
Ion-induced soot nucleation using a new potential for curved

aromatics

Kimberly Bowal1, Jacob W. Martin1,2, Alston J. Misquitta3, Markus Kraft1,2,4

1Department of Chemical Engineering and Biotechnology, University of Cambridge,

West Site, Philippa Fawcett Drive, Cambridge CB3 0AS, UK

2Cambridge Centre for Advanced Research and Education in Singapore (CARES)

CREATE Tower, 1 Create Way, Singapore, 138602

3School of Physics and Astronomy, and the Thomas Young Centre for Theory and Simulation of

Materials, Queen Mary University of London

327 Mile End Road, London E1 4NS, UK

4School of Chemical and Biomedical Engineering, Nanyang Technological University

62 Nanyang Drive, Singapore, 637459

submitted to Combustion Science and Technology

December 10, 2018

short running title: Soot nucleation using a new potential for curved aromatics

keywords: force field, curved polycyclic aromatic hydrocarbon, flexoelectric dipole, ion-induced

nucleation, soot formation

2Corresponding Author: e-mail: mk306@cam.ac.uk

1



Abstract

A potential able to capture the properties and interactions of curved polycyclic aromatic

hydrocarbons (cPAHs) was developed and used to investigate the nucleation behaviour and

structure of nascent soot particles. The flexoelectric charge polarisation of cPAHs caused

by pentagon integration was included through the introduction of off-site virtual atoms, and

enhanced dispersion interaction parameters were fitted. The electric polarisation and in-

termolecular interactions of cPAHs were accurately reproduced compared to ab initio cal-

culations. This potential was used within molecular dynamics simulations to examine the

homogeneous and heterogeneous nucleation behaviour of the cPAH corannulene and planar

PAH coronene across a range of temperatures relevant to combustion. The enhanced interac-

tions between cPAHs and potassium ions resulted in significant and rapid nucleation of stable

clusters compared to all other systems, highlighting their importance in soot nucleation. In

addition, the resulting cPAH clusters present morphologies distinct from the stacked planar

PAH clusters.
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1 Introduction

Incomplete combustion produces carbonaceous particulate matter, known as soot, that negatively

impacts combustion devices, human health and the environment (Benajes et al., 2015; Highwood

and Kinnersley, 2006). The formation of soot particles is a complex chemical and physical pro-

cess that involves gas phase chemistry of reactive precursor species and subsequent particle pro-

cesses. The transition between gas phase molecules to solid particles is the least well understood

aspect of soot formation. Proposed physical nucleation mechanisms suggest that dimerisation of

polycyclic aromatic hydrocarbons (PAHs) plays a pivotal role, but the reversibility of this pro-

cess, the high concentration of PAHs required, and the weak intermolecular interactions at high

temperatures present difficulties (Eaves et al., 2015; Wang, 2011; Chung and Violi, 2011). Simi-

larly, posited chemical inception mechanisms, which suggest stabilisation of nucleating particles

by the formation of aliphatic links between aromatic molecules, do not fully describe all of the

observed systems since they require a significant amount of hydrogen radicals and the predicted

nascent particles have a much lower C/H ratio than is found in flames (Wang, 2011).

Recently, we have proposed that interactions between curved PAHs (cPAHs) and ions may

play a significant role in soot formation (Martin, Bowal, Menon, Slavchov, Akroyd, Mosbach

and Kraft, 2018; Martin, Botero, Slavchov, Bowal, Akroyd, Mosbach and Kraft, 2018). Curved

aromatics, which differ from their planar counterparts through the integration of non-hexagonal

rings into their predominately hexagonal arrangement, are found to comprise a significant portion

of young soot particles (Botero et al., 2016; Wang et al., 2017; Martin, Botero, Slavchov, Bowal,

Akroyd, Mosbach and Kraft, 2018). This non-planar structure has been shown to produce signifi-

cant polarity in otherwise non-polar molecules. For example, coronene and corannulene are both

PAHs consisting of a single concentric arrangement of aromatic rings, although in contrast to

the planar coronene molecule corannulene is curved due to a central pentagonal ring. Coronene

is non-polar while corannulene has a dipole moment of 2.07 debye (Lovas et al., 2005), which

is similar to that of water at 1.85 debye (Shostak et al., 1991) (although a better comparison is

made with the local dipole moment at the pentagonal site of corannulene which is ≈1.63 debye
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given our previous analysis (Martin et al., 2017)). This charge polarisation is primarily due to

the strain-induced shift of the electron density from the concave to convex side of the curved

molecule, known as the flexoelectric effect (Martin et al., 2017). Experimental and computa-

tional work has determined that a representative nucleating soot molecule contains 15 rings, two

of which are pentagons, and has a dipole moment of 5.32 debye (Martin, Botero, Slavchov,

Bowal, Akroyd, Mosbach and Kraft, 2018).

