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Abstract

The wave induced fluxes of energetic trapped ions during ICRF heating of
tokamak plasmas are calculated using the quasilinear equations. A simple single
particle model of this transport mechanism is also given. Both a convective flux
proportional to ky|E, |> and a diffusive flux proportional to ki|E|? are found.
Here, kg is the toroidal wavenumber and E, is the left-hand polarized wave field.
The convective flux may become significant for large kg if the wave spectrum is
asymmetric in kg. But for the conditions of most previous experiments, these
calculations indicate that radial transport driven directly by the ICRF wave is
unimportant.

*Permanent address: Plasma Physics Laboratory, Princeton University, N.J., USA

1




1 Introduction

Recent experimental successes[1,2,3] in heating tokamak plasmas with waves in the Ion
Cyclotron Range of Frequencies (ICRF) have demonstrated that this is one of the most
promising methods of plasma heating to reactor relevant temperatures. At the same
time, however, the experimental data indicates that the application of high levels of
radiofrequency (RF) power may lead to changes in confinement properties of heated
plasmas. A question arises as to whether these changes may be associated, at least
partly, with interaction between the ICRF waves and ions. It is therefore of great
importance to ascertain how the ICRF waves can directly affect ion radial transport.
Some aspects of this problem have recently been examined from the single particle
(test particle) perspective[4] and the quasilinear perspective[5,6]. The purpose of the
present paper is to provide a more complete analysis of the problem, to show the
relationship between the single particle and quasilinear approaches, and to assess the

importance of ICRF-driven transport for RF-created energetic ions as well as a-particles
in ignited devices.

2 Basic Equations

Consider a collisionless plasma immersed in a magnetostatic field B. In the presence

of an oscillating electromagnetic field E, B , the distribution function f of species with
charge ¢ and mass M obeys the Vlasov equation

%{+5’-Vf+%[ﬁ+%6x(§+§)]-g§=0. (1)
We split f into an average distribution function F and an oscillating distribution func-
tion F. Moreover, we transform Eq. (1) into the guiding-centre phase space. On
averaging Eq. (1) over a statistical ensemble and over the particle gyrophase o we then
obtain the quasilinear equation for F in the form

0 0 0 = 1~
— —_ . _ A — X = 2
(at+v”3£+vd V)F+< - I‘v>a+v <QF,,><e||>a 0, (2)
where _ 1 _
— q — o — -~
_ - 3
T, ——M<<E+cva)F> (3)

is the ensemble-averaged velocity space flux induced by the electromagnetic field, €j =
B /B, £ is the path length along €|, ¥ is the particle cyclotron frequency and vy is the
guiding-centre drift due to an inhomogeneity of the magnetostatic field given by

- -l
Vg — —|| € X Vﬁ (4)




We now integrate Eq. (2) over the velocity space and average it over a magnetic
surface. On defining the surface-averaged density as

N:(f%)_ f%/wp:(?{%) 2@/@@;5}4’%' (5)

where o = sign(v)|), € = v?/2, and p = v} /(2B), this yields the transport equation for
N:

e o R AR

For axisymmetric tokamaks we have
B=V¢xVV+BrRV$ =Vg x VU, (7)

where ¢ is the toroidal angle, ¥ is the poloidal flux function, Br is the toroidal field
and R is the distance from the symmetry axis. Equation (7) implies

(5),~ (455%) o
fljfl (vd VF+V. <$1‘“ x e_|’|>a)

de OF 0o /1 -
= }{ W (’Ud\ll V| — 30 + V. 5‘1“,< L, x eil> ) (8)
From Eq. (4) we find

Thus

0 ]

Vdy |V\I’[ = v”RBT(% %) (9)
Hence o BF
Yl
f{l Vag IV\I/| Wfde 4 (10)
On using Eqs. (8) and (10) we can write Eq. (6) as
ON 8 )
el il clas | pmeo) _ 11
) -0 o
where

T — (f%) QWZ/dpdef’ o < fvxé]|>a, (12)
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T - _ ( f %) RBTQTrZ / dude ]{ de|vn| 3F (13)

To proceed further, we need to know F/9¢. We shall now determine this quantity

by solving Eq. (2) in powers of A = p/R < 1, where p is a typical gyroradius of the
particle. We adopt the following ordering scheme

8 ;, 8 =
Ui ~ OV, g~ TV~ <8v r,,> ~0 (N,

V-<~é—fvx<?||> ~O0(XN), F=FR+F+.... (14)

In the first order, Eq. (2) becomes 8F /8¢ = 0, which implies Fp = Fp(¥). In the second

order we have

O0F, OF; 0 =
_5t~+v“ af +'Ud VF0+<6_,'F1)>O‘—O- (15)
If we set OF:
- _ Y| 9% / 1
F = RBTQO\I! + Fj, (16)
Eq. (15) reduces to
0Fy OF 0 =
—.T,) =0. 17
g e <aa >a (17)

Dividing Eq. (17) by v, and integratlng over £ we obtain

OF, (rde\™' rdt/8 <\ [0 =
“w-(5) FaGE ) =(F ), o

Combining Egs. (17) and (18) then yields

OF] 0 = 0 =
ot (o), (@), i)

