

na(9 = noa expf-[U,(R + Z,e @.,(F?l/kTJ (7) 
If furthermore one adopts the primitive model for !Yo(?) 
so that Ua(7) = Z,e @.,(?) for i: within the volume V, U,(?) 
= a, otherwise 

n,(A = nOa exp(-Z,e cP(?)/hT) (8) 
+ @i is the 

The PB equation can now be derived by taking the 

P 

where the total electrostatic potential 9 = 
sum of the external, 9,, and internal, ai, potentials. 

divergence of eq 4 and setting ha, = 0. Then 

Insertion of eq 8 into eq 9 gives the Poisson-Boltzmann 
equation, within the volume V. The approximations 
leading to the PB equation can be summarized as the 
following: 

(i) The interaction between the mobile ions in the so- 
lution is of a pure Coloumb type as in eq 5. 

(ii) The pair correlation function gaB between the mobile 
ions is constant and unity. 

(iii) The interaction between the mobile ions and the 
fixed center follows the primitive model with an electro- 
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static term and a hardwall cutoff. 
One can note that for a system containing both negative 

and positive mobile ions the assumptions i and ii are in- 
terconnected so that if the ion correlations are treated 
exactly one must a1130 introduce an additional repulsive 
term in the interaction potential to prevent the ions from 
merging. 

In evaluating the effects of neglecting the last term in 
eq 4, one can use analytical approximations to hap, pref- 
erably in terms of the direct correlation function. This has 
recently been done by FixmanZs using an equation similar 
in structure to eq 4 and by Henderson and co-workers29~30 
starting from the Ornstein-Zernike equation for a binary 
mixture, An alternative approach, which we have adopted, 
is to solve the statistical-mechanical problem through a 
Monte Carlo simulation; Recently Torrie and Valleau31 
presented such a study for a single charged wall in contact 
with an electrolyte riolution and compared the resulting 
ion distribution with that found by solving the PB equa- 
tion. 

Lyotropic Lamellav Liquid Crystals 
When experimentally studying the molecular interac- 

tions in the interfacial region between an aqueous medipm 
and a region of loweir polarity, one is often faced with the 
problem that the specific effects due to the interface are 
masked by the behavior in the bulk solution. One type 
of system where this problem can be largely overcome is 
lyotropic liquid crystals, which are formed from mixtures 
of amphiphiliic (surface active) molecules and water.25 In 
these systems the interfacial region accounts for a large 
fraction of the total sample volume. They are thermody- 
namically stable and can be characterized geometrically 
through low-angle X-ray scattering. Furthermore the 
macroscopic anisotropy makes it possible to study orien- 
tation effects. 

From a theoretical point of view these systems are at- 
tractive since eymmetry arguments can be used to simplify 
calculations considerably. The commonly studied lamellar 
systems, in particular, possess on the average a cylindrical 
symmetry. The structure of such a lamellar system formed 
by an ionic amphiphile is schematically illustrated in 
Figure 1. The amphiphilic molecules form apolar bilayers 
which are intercalated with aqueous sheets containing the 
counterions. The aqueous region also contains some dis- 
solved amphiphiles, but often to a negligible extent. 

When considering the electrostatic interactions in such 
a system, one can first note the peculiar fact that, if the 
charge on the bilayer surface is considered as uniformly 
distributed, the electrostatic potential, ae, from the two 
surfaces is constant in the intervening solution. Then the 
nonuniform distribution of the ions is determined entirely 
by the hard-wall potential and the interactions between 
the mobile ions themselves, being independent of the 
charge density of the walls. This is, in our opinion, an 
important observation, and it provides a clue to a con- 
ceptual understanding of ion binding in polyelectrolyte 
systems. It also shows that the approach used by Fixmanz8 
to discuss the electrostatic effects is inapplicable in the 
present case, for which the key equation 2.16 of ref 28 is 
of the character 0 -5 0. A further consequence of the 
geometry is that image charge effecb are absent on the 
average so that they do not appear within the PB ap- 
proximation. 