The unique electrical properties of curved aromatics allow them to interact strongly with

ions, which has been recently explored for its potential in supramolecular and materials chem-

istry applications (Filatov and Petrukhina, 2010; Zabula et al., 2018). Density functional theory

(DFT) calculations have shown that the binding energy between a typical curved soot molecule

and the chemi-ion C3H +
3 is 150–170 kJ/mol, suggesting that these interactions are strong enough

to stabilise a small cluster of 1–1.5 nm at flame nucleating temperatures (1300–1500 K) (Martin,

Botero, Slavchov, Bowal, Akroyd, Mosbach and Kraft, 2018; Glassman, 1989). Experimental

evidence showing increased physical clustering with cations also supports an ionic mechanism

of soot particle formation (Carbone et al., 2018, 2017). Ion-dipole, dipole-dipole, and dipole-

induced-dipole interactions between cPAHs and ions are long-ranged, with the former scaling

with the reciprocal of the separation distance squared, and the other two as the inverse separa-

tion cubed and to the sixth power respectively. These long-range interactions are likely to be

especially significant in combustion systems where species are present in low concentrations.

Our previous work has provided insight into these molecules and their interactions using elec-

tron microscopy and electronic structure calculations (Martin, Botero, Slavchov, Bowal, Akroyd,

Mosbach and Kraft, 2018), but it remains unknown what effect these enhanced interactions have

in a large system containing many cPAHs and ions. In order to develop more detailed under-

standing of the role of cPAHs and ions in the formation and structure of nascent soot particles,

the simulation of dynamic systems is required to investigate the temperature dependent behaviour

of cPAHs and ions and the morphology of resulting nanoparticles.

Molecular dynamics uses classical mechanics to study the movement and behaviour of molec-

ular systems over time and provides valuable information about molecular interactions and ar-
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rangements of nascent soot particles (Totton et al., 2012; Chen et al., 2014b,a; Iavarone et al.,

2016; Granc̆ic̆ et al., 2016; Chung and Violi, 2011; Elvati and Violi, 2013; Bowal et al., 2018).

These simulations require an accurate description of the interactions between constituent compo-

nents, typically provided by an atom-atom potential in which the interaction energy at each point

in time is calculated as a sum of pairwise interactions between atoms. An isotropic PAH po-

tential (isoPAHAP) was developed using high accuracy intermolecular interaction energies from

symmetry-adapted perturbation theory based on density functional theory (SAPT(DFT)) (Mis-

quitta et al., 2005; Hesselmann et al., 2005; Podeszwa and Szalewicz, 2008) to provide an accu-

rate description of intermolecular interactions of PAHs (Totton et al., 2010, 2012). This potential

was an improvement from previous general hydrocarbon potentials, such as the Lennard-Jones

(van de Waal, 1983) and Williams’ (Williams, 1999, 2001) (W99) potentials, particularly at the

T-shaped dimer geometries (Totton et al., 2010; Pascazio et al., 2017).

The isoPAHAP potential uses atom-centred, molecule-specific point charge models derived

from a transferable distributed multipole model involving both charges and quadrupoles to de-

scribe the electrostatic properties of PAHs (Totton et al., 2011). This atom-centred charge-only

representation is suitable for moderately sized planar PAH molecules for which the electrostatic

interaction dominantly arises from the terminal groups where it can be modelled using atom-

centred charges. In such systems there are no substantial local dipole terms within the PAH and

the contributions from the quadrupolar terms are relatively minor compared to the dispersion and

exchange-repulsion contributions. Consequently this model has been used successfully in a num-

ber of studies of PAH systems (Chen et al., 2014b,a; Granc̆ic̆ et al., 2016; Pascazio et al., 2017;

Bowal et al., 2018). However in cPAH molecules, strain at the carbon sites results in charge polar-

isation through the flexoelectric effect, and this leads to the formation of local dipole moments at

the carbon atoms in the interior of the molecule. These dipole moments cannot be captured by the

atom-centred charge models used in the isoPAHAP model. For example, the isoPAHAP charge

model incorrectly models the electrostatic potential around the curved corannulene molecule,

as shown in Figure 2a. The dipole moment is found to be 1.73 debye, significantly reduced

from the calculated and experimentally determined values of 2.07 debye (Martin et al., 2017).
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An improved description of the electrostatic potential is provided by the distributed multipole

expansion, which describes the charge distribution of a molecule using atom-centred multipole

functions (Stone et al., 1985; Stone, 2005), but this is computationally expensive to use and not

widely implemented in molecular dynamics software. In order to examine systems containing

curved aromatics, a new potential needs to be developed that describes the flexoelectric effects

in a computationally efficient and readily usable implementation.

This work aims to study the role of cPAHs and ions in stabilising nascent soot particles by

investigating their clustering behaviour using an accurate intermolecular potential. In Section 2

an intermolecular potential (curPAHIP) is developed that is able to capture the flexoelectric ef-

fect and enhanced interactions of cPAHs and ions. Simple interaction energies for the small

cPAH corannulene are compared with ab initio calculations. In Section 3, the curPAHIP po-

tential is used within molecular dynamics simulations to provide information on homogeneous

and ion-induced heterogeneous nucleation of corannulene, in comparison to analogous systems

containing the planar coronene molecule. Clustering behaviour and resulting morphologies are

explored across a range of temperatures relevant to soot formation. These results provide insight

into how the interactions between cPAHs and ions affect the formation and structure of soot

nanoparticles and provide valuable information towards expanding current soot models.