This is the desired result. Substituting expressions (16) and (19) into Eq. (13) we get

Iy° = RBr2n Y / dude f dﬂ% (< aé:) T >a _ < ;’L T >a) (20)

Noting that

Bduded 1 .
ZWZ/dpdsa(. Z/ i av” = E/dvv” , (21)
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Eq. (20) can be rewritten as

- de\ ™ d .. (8 = B8 =
I3 .&(]55) RBr E—E/dvv||<55-Fv—%,-Fv). (22)

As one can see from Eq. (18), the last term in Eq. (22) vanishes for trapped particles.
It can be shown that in collisional transport theory[7] the radial fluxes scale as

clas ( col)p (Fcol)”
Fcol BT 11col B ’

P

(23)

where F';ol is the collisional friction force density, and the subscript p indicates the
component along the poloidal magnetic field B,. Comparing Egs. (12) and (22) we see
that the RF-induced fluxes satisfy the same scaling as in Eq. (23) but with Fi, replaced
by Fy, the latter being the force density due to the resonant interaction between the

RF waves and particles, i.e. the wave momentum destruction rate. This finding is in
agreement with a recent work.[8]

3 Ion Radial Fluxes

We shall now evaluate expressions (12) and (22) considering trapped ions that interact
with ICRF waves. For doing this it is necessary to determine the velocity space flux (3)
which, it turn, requires the knowledge of the oscillating distribution function F. Let
us assume the wave field to be of the form

E:ZE’;eXp[i(/l_c’odE—wﬁt)]. (24)
k

The same is true for § and F. The function F can then be easily found by solving

Eq. (1) linearized around F;. We obtain, noting that Fy is to be evaluated at the
banana centers,

F}; _ iq exp [i (¢ sin ¢ — ny)) [Eidn1(8) + E_Jn1(€)] ::—;L)

M n{l — wg
0 10 1 0
x [nQ (65 + —5—) += (k x &) VI — k“RBT) B\Ill Fo, (25)
where -
kJ_'vJ_ kJ_ X vy €
— , tan @ = - , 26
¢= 9 Y Tk (26)




]. ad = —
E1 = —-EE kJ_, Ez = Ekl X EI; € (27)

and J,, is the Bessel function. In writing Eq. (25) we have retained only the term
corresponding to the nth harmonic of Q since w; ~ nf is assumed. Moreover, we have

neglected terms proportional to k-7, /2, kv /Q and E’H, which is a good approximation
for ICRF waves.

We now eliminate B via Faraday’s law and combine Egs. (3), (24), and (25). Substi-

tuting the resulting expression into Egs. (12) and (22), performing the averaging over
a and the integration over £ then yields '

2 k>< 4 vi
I‘flfas=”( Wq) (?{ ) / dude =2z Bt Ty + BE_Jpia|* =25

o] Q2 n* (P
(2 12)- Qk¢BRa?P] W o

[aco (%ﬂ)zRBT (j( ) f dude ¥ ;: v”nnm B Joy + E_Joa|? ‘2%2
x [nﬂ (% + %—(%) (lzkd,BR 3‘1] R L (29)

where Q' = 90 /0, €., is defined by w; = n(Q (£,), and we have noted kyBrR — k x €|

V'tb kyRB. The notation [, , dude means that we are only integrating over the region
of velocity space representing trapped particles. The contribution of passing particles
to transport is smaller (and will be ignored here) because their orbit shifts are smaller
than the banana orbit widths of trapped particles (see Sec. 4 for more discussion of
this). Equations (28) and (29) can be combined to yield

_ 271'q)2 ( )‘1 |Etdno1 + E_J.4|? 02
v = ( M kB ?{dﬁ/B /t.p. dﬂde% oY |Q n2Q)?

& 18\ ,RB® e
[ (3 5) 40 o) F"}e:em‘r"’”"’

(30)

As can be seen from Eq. (30), the RF-induced fluxes depend on the symmetry of the RF-
spectra. Whereas I‘;‘i exists for any shape of the spectrum, I‘;‘z vanishes if the spectrum
is symmetric in kg (the toroidal wavenumber). This, however, does not imply that I'4




vanishes if the spectrum emitted by an antenna is symmetric. What is important is the
symmetry of the local spectrum at the resonance points on a given magnetic surface.
This local spectrum may have some degree of asymmetry because different spectral
components have different propagation characteristics if the rotational transform is
non-zero[9].

Estimating 0Fy/0r ~ Fp/a, where a is the minor radius, and defining p; = pB/By
we find that, for a single k, component, the symmetric flux is smaller than the asym-
metric flux by the ratio
PS
¥
Ly
For typical ICRF parameters with kgp < 1, the asymmetric flux will dominate unless
the k; asymmetry is very small.