For the system o l  Figure 1 the solution of the PB 
equation givesz0 

(10) 

(11) 

NZ) -- 9(0) = (2kT/Ze) In (cos ( s z / b ) ]  

p(z )  = (totr 2kTsz/Zeb2)/cos2 ( s z / b )  
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where p ( z )  is the charge density. The dimensionless pa- 
rameter s characterizing the solution is determined through 
the boundary condition 

(12) 

where u is the surface charge density on the plates for an 
electroneutral system. If one allows for both negative and 
positive ions in the aqueous medium, the solution to the 
PB equation becomes more complex, involving elliptic 
i n t e g r a l ~ . ~ J ~  

From these two sets of solutions it was shown that the 
ion distribution behaves according to the simple rules 
summarized in the “ion condensation” model described in 
the introduction. A comparison with experimental studies 
of the ion distribution using NMR corroborate the con- 
clusions concerning these qualitative rules.17 It is clear that 
the “ion condensation” behavior is caused by the long- 
range ion-ion interactions, and it is qualitatively different 
from the behavior of systems where only short-range forces 
are involved, I t  is then a challenge to try to understand 
the particular behavior in a more rigorous statistical-me- 
chanical framework. 

Monte Carlo Simulations 
The Monte Carlo simulations were performed by using 

the well-known technique of Metropolis et a1.,32 where the 
statistical average 

s tan (s) = K = -Zueb/(B~~c~kT) 

Jf(X) exp(-U(X)/kT) d X  
(13) 

c f )  = Iexp(-U(X)/kT) d X  

x = (7& ..&) 

is approximated by a finite number of points in the con. 
figuration space 

M 

i=i ( f )  = 1/M c f (XJ (14) 

and the configurations X, are sample weighted by the 
Boltzmann factor exp(-U(Xi)/kT). The symbols M and 
U(X) are the number of configurations and the interaction 
energy of the N particle in the studied system, respectively. 
The number of particles in the systems studied ranges 
from 2 to 200, and it was found that -2000 configura- 
tions/particle was sufficient to obtain a statistical error 
of less than one promille in the energy average ( U )  , pro- 
vided a similar number of configurations had been gen- 
erated to equilibrate the system. The statistical errors were 
estimated by the aid of subaverages according to 
It  was found by test calculations that an optimal value for 
the maximum step size in the realization of the Markov 
chain was 3-6 A. The simulations were performed in the 
canonical ensemble at  a temperature of 301 K. The 
“Monte Carlo box” was a parallelepiped with the dimen- 
sion 2a X 2a X 2b, where 2b is the distance between the 
two charged plates (see Figure 1) and a is determined by 
N .  The simulations were performed at  a constant charge 
density on the plates of 1 unit charge per 71.4 .A2, which 
is a typical value fo,und in lamellar systems.25 Periodic 
boundary conditions were applied in the two directions (x  
and y) parallel to the plates. Most of the computer time 
is spent in the evaluation of the ion-ion interaction, and 
this part of the program has been written directly in ma- 
chine code using ti special technique to evaluate the SQRT 
function. The CPU time for a simulation with 8 X lo5 
configurations and 200 ions was ca. 2 h on a UNIVAC 
1100/80 system. 
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TABLE I: Convergence of the MC Simulations with the 
External Potential Q -  = 0 and b = 10.5 A'sb 
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20 13.24 1.20 6.4 0.511 
40 21.85 1.53 7.1 0.544 
80 34.50 2.28 9.0 0.602 

200 60.75 3.05 10.1 0.650 
' The units for E, S, and cmax are kJ/mol, J/(mol K), 

and M, respectively. For the definition of the entropy 
(S,), the maximum concentration (emax), and the fraction 
bound ions @ b ) ,  see the text. The statistical error in 
the simulated energy is -0.2% and in the other properties - 2%. 

TABLE 11: Convergence of the MC Simulations with the 
External Potential Cp, = QeM1 and b = 10.5 A' 

N EII EIW E W W  ETOT -SI Cmax P b  

30 17.31 -37.84 20.00 -0.53 4.47 12.8 0.719 
40 21.25 -45.56 23.79 -0.52 4.54 13.2 0.724 
60 28.06 -58.97 30.37 -0.54 4.71 13.4 0.735 
80 33.93 -70.59 30.09 -0.57 4.88 13.8 0.743 
' See footnotes in Table I. 