2 Developing a potential for curved PAHs

2.1 Determining the electrostatic potential

The isotropic all-atom isoPAHAP potential is used as the foundation for developing a potential

able to describe curved PAHs. The isoPAHAP potential takes the following form,

Uab = K exp [−αab (Rab − ρab)]−

[

1− exp (−βRab)
6

∑

k=0

(βRab)
k

k!

]

C6,ab

R6

ab

+
qaqb

Rab

, (1)

where the first term is the short-range term in the Born–Mayer form, the second term is the

dispersion term damped by the Tang-Toennies damping function (Tang and Toennies, 1984), and
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the third is the point charge electrostatic term. U denotes the interaction energy, K sets the energy

unit of this term and will be taken to be 0.001 hartree in this work, α is the hardness parameter

in the Born–Mayer term, Rab is the atom-atom separation where a and b denote atomic sites

within a molecule, ρab is a shape parameter, β is the damping coefficient, C6,ab is a dispersion

coefficient, and q is the atomic point charge. Further details about the parametrisation and form

of the isoPAHAP potential can be found in Totton et al. (2010).

In this work the cPAH corannulene (C20H10), consisting of five hexagonal rings surrounding

a pentagonal ring, is used as a representative cPAH. Although it is likely too small to contribute

significantly to soot nucleation at flame temperatures (Martin, Botero, Slavchov, Bowal, Akroyd,

Mosbach and Kraft, 2018), it provides a good starting point for the development of a cPAH po-

tential with a distinct benefit of having been studied in previous ab initio studies. To incorporate

the charge distribution created by curving a PAH, off-site point charges are added to the molecule

description in a method similar to the multiple site models of water (Bernal and Fowler, 1933;

Jorgensen et al., 1983). These mass-less virtual sites are fixed at a distance of 0.047 nm directly

above each of the pentagonal carbons on the convex surface of the cPAH, as seen in Figure 1.

This distance and the corresponding point charge values, found in Appendix A, were optimised to

match DFT calculations which provide a good description of the electric potential around coran-

nulene (Martin et al., 2017). This was done using the MULFIT programme, which fits atomic

charges through a systematic reduction of the distributed multipole expansion (Ferenczy et al.,

n.d.).

[Figure 1 about here.]

This modified molecule description allows the dipole moment of corannulene to increase

from 1.73 debye (using fitted atom-centred charges (Martin et al., 2017)) to a value of 2.14

D, in reasonable agreement (< 4% difference) with the known dipole moment of corannulene.

Figure 2b shows that the electrostatic potential around corannulene after including the off-site

point charge description is in good agreement with DFT results.

[Figure 2 about here.]
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The use of the OPLS-AA forcefield for the intramolecular forces produces a geometry in

good agreement to the corannulene structure determined by X-ray crystallography (Petrukhina

et al., 2005) and DFT calculations (Martin et al., 2017). Corannulene is known to invert at room

temperature (Scott et al., 1992), however molecules are considered rigid in these simulations

since an inversion would require a coupling of the atomic charges with the geometry change.

This inversion barrier rapidly increases as rings are added and therefore this model is appropriate

for studying the interaction of ions and large curved arenes, which are observed in the flame

(Martin, Botero, Slavchov, Bowal, Akroyd, Mosbach and Kraft, 2018).

2.2 Dimer binding energies

The binding energy of a corannulene dimer was assessed as a function of the dimer separation

distance using several potential descriptions and the results are shown in Figure 3. The bowl-

to-bowl “sandwich” configuration was considered since this is likely to be a low energy dimer

configuration and SAPT(DFT) interaction energies are available (Cabaleiro-Lago et al., 2018).

All evaluations of the intermolecular potentials were performed using the ORIENT programme

(Stone et al., 2017).

From Figure 3 we see that the interaction energy is significantly underestimated using the

isoPAHAP potential. Some disagreement could be expected because, as we have discussed

above, the atom-centred charges used in the isoPAHAP potential underestimate the flexoelectric

effect. However changing the electrostatic model in the isoPAHAP potential to a full multipole

model derived specifically for corannulene or adding off-site charges do not cause a significant

improvement in the interaction energies and the error remains large at the energy minimum sep-

aration. This is because the presence of pentagonal rings increases the dispersion interaction of

the molecule by about 20%. This increase is known to occur for curved carbon nanostructures

(Gobre and Tkatchenko, 2013).

[Figure 3 about here.]

We have addressed this difference through a re-optimisation of the relevant isoPAHAP pa-
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rameters, specifically the dispersion coefficients (C6,ab) and shape function (ρab), to result in

the curPAHIP model. The parameters were simultaneously refitted using SAPT(DFT) energies,

which were weighted as in Totton et al. (2010) in order to favour more negative energies and

thus ensure an accurate potential well. Harmonic constraints were used to prevent the parameters

of curPAHIP from deviating too far from the corresponding isoPAHAP values. The resulting

parameters are shown in Table 2 (SI units provided in Appendix A), and provide a weighted root

mean square residual energy of 1.30 kJ/mol. Following Misquitta and Stone (2008) the disper-

sion damping term β is not fitted but is defined through the molecular vertical ionisation energy

I as β = 2(2I)1/2. Using the value of I for corannulene (Schröder et al., 2001), we obtain

β = 1.50 a.u.