In the simulations the energy of a given configuration 
was calculated by using a Coulomb ion-ion interaction as 
in eq 5 and an external potential U(z) .  In all simulations 
U(z) contains a hard-wall part so that U - ~0 when 121 > 
b. To obtain insight into the long-range effects on the ion 
distribution and on the energy, simulations were performed 
with different external potentials 9,. In the limit of an 
infinite system, 9, tends to a constant independent of z. 
However, when the number of particles in the system is 
increased, the convergence with respect to the ion distri- 
bution is influenced by the choice of ae. 

The computationally simplest choice is to make 9, = 0. 
The result of such a series of simulations is shown in Table 
I. In this and the forthcoming tables we have chosen to 
characterize the ion distribution through three parameters: 
c,, the concentration of ions within a layer of 0.2 A from 
the wall; Pb, the fraction of ions within a distance of 3 A 
from the walls; and S1, the entropy, relative to an ideal 
solution, due to the inhomogeneous one-particle distribu- 
tion defined through eq 15, where F is the average con- 

(15) S1 = -R s c  In c dV + RVC In F 

centration and V = 8a2b. The concentrations c are cal- 
culated as averages over layers of thickness 0.1 A. The data 
in Table I show that the energy diverges when N is in- 
creased as it should since the system is not electroneutral. 
Furthermore the convergence in the ion distribution is 
slow, and even at N = 200 one is still far from convergence, 
illustrating the long-range character of the ion-ion inter- 
action. 

The convergence is improved considerably when the 
system is made electroneutral with a compensating 
smeared-out charge on the walls although the calculations 
are still made within the minimum image (MI) conven- 
tionSs3 In this case 

This expression is rather complex, but it is evaluated only 
once for each configuration, which makes the computa- 
tional effort negligible. The data in Table I1 show that 
the total energy ETOT has converged already at  N = 30 
while the properties of the ion distribution are not con- 
verged until N = 80. The energy ETm is calculated as the 
sum of the ion-ion (EII), the ion-wall (EIw), and the 
wall-wall (Em) interactions. Em, which does not affect 
the simulation, contains both the interaction between the 
two walls and the self-energy of the walls. 

In systems with electrostatic interactions, it is often 
useful to go beyond the MI approximation. This can be 
accomplished by making an Ewald-type summation, but, 
as pointed out by Torrie and Valleau,3l it is preferable in 
the present type of system to introduce the effect of the 
particles that are not explicitly included in the simulation 
through their average distribution. We have chosen to use 
the ion distribution of eq 11 predicted by the PB equation 
for this purpose. Then 

9eMIC(Z,u) = @,MI(z,a) + 
PPB(Z1) A- L:- L:- JbblX2 + y2 + (2 - z1)2)1/2 dx dy dzl 

47r €,to 

(17) 

where the second term on the right-hand side is due to the 
charges outside the MC box. To obtain convergence in the 
integral, it is essential to have an electroneutral system, 
and ppB contains also the charges on the walls. The in- 
tegrations over x and y can be performed as in eq 16, 
whereas the integration over z1 has to be made numerically. 
Values of the integral for different z values are tabulated 
in the program for each choice of a and b. The total energy 
is with this extension 

ETOT = EII + EIW + EI-PB + Eww + Ew-PB = 
(U)MIC + Eww + Ew-PB (18) 

where the two last terms are configuration independent. 
The inclusion of the two correction terms E 1 - p ~  and EW-PB, 
representing the interaction of external charges with the 
ions and with the walls, respectively, affeds the energy very 
little, but it improves the convergence with respect to the 
ion distribution considerably. In fact with these terms 
included a simulation with 2 ions gives almost the same 
result as one with 80 ions as seen in Table 111, and at  N 
= 20 there is convergence within the statistical fluctuations. 

TABLE 111: Convergence of the MC Simulations with the External Potential me = and b = 10.5 A' 

N E11 EIW EI-PB Ew-PB Eww ETOT -s 1 Cmax P b  

0.85 -6.41 3.40 -2.22 4.17 -0.21 5.76 14.2 0.781 
6 4.41 -13.22 3.28 -2.50 7.73 -0.30 5.27 14.0 0.758 
2 

20 12.74 -29.18 2.76 -2.39 15.68 -0.39 5.03 14.5 0.746 
21.24 -45.64 2.31 -2.11 23.79 -0.41 4.90 13.3 0.742 

0.747 
40  

28.03 -59.03 2.02 -1.89 30.37 -0.50 5.01 13.9 
80 33.94 -70.60 1.82 -1.73 36.09 -0.48 4.95 13.9 0.743 
60 

a See footnotes in Table I. 