[Table 1 about here.]

As can be seen in Figure 3, the curPAHIP potential is able to capture the interaction behaviour

of corannulene using off-site point charges and optimised dispersion parameters.

2.3 K+ binding energies

SAPT(DFT) results of corannulene dimers show that induction energy, defined as the attractive

energy due to the electron density of a molecule distorting in response to the electric field of

another nearby molecule, is a very small component of the interaction, contributing to only 4%

of the attractive energy (Cabaleiro-Lago et al., 2018). The curPAHIP potential, like isoPAHAP,

does not model the induction energy (a combination of the classical polarisation and charge-

transfer energies) as separate term, but instead absorbs the effects of the second-order induction

into the dispersion and exchange-repulsion parameters. This is reasonable when the induction

energy is a relatively small component of the total interaction energy, as it is in the interactions

of both planar and curved PAH molecules. However the induction plays a significant role when

ion interactions are involved, with energy contributions equal to or greater than those from the

electrostatic component (Tsuzuki et al., 2001; Marshall et al., 2009; Schyman and Jorgensen,

2013). Incorporating a physical term that includes dynamic polarisation and charge-transfer into
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atomic models comes at a very high computational cost due to the need for local coordinate sys-

tems for each atomic multipole, iterative solving of mutually induced dipoles, and the increased

complexity of intra- and intermolecular terms. Instead it is sometimes possible to include polar-

isation effects indirectly within non-polarisable potentials with fixed charges by computing a set

of polarised point charges obtained by treating the surrounding molecules in an average manner,

typically via the introduction of a dielectric with suitable dielectric constant. Models obtained in

this manner can be expected to be limited in that they are only applicable to the system they are

designed for and the effective charge model is valid only for large-scale homogeneous systems.

A similar strategy was employed here and an effective interaction model was developed for

a system containing potassium ions, K+, and corannulene molecules. An effective charge model

may not be appropriate for a heterogeneous system such as this since the molecular environ-

ment, and thus the polarisation, is not fixed but varies in space. Therefore we have developed an

effective interaction model by altering the exchange-repulsion and dispersion terms in a Lennard-

Jones potential form. This was done in a fitting procedure initialised from the OPLS-AA param-

eters for K+ (Jensen and Jorgensen, 2006). Ensuring accurate binding energies was prioritised

and so the K+ parameters were fit to the maximum binding energy of corannulene and K+ de-

termined from hybrid DFT with an empirical dispersion correction (B97D/cc-pVTZ), which has

been found to accurately describe binding energies of Na+-benzene interaction to within 1.3

kJ/mol compared with CCSD(T)/CBS calculations (Neves et al., 2011). The resulting parame-

ters, σ = 9.64 and ǫ = 3.43×10−8 a.u. (SI units provided in Appendix A), provide an interaction

energy of −87.7 kJ/mol. This agrees well with the binding energy of −88 kJ/mol determined

from B97D. However the model results in a reduced equilibrium separation distance of 0.25 nm

compared to 0.29 nm from DFT calculations. The underestimation of the separation provided

by this fit is considered acceptable for the work discussed here since its potential consequences,

such as increasing steric effects and corannulene-corannulene repulsion within clusters, result in

a conservative estimate of K+-corannulene interactions and clustering.
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3 Nucleation simulations

Molecular dynamics simulations were used to investigate the homogeneous and ion-induced het-

erogeneous nucleation of the small curved aromatic molecule corannulene (C20H10, 250 g/mol)

and its planar counterpart coronene (C24H12, 300 g/mol). The clustering behaviour and resulting

morphologies were explored over a range of flame relevant temperatures. As the smallest curved

PAH, corannulene is often used as a model molecule for fullerene-like species (Biase and Sark-

isov, 2013). Thus its molecular properties, such as boiling and melting points, are established

and it provides a useful system for assessing the behaviour of cPAHs in flames. Corannulene

has been found to be present in flames (Lafleur et al., 1993), however its clustering effective-

ness is expected to be less significant than those for larger curved molecules prevalent in sooting

environments due to its weaker interaction energy. Potassium is readily ionised in a flame and

has been shown to impact soot nucleation through the production of higher particle numbers and

smaller particle sizes (Haynes et al., 1979; Di Stasio et al., 2011; Simonsson et al., 2017). Due

to this known influence and the straightforward incorporation of the spherical potassium cation

within an atomic model, K+ provides a representative cation useful for exploring the interactions

of cPAHs and ions in a large dynamic system. This system thus presents an exploratory study

comparing the interactions of small curved and planar PAHs with and without cations.