Ion Distributions in Lamellar Liquid. Crystals 

: / i / (MJ 

z=2 2=7 ~ \ 

Flgure 2. Concisntratiori profiles between the two charged plates for 
mono- and divalent ions. The plate distance 2b = 21.0 A. The Smooth 
curves are taken from the PB equation and the two others are obtained 
from MC simulations. 

On the basis of these test calculations, a series of sim- 
ulations were performed in the MIC approximation for 
varying distances between the plates. The number of 
particles were chosen to N = 50, the displacement param- 
eter was 6 A, and 2 X lo5 configurations were generated 
in each case. 

Particle Distribution Functions 
The one-particle distribution function n(z) - c(z)  was 

calculated from the MC simulations simply by counting 
the number of ions in layers parallel to the charged walls. 
Figure 2 shows a comparison between the concentration 
profiles obtained from the simulations and from the PB 
equation for both i! = 1 and 2 = 2. The agreement is 
surprisingly good considering that the concentration close 
to the plates is -15 M. The absolute value of the error, 
i.e., the difference between the MC and P B  results, is 
largely independent of z so that the relative accuracy in 
cpB(z) is much better close to the walls than in the low- 
concentration domain. The results in Figure 2 also indicate 
that the P B  approximation becomes slightly less accurate 
for divalent ions. 

It might seem surprising that the ions concentrate close 
to the walls in spite of the fact that there is no external 
potential attracting them to the surface, but, as clearly 
shown by the data in Table I, it is the ions themselves that 
create the inhomog~eneous potential. This effect is well- 
known for conductors which always collect their net charge 
on the surface. The accumulation of counterions close to 
a charged surface can thus be attributed to the repulsion 
between the counterions that would occur in the bulk 
solution if the ions were to be there. This is a general 
effect, and, since it is due to the long-range character of 
the electrostatic interaction, it is taken into account within 
the approximations leading to the PB equation (cf. the 
second term in the right-hand side of eq 4). The neglect 
of ion-ion correlations leads to some quantitative changes 
(vide infra), but it does not change the qualitative picture. 
It is, for example, clear that ion-ion correlations are more 
important foir divallent than for monovalent ions, which 
explains the larger discrepancy between the MC and P B  
approaches in the former case. 

In relation to experimental studies of lamellar liquid 
crystals, there are some properties of the ion distribution 
that are particularly interesting. In spectroscopic studies 
of ion bindir~g,l ,~?~J~ it, is usually the ions in the close vicinity 
of the lamellar surface that are studied, and it is thus 
important to determine how the fraction of ions close to 
the wall varies with the distance b. We have chosen to 
calculate the fraction of ions, Pb,  which are within 3 A from 
the wds ,  and, as seen in Figure 3, Pb reaches an asymptotic 
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Figure 3. Fraction bound ions, Le., the fraction of ions within 3 A from 
either wall, as a function of b. The curve is obtained from the PB 
equation and the circles are MC results. 
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Flgure 4. The concentratlons in the midplane between the plates as 
a function of l lb2 .  The curve is from the PB equation and the circles 
are obtained from MC simulations. 

value as b is increased. This asymptotic value is slightly 
larger, and it is reached at  a smaller value of b in the MC 
simulations reIative to the P B  case, but also for this 
property there is good agreement between the two meth- 
ods. 

The derivatives dA/db and dA/dN of the free energy are 
related to the chemical potentials of the solvent and the 
ions, respectively. Within the PB approximation these 
derivatives are determined by the ion concentration where 
the effective force is zero.34 In the present case this is a t  
z = 0. Figure 4 shows a plot of c(0) vs. l / b 2  in which the 
PB solution gives a straight line in the limit of large b. Also 
for the MC case it appears that a straight line is obtained 
but with a smaller slope. The relatively large discrepancy 
between the two methods for this property reflects the fact 
that the relative error in the PB solution is largest a t  z = 
0. It  appears that the P B  equation is less accurate in 
determining derivatives of the free energy than for other 
properties of the ion distribution, but a cancellation effect 
in the full expression for A might invalidate this conclu- 
sion. 