3.1 Molecular dynamics methods

Molecular dynamics simulations were performed using the software GROMACS 5.1.4 (Abra-

ham et al., 2015) according to a similar methodology detailed in our previous work (Totton et al.,

2012). One thousand PAH molecules (coronene or corannulene) with and without the same num-

ber of potassium ions were randomly placed in a periodic box. This ratio and large number of

molecules ensured proper statistics of molecular interactions and cluster stability. A concentra-

tion of 2 × 1018 cm−3 allowed experimentally relevant processes to be observed in the simula-

tion timescale, as described in Totton et al. (2012). A two-step minimisation process using the

steepest descent and low-memory Broyden-Fletcher-Goldfarb-Shanno approaches removed any
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excess energy caused by the initial arrangement. Canonical simulations, defined by maintaining

a constant number of atoms, system volume, and temperature, were then conducted for 1 ns with

a timestep of 1 fs using a velocity Verlet integrator. A chain of 10 Nosé-Hoover thermostats

was used for temperature control and intermolecular cut-offs were set to 3.0 nm. Electrostatic

interactions were calculated at long range using particle-mesh Ewald summation. Intramolecu-

lar forces were determined using the OPLS-AA force field for molecule bonds, angles, dihedral

and improper dihedral angles (Kaminski et al., 2001). The isoPAHAP potential was used to de-

scribe the coronene interactions while the newly developed curPAHIP intermolecular potential

was used to describe corannulene interactions and enhanced Lennard-Jones parameters defined

the interactions between K+ and corannulene.

The clustering behaviour and resulting morphologies were explored at 500, 750, 1000, and

1500 K. Clusters were identified using a previous methodology that was shown to provide a

suitable measure of stable clusters for PAHs ranging from 4 to 19 rings in size (Totton et al.,

2012). This means that PAH molecules must be within 1.2 nm of each other for at least 20 ps to

be considered bound in a cluster. Collision efficiencies and lifetimes were calculated to provide

an assessment of nucleation propensity and stability of formed clusters. It is important to note

that in this analysis a cluster must contain at least two PAHs, i.e. a single PAH interacting with an

ion is not considered to be a cluster. Finally, cluster sizes and morphologies were also discussed.

3.2 Clustering over time

Figure 4 shows the extent of clustering for each system over time. The degree of clustering

decreases with increasing temperature such that for all systems clusters are formed at 500 K

but no lasting clusters are formed at 1500 K. At 500, 750, and 1000 K the coronene, coronene

with K+, and corannulene systems all experience a similar extent of clustering. This similarity

between homogeneous corannulene and coronene systems is unsurprising since they have very

similar binding energies (−65.7 kJ/mol for a coronene dimer (Podeszwa, 2010) and −65.9 kJ/mol

for a corannulene dimer (Cabaleiro-Lago et al., 2018)). The clustering propensity of coronene
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molecules is unaffected by the inclusion of cations in the system, in agreement with electronic

structure calculations that suggest the π-cation interactions are not strong enough to impact clus-

tering of planar PAHs (Chen and Wang, 2017).

In contrast, corannulene molecules with K+ ions experience significantly more clustering than

all other systems, with an increase of about 50% above the other systems at 500 K, 95% above

at 750 K, and 92% above at 1000 K. The degree of corannulene clustering with K+ is in fact very

similar to that of the much larger ovalene molecule (C32H14, 398 g/mol) in a homogeneous system

(Totton et al., 2012). Of particular interest is the fact that this enhanced clustering occurs to a

significant degree even at 750 and 1000 K, which is above the sublimation point of corannulene at

640 K (Chickos et al., 2002). The number of clusters formed as a function of the simulation time

(not shown) shows the same trends as those seen when examining the percentage of molecules

clustered over time, indicating that the increase in clustering is primarily due to the formation of

new clusters instead of cluster growth.

[Figure 4 about here.]

3.3 Collision efficiency

Further cluster statistics were evaluated to understand how these ion-cPAH interactions are able

to increase the amount of clustering seen. Collision efficiency is defined as the number of suc-

cessful collisions over the total number of collisions and thus indicates the “stickiness” of the

interacting components.

Collision efficiencies for all the systems and temperatures studied in this work are shown

in Figure 5a. Collision efficiencies decrease significantly with temperature since the increased

kinetic energy serves to both increase the total number of collisions and decrease the ability for

the molecules to bind strongly. The collision efficiency is the highest for corannulene molecules

with K+ ions, with a value above that observed for significantly larger planar PAHs (Totton et al.,

2012). As seen in the degree of clustering over time, the inclusion of K+ ions in the system

containing coronene molecules has minimal effect on the cluster behaviour at all temperatures
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studied. This is due to the weak bonding between the planar PAHs and cations and indicates that

the ions do not act as seeds around which the clusters of planar PAHs form. In the simulation

trajectories, we observe that few coronene molecules interact with the potassium ions even at

500 K, whereas a significant portion of corannulene molecules are bound to a cation at that

temperature.

Interestingly the nature of the high collision efficiency for corannulene systems containing K+

ions is not the same across all temperatures studied. Above 1000 K the total number of collisions

is similar between all the systems and so this high efficiency comes from a significantly higher

number of successful collisions. This highlights the importance of the ion-cPAH interaction in

promoting nucleation at high temperatures. The inverse is true at 500 K: the number of successful

collisions is relatively consistent across systems but the total number of collision events is more

than 50% lower for corannulene with ions. This may be because clustering occurs more rapidly in

the corannulene and K+ system. Due to its larger mass, the average velocity of a cluster is lower

than that of a single molecule at a given temperature, so an increase in the number of clusters

reduces movement within the system and results in fewer collision opportunities. In addition, at

low temperatures repulsive interactions between ions and polar cPAHs may play a significant role

and prevent the short-lived cluster formation seen when weak dispersive interactions dominate

the system. This is supported by the average cluster lifetimes reported in Figure 5b, discussed

in more detail later. At 750 K the number of successful collisions is approximately 275% higher

and the number of total collisions is about 30% lower for corannulene with K+ compared to the

other systems. These results show the ability of ions to promote clustering efficiency of cPAHs

across a wide range of temperatures.