From Figures 2 ,3 ,  and 4, it is clear that the ions accu- 
mulate slightly more towards the walls in the MC simu- 
lations than in the PB case. The reason is that when one 
allows for ion-ion correlations as in the MC treatment the 
near-neighbor repulsions are somewhat less than when 
g(F,F? = 1. Thus it is possible to concentrate the ions even 
more closely to the walls. This effect is quite analogous 
to correlation effects in molecular-orbital calculations 
where one obtains a contraction of the electron cloud when 
one goes beyond the Hartree-Fock approximation. 

In cylindrical symmetry the pair correlation function 
g(?,?? depends on three variables, i.e., g(r,z,zq, where r = 
( ( x  - x’)~ + (y - y’l2}lI2. Because of this three-variable 
dependence, it is computationally difficult to determine 
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Flgure 5. The pair conelation function for ions in a byer of 1-A thickness 
adjacent to either wall (z= z’= b-  1/2). The smooth curve is obtained 
from the Debye-Huckel theory with K-’ = 1 A. 
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The two first terms can be evaluated from the MC simu- 
lation by numerical derivation and integration, respec- 
tively, making it possible to determine the third term from 
eq 19. As shown in Figure 6, the third term in eq 19 is only 
of the order of a factor of 2 or 3 less than the second term, 
but it changes sign close to the wall. The accuracy of the 
calculated n(z) in the PB approximation is thus better than 
the accuracy in the approximation leading to eq 8 and 9. 
Apparently a cancellation of errors occurs in the integra- 

TABLE IV: Energies, Entropies, and Free Energies as a 
Function of the Plate Distance 2b 

E m ,  kJ/mol -7S,‘, kJ/mol A,& kJ/mol 

b, A MCd PBage MCd PBe MCd PBe 
6.0 -0.95 -0.95 4.17 4.05 3.22 3.10 

10.5 -0.46 -0.62 3.48 3.24 3.02 2.62 
15.5 -0.20 -0.44 3.12 2.81 2.92 2.37 
25.0 0.04 -0.26 2.88 2.43 2.92 2.17 
50.0 0.39 -0.10 2.65 2.09 3.04 1.99 

a The PB energy has been set equal to -0.95 kJ/mol for 
b = 6.0 A in order t o  make the comparison with the same 
reference state (see also in the text). &Defined in eq 20. 

The statistical error in the MC results is of the order of 
t O . 1  kJ/mol. MC = Monte Carlo simulation. e PB = 
Poisson-Boltzmann equation. 

tions of the differential equation. In the PB approxima- 
tion, where h = 0, eq 19 is the relation between the elec- 
trical field and the integrated charge density that follows 
from Gauss law. It is thus clear that the electrical field 
is less accurately described in the PB approximation. The 
relative error in the field from the PB equation is also 
displayed in Figure 6. As expected, the two curves in 
Figure 6 behave similarly, but the error in the PB field is 
somewhat smaller. 

Energy, Entropy, and Free Energy 
One of the more important applications of the PB 

equation is in calculations of the electrostatic contributions 
to the energy and free energy as, for example, in the DLVO 
theory of colloidal ~tabi1ity.l~ The relatively large error 
in c(0) in the PB approximation indicates, as pointed out 
in the previous section, that the derivatives of the elec- 
trostatic (free) energy also contain substantial error. Table 
IV shows the variation of EToT with the distance b. In the 
P B  case the energy E goes to an asymptotic value as E = 
E ,  + constant/b, and it seems that a similar relation holds 
for the MC simulations with ETOT(b+a) 0.7 kJ/mol 
although the statistical uncertainty is substantial. In the 
PB approach the energies are calculated relative to a 
reference state which contains only neutral species, which 
gives a different absolute value of E relative to the MC 
case. If one equates E p ~ ( b = 6 &  with E T O T ( ~ = ~ & ,  the 
relative changes in the electrostatic energy can be com- 
pared for the two methods, and the values of EPB obtained 
with this reference state are given in the second column 
in Table IV. It  is seen that there is a clearly larger change 
in energy in the MC simulations than for the PB ap- 
proximation. 