[Figure 5 about here.]

3.4 Cluster lifetimes

Cluster lifetimes show the stability of clusters after they are formed, which is crucial in the un-

derstanding of soot formation. Average cluster lifetimes, shown in Figure 5b, decrease with
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temperature in all cases as expected. At low temperature (500 K), cluster lifetimes are long with

some clusters lasting for nearly the entire simulation lifetime in all systems studied. At higher

temperatures (750 K, 1000 K) the cluster lifetimes of corannulene molecules with K+ ions are

significantly higher than for other systems. At 1500 K, the average lifetimes of all systems stud-

ied are very low. Corannulene without ions exhibits slightly smaller cluster lifetimes compared

to homogeneous coronene, as expected according to its molecular weight. However the average

cluster lifetimes are much higher for corannulene with K+ than for all the other systems, with an

increase of up to 375%. These results show that at temperatures below 1500 K, the presence of

the ion is significant in promoting long cluster stabilisation for corannulene molecules.

3.5 Cluster sizes and morphologies

Figure 5c shows the maximum cluster size obtained over the simulations studied. The maximum

cluster sizes decrease as the simulation temperature increases such that only occasional dimers

are formed at 1500 K. Despite significantly higher collision efficiencies for systems containing

corannulene and K+ ions compared to the other systems studied, their maximum cluster sizes

are relatively similar. This indicates that for the simulation length considered here, the presence

of ions has a more significant role in nucleation compared to cluster growth. Figure 6 provides

snapshots of the maximum clusters formed at each temperature within the systems containing

corannulene and K+ ions.

[Figure 6 about here.]

The morphologies of clusters formed from cPAHs are significantly different than those made

up of planar PAHs. Figure 7 shows cluster snapshots at 500 K for corannulene and coronene

simulations with K+ ions. These images indicate the typical and maximum cluster sizes over

time and show observed cluster motifs.

[Figure 7 about here.]
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Coronene molecules initially interact with K+ ions in some cases although these interactions

appear short lived and homogeneous clusters are more readily formed at 500 K. Homogeneous

clusters primarily form single stacks, with some T-shaped interactions observed. Once a cluster

grows to about four or five molecules, an ion is usually integrated into the structure. The planar

PAHs cluster around the ion in a “propeller” motif, a staggered triangular arrangement which

allows the cluster to be stabilised by cation-π and CH-π interactions. A maximum of three

coronene molecules form the first solvation shell around the ion and dispersion interactions allow

π-π stacking of further molecules.

In contrast to coronene, almost all corannulene dimers and clusters contain K+ ions from very

early in the simulation. The majority of K+-corannulene interactions occur on the convex side of

the curved molecule and only a few cases in which the K+ interacts with the concave surface are

observed. This is in agreement with DFT results, which found that the K+-corannulene complex

is more stable when the cation is on the convex surface compared to the concave side (Carrazana-

Garcı́a et al., 2011). The alignment of corannulene molecules around K+ maximises electrostatic

interactions. The first solvation shell around the ion consists of three or four molecules, with

their convex surfaces pointing towards the ion, which we call a “flower” motif. This arrange-

ment allows for further interactions with additional molecules, held together by a combination

of dispersion and electrostatic interactions, to form shifted stacks extending out from the ion.

Up to four corannulene molecules are able to bind strongly with a cation in contrast to the three

molecules found for small planar PAHs (Chen and Wang, 2017).

An additional simulation of corannulene without K+ ions was conducted for 10 ns at 500 K

to provide a preliminary expected morphology of a large cluster of cPAHs for comparison with

the known structure of large clusters of planar PAHs used in many previous molecular modelling

studies investigating soot properties. Due to strong dispersive interactions, a tightly stacked struc-

ture is favoured for low energy clusters of planar PAHs, such as the coronene cluster containing

50 molecules shown in Figure 7 obtained from Chen et al. (2014b). In contrast, the large coran-

nulene cluster shown here presents a more amorphous arrangement containing many disordered

stacks containing 2–4 molecules. The cPAHs are often aligned with curved bowls slightly shifted
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or arranged such that neighbouring molecules alternate in direction. These motifs are similar to

those seen in studies examining the packing structure of solid state cPAHs (Filatov et al., 2010).

π-π and electrostatic interactions promote the formation of small stacks, while the flexoelectric

dipole enhances the CH-π interactions between the positively charged rim of one molecule and

the negative π-surface of its neighbour which promote arrangements in which molecules are per-

pendicular to each other. The combination of these two interaction types serves to stabilise the

three-dimensional structure of the corannulene cluster. This initial insight suggests that cPAHs

promote a spherical cluster arrangement more similar to the concentric-ringed structure observed

in microscopy images of soot (Alfè et al., 2009) but further work needs to be done to characterise

the structure of cPAH clusters.

4 Discussion

No significant clusters were formed at 1500 K, indicating that even with stronger ion-cPAH in-

teractions compared to planar PAHs, corannulene cannot contribute substantially to soot particle

nucleation at flame temperatures. However, corannulene molecules did cluster around cations

above their melting point, which suggests that the interactions between cPAHs and ions pro-

mote the nucleation process at high temperatures. We expect that this effect will be increased

with larger cPAHs and smaller chemi-ions. Larger cPAHs have stronger electrostatic and dis-

persion interactions due to their larger dipole moment and molecule size, and this may provide

sufficient additional binding energy to stabilise a cluster at flame temperatures. In addition, the

binding energy between a corannulene molecule and K+ ion is weaker than with a smaller cation

due to a decrease in induction, a larger distribution of charge over the ion, and steric repulsion,

particularly between the concave surface and large K+ ion (Marshall et al., 2009). This is espe-

cially significant because for small cations the binding energy is greater between the cation and

the concave surface of a cPAH compared to the convex surface, and this effect increases as the

size of the cPAH increases (Carrazana-Garcı́a et al., 2011). The fact that a small cation binds

very readily to the concave surface of a larger cPAH is supported by the high interaction en-
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ergy (−170 kJ/mol) of a 15-ringed cPAH with C3H +
3 (Martin, Botero, Slavchov, Bowal, Akroyd,

Mosbach and Kraft, 2018). This arrangement would perhaps result in a nucleus structure which

more closely resembles the experimentally observed seeds of primary soot particles from which

an onion-like structure forms. We are currently exploring the interactions of larger cPAHs using

the techniques developed here.

The models used in this study are based on accurate ab inito data, but they have important

shortcomings: first, the present version of the curPAHIP potential does not take into account

the increased polarisation of the cPAHs in proximity with the cation. This could be accounted

for using an explicitly polarisable model, but while such models can be developed, and indeed

have been for smaller organic molecules (Misquitta and Stone, 2016), we did not pursue this

development in this study due to the increased computational cost of polarisable models. Second,

while the cation-cPAH model that we have used is reasonable, the use of DFT as the reference

and the too-short minimum configuration obtained with the model both lead to uncertainties;

in particular, the latter error would lead to an increased steric repulsion between the cPAHs

directly interacting with the cation. It is quite possible that a more advanced model, and one

more carefully fitted to accurate ab initio data, will lead to more binding in systems such as those

studied here.

Nevertheless, this work clearly illustrates the importance of considering the enhanced inter-

actions present in curved carbon systems and provides insight into how the interactions between

curved carbon molecules and ions affect the formation and structure of particulates in flames.

Curvature has also been observed in many carbon structures such as glassy carbon, activated

carbon and carbon blacks (Harris et al., 2008; Harris, 2004; Terzyk et al., 2012) and it is antic-

ipated that the curPAHIP potential will be a valuable tool for describing the flexoelectric effect

present in materials relevant to many other applications such as gas storage, separations, and

microelectronics.
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5 Conclusions

Curved PAHs containing five-membered rings are present in many carbon materials, including

soot. Modelling the interactions between these molecules presents a challenge due to the flex-

oelectric dipole moment and enhanced dispersion interactions caused by the curvature. A new

potential, curPAHIP, was developed using the foundations of the previously developed isoPA-

HAP potential. In this potential, the increased polarity of the cPAH is addressed with a modified

molecule description in which off-site point charges are added to the pentagonal carbon atoms.

This method was shown to properly describe the electrostatic potential and flexoelectric dipole

moment of the small cPAH corannulene. The dispersion and shape function potential parameters

were re-optimised to match SAPT(DFT) energies and enhanced parameters were determined to

include polarisation with K+ ion interactions.

We have demonstrated the value of the curPAHIP potential by applying it to a system relevant

to soot formation. The clustering behaviour of corannulene molecules with and without K+ ions

was investigated using molecular dynamics and compared to analogous systems of the planar

coronene molecule from 500–1500 K. In comparing PAHs with similar sizes and symmetry, we

were able to highlight the effects of curvature and cations in the nucleation of PAHs. The clus-

tering behaviours of coronene, coronene with K+, and corannulene systems are very similar for

all properties examined. In comparison, enhanced interactions between the polar corannulene

molecules and K+ ions result in more rapid and abundant clustering, higher collision efficien-

cies, and longer cluster lifetimes. The morphologies of corannulene clusters present a concentric

arrangement in which bowl-to-bowl and T-shaped interactions are stabilised by dispersive and

electrostatic interactions. This is different than the highly stacked structure of planar PAHs and

perhaps more representative of experimentally observed soot particle structure. This work ex-

tends the current understanding of the role of planar and curved PAHs and ions in soot particle

formation and provides an intermolecular potential valuable for the study of systems containing

curved carbon.
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A Supplementary Data

A.1 Corannulene geometry and charges

Corannulene elements, geometry (x, y, z in nm) and charges, in the curPAHIP potential. The

element X represents the virtual mass-less atoms used to describe the flexoelectric effect, which

are held above and parallel to the pentagon ring using intramolecular forces.