The errors in the energy might of course be partly 
canceled by corresponding changes in the entropy so that 
the free energy estimated from the PB equation may still 
be relatively accurate. A strict determination of the free 
energy and the entropy is unfortunately not possible from 
the present MC simulations since it requires, for example, 
simulations at different degrees of charging in the system. 
However an estimate of these quantities can be obtained 
by noting that the main contribution, SI, to the entropy 
comes from the inhomogeneous distribution in c ( z )  as in 
eq 15. The entropy contributions TS{ = -T(S1 - R In E )  
are listed in Table IV for the MC and PB cases. The 
second term in the parenthesis is due to the entropy of an 
ideal solution. One can note that in the PB approximation 
the tabulated values give the total entropy term since ion 
correlation effects are neglected. In the PB case the en- 
tropy term reaches an asymptotic value as S1 = SI, + 
constant/b. The same relation holds, within the statistical 
fluctuations, also in the MC simulations, but with a slightly 
smaller slope. The larger values of -TS< in the MC sim- 
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ulations are another manifestation of the fact that the 
charge distribution is more contracted in the simulations 
than in the F’B case. 

An estimate of the Helmholtz free energy can be made 
through eq 20, and the values of A are given in the last two 

(20) 

columns of Table IV. There is a cancellation effect so that 
the changes in A are smaller than in 25 and TS’. As a result 
the statistical errors in the simulations become of the same 
order of magnitude as the changes in A ,  making it im- 
possible to obtain reliable estimates of dA/db. However, 
the general trend is that A depends less on b in the sim- 
ulations than in the PB solution, although the changes are 
so small that it is liikely that higher-order contributions 
to the entropy could change this‘ qualitative picture. 

Conclusions 
The validit,y of the statistical-mechanical approximations 

inherent in the Poisson-Boltzmann equation have been 
assessed by comparing the PB solution with results from 
Monte Carlo simulations. The PB equation is derived 
from the Yvon hierarchy of particle distribution functions 
by neglecting the correlations between the mobile ions. For 
a system of equally charged ions between two charged 
plates, the PI3 equation provides a good approximation of 
the statistical-mechanical problem with respect to the 
particle distribution in agreement with several recent 
findings.2g31 The problems concerning the consistency of 
the nonlinearized PB equation discussed in many text- 
books is thus greatly exaggerated when the equation is 
applied to a polyelectrolyte system. 

This conclusion is arrived at  by comparing the ion dis- 
tributions in the PB and MC treatments and by explicitly 
calculating the correction term. The largest relative error 
appears for the concentration c(O), which is significant, 
since in the PB treatment this concentration is directly 
related to the activities of the ions and the solvent. Even 
when there is a discrepancy in quantitative terms, the PB 
solutions seem to give the right asymptotic behavior when 
the distance between the plates is increased. This is 
demonstrated for the concentrations c(O), for the concen- 
tration close to the plates as measured by Pb, and for the 
total energy. 

In the MC simulations, where one allows for the corre- 
lations between the particles, the ionis can accumulate even 
more closely to the surface, since the repulsions between 
the particles are lowered on a short-range scale through 
the correlations. That the pair correlations actually are 
of a short-rainge type is shown by determining the corre- 
lation function for the ions close to the plates. For the case 
of uniformely charged parallel plates, there is no external 
force that attracts the ions to the surface, and it is thus 
clear that the accuimulation of ions close to the plates is 
due to the repulsion between the ions themselves. This 
is a rather general effect, and it also applies in the presence 
of a salt and dso for the interior of a spherical vesicle. The 
accumulatioii of ions close to a polyelectrolyte can then 
be understood as due to the inability of the bulk solution 
to sustain a net electrical charge even over moderately large 
distances. 

A = E - TS{ 
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The policy in the present study is to investigate the 
consequences of the statistical-mechanical approximations 
inherent in the PB equation while accepting the physical 
model. It is clear that a number of features of this model 
do not apply strictly in real systems. There are thus a 
number of possible refinements that can be made, e.g., 
using point charges on the wall, introducing hard-sphere 
potentials in the ion-ion interaction, allowing for image 
charge effects, introducing dielectric saturation, or possibly 
explicitly treating the solvent on a molecular basis, etc. 
However a common feature of all of these effects is that 
they have a short-range character, and it seems possible 
that the PB equation will still give qualitatively correct 
predictions about the long-range effects as, for example, 
illustrated by the asymptotic behaviors of n(O), P b ,  and 
ETQT. 
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