35

CORANNULENE with curPAHIP charges

C 0.103 0.064 0.085 0.020

C 0.093 -0.078 0.085 0.020

C -0.045 -0.112 0.085 0.020

C -0.121 0.008 0.085 0.020

C -0.030 0.117 0.085 0.020

C 0.205 0.129 0.022 0.177

C 0.310 0.049 -0.032 -0.201

C 0.300 -0.090 -0.032 -0.201

C 0.187 -0.156 0.022 0.177

C 0.143 -0.279 -0.032 -0.201

C 0.007 -0.313 -0.033 -0.201

C -0.090 -0.225 0.022 0.177

C -0.242 0.016 0.022 0.177

C -0.296 -0.103 -0.032 -0.201

C -0.222 -0.222 -0.032 -0.201

C -0.280 0.142 -0.031 -0.201

C -0.190 0.250 -0.031 -0.201

C -0.059 0.235 0.023 0.177

C 0.049 0.310 -0.032 -0.201
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C 0.178 0.258 -0.032 -0.201

H -0.221 0.345 -0.072 0.133

H 0.031 0.408 -0.072 0.133

H 0.259 0.317 -0.073 0.133

H 0.398 0.097 -0.072 0.133

H 0.380 -0.149 -0.075 0.133

H 0.215 -0.348 -0.073 0.133

H -0.024 -0.408 -0.074 0.133

H -0.265 -0.312 -0.073 0.133

H -0.396 -0.103 -0.074 0.133

H -0.378 0.155 -0.073 0.133

X 0.103 0.064 0.132 -0.063

X 0.093 -0.078 0.132 -0.063

X -0.045 -0.113 0.132 -0.063

X -0.121 0.008 0.133 -0.063

X -0.030 0.117 0.133 -0.063

A.2 curPAHIP parameters in SI units

[Table 2 about here.]

A.3 K+ interaction parameters in SI units

σ = 0.51 nm and ǫ = 0.00009 kJ/mol
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(a) Side view (b) Top view

Figure 1: Geometry of the curved PAH corannulene (C10H20) with added off-site charges fixed

above the pentagonal carbons. Carbon atoms are shown in grey, hydrogen atoms are

shown in white, and off-site charges are shown in red.
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Figure 2: Comparison of the electrostatic potential of corannulene calculated using DFT (red)

and a potential description for implementation in molecular simulations (black). (a)

shows the isoPAHAP potential using atom-centred charges. (b) shows the curPAHIP

potential in which the electrostatic potential more closely matches the DFT results by

using off-site charges.
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Figure 3: Interaction energy versus separation distance for a corannulene dimer determined

from SAPT(DFT) calculations (Cabaleiro-Lago et al., 2018), the isoPAHAP poten-

tial, the PAHAP potential with full multipoles, the isoPAHAP potential with off-site

charges, and the isoPAHAP potential with off-site charges and re-fitted dispersion pa-

rameters (curPAHIP).
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(a) 500 K (b) 750 K

(c) 1000 K (d) 1500 K

Figure 4: Extent of molecules clustered over time for corannulene (red) and coronene (blue)

systems at (a) 500 K, (b) 750 K, (c) 1000 K, and (d) 1500 K. Solid lines represent

systems with potassium ions present and dashed lines indicate systems containing no

potassium ions. Inset figures provide a closer look at the clustering trends at high

temperatures.
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Figure 5: Cluster properties over 1 ns simulations containing planar or curved PAHs with and

without K+ ions. (a) provides collision efficiencies, (b) reports average cluster life-

times, and (c) presents maximum cluster sizes. Systems containing corannulene are

shown in red, systems containing coronene are shown in blue, and the hatching indi-

cates systems without K+ ions present.
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500 K 750 K

1000 K 1500 K

Figure 6: Maximum clusters and complexes formed in simulations containing corannulene

molecules and K+ ions at 500, 750, 1000, and 1500 K. At the highest temperature

(1500 K) dimers are rare and short-lived, so the more common and stable complex

of K+ and corannulene is shown here. Carbon atoms are shown in grey, hydrogen in

white, and potassium in purple. Off-site virtual atoms are not shown.
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coronene corannulene

100 ps

500 ps

1000 ps

Figure 7: Coronene and corannulene clusters formed at 500 K in the presence of K+ ions at

100, 500, and 1000 ps. Expected arrangements of large clusters after an extended

simulation without ions are shown for coronene (Chen et al., 2014b) and corannu-

lene molecules (bottom). Carbon atoms are shown in grey, hydrogen in white, and

potassium in purple. Off-site virtual atoms are not shown.
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Table 1: Parameters of curPAHIP in a.u.

Atom pair ρ α C6

C C 5.6563 1.8783 30.282

C H 4.9320 1.7560 12.604

H H 4.1187 1.4043 5.2179
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Table 2: Parameters of curPAHIP in SI units

Atom pair ρ (nm) α (nm−1) C6 (kJmol−1nm6)

C C 0.2993 35.49 0.0017458

C H 0.2610 33.18 0.00072665

H H 0.2180 26.54 0.00030083
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