The results derived above are sufficiently general and valid for any axisymmetric
tokamak with arbitrary cross-section of the magnetic surfaces. The expressions for the
fluxes can be considerably simplified if we consider large-aspect-ratio circular tokamaks.
To this end, let (r,8,¢) be the usual (right-handed) toroidal coordinates, where r is
the distance from the magnetic axis and 6 is the poloidal angle. In the limit r/R, < 1,
the flux surfaces become concentric circles and we can use the following conventional

model for the field:

_ keppe
n a

(31)

T 1) Bo
g@Ro’ 1+ rcos(6)/Ry’

where Ry is the major radius of the magnetic axis. Note that By > 0 for a plasma
current flowing in the positive ¢ direction. Some useful relationships in this simplified

geometry are
d¢  2mq,Ry __ Slorsind

!
B~ B T R
We now choose n = 1 and assume k;p < 1. The Bessel functions in Eq. (30) can then

be approximated as Jo = 1.0 and J, = 0.0 and the integration over ¢ and p becomes
trivial. Thus, upon substituting expressions (33) into Eq. (30), we finally obtain

B =(0,+

(32)

Ty = RB,T,. (33)

T, =T +T7, (34)
B R? cE. %k
A + b
b By [Ror]sinﬂ %: B | w t'p] ? (35)
and
B\? R? cE, > k3 & —_
IS —_ (__) +|" ks O (= 6
r Be !R(ﬂ“ sin 0| % B | «2Q8r ( t.p.th_> > (36)

res




where Ny, = [, dvFy is the density of trapped particles in the resonance layer, and

v = Jip. @0F5v] /(2N ;). Equations (30) and (34)—(36) represent the main results of
this paper.

4 A Single Particle Model

RF driven transport can also be analyzed from the single particle viewpoint. As a
particle passes through a resonance where w — kv = Q(R), it will absorb or lose some
energy from the RF. For small kjv|/w, cyclotron damping primarily affects v, which
changes the width of a banana orbit but not the radial location of the banana tip. But
for k; # 0, there are small changes in v which cause the banana tip to move radially,
thus causing net transport.

As an example of the use of the single particle model, we will briefly consider
standard neoclassical transport driven by collisions. Banana orbits in an axisymmetric
tokamak can be examined using conservation of energy, magnetic moment, and toroidal
angular momentum Py[10]:

Py = RMvs + 1RA, = RMv, - L9(r)

where RA4 = —¥(r) is the poloidal flux function. The radial position ry, of the banana,
tip of a trapped particle is given by P, = ~2W(ryp), since vy =~ v = 0 there. Using
0¥ /0r = RBy, we find that if collisions induce a change dv|| at some point along the
particle’s orbit, then the banana tip will be displaced radially by the distance

or = ——=2, (37)

(Q¢ = gBg/Mec is positive for plasma current in the positive ¢ direction.) This leads to
a diffusion coefficient for trapped particles given by

_((6r)))  p®

YPTo(6t) T 202

(38)

assuming that v, < v so that the main cause of §v, is pitch angle scattering. In the
v 2> vgn; limit, 1 is given by

9.009 x 1072Z%*Z.ssn.log A _,
Vii = A2 W3/2 sec

where A and Z are the particle’s atomic mass and charge, n, is the electron density per
cm®, and W is the particle’s energy in €V. The radial transport of passing particles will
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be ignored because their orbit shifts are typically much smaller than the banana widths
of trapped particles. The fraction of particles which are trapped is & 94/r/R. The
thermal conductivity is found from the appropriate average of Dy, over all trapped

particles, x; ~ .91/r/R(f dE exp(—E/T,)ED,,)/(f dE exp(—E/T;)E). This expression

is within 10% of the rigorous derivation of x; in the banana regime[7]:

_ 2 [mv (2T /M)
XZ3VRET
where v;; is evaluated at W = %T,

We now return our attention to the case of RF driven transport. The rate of change
of Py due to asymmetric fields is

dP, OH ¢, 84 U

it~ 86 c 96 Y64

Using E = Real (Eoexp(i [k-di — iwt)) =-VU-(1 /c)BfT/ Ot and the Coulomb gauge
V . A =0, this can be written as

ClP¢, qu¢ -
—F =7 Ip
dt w

(39)

The electric field is highly oscillatory so that averaging over time leads to zero
net change in P¢, except when a resonance occurs between E and the gyrofrequency
oscillations in ¢. The total displacement of a particle’s banana tip after it has passed
through a resonance can be related to its change in energy by integrating Eq. (39):

M Rﬂo T MwQy

where we have noted that the second term in the brackets of Eq. (39) is a perfect
time derivative and has no resonant contribution. We have also assumed that the
leading R of Eq. (39) can be treated as a constant during the integral over a resonance.
Including the small gyroradius oscillations in R could lead to additional transport,
but it would be smaller by a factor of ~ (kR)™!. A result similar to Eq. (40) can
be found by starting with the constraint on quasilinear heating found by Kennel and
Engelmann[12], v} + (v} —w/k;)? = constant, expanding to find bv = kybv?/(2w), and
inserting into Eq. (37) to get ér ~ —k”5W/(Mng)

We follow the procedure outlined by Stix[11] for calculating the change in energy
as a particle passes through a resonance. Our result will be valid for fundamental
absorption at {} = w in the kv/w < 1 limit, where W ~ §W, and finite gyroradius

9




effects involved in the usual Bessel functions or the Doppler shift of the resonance layer
can be ignored. The perpendicular components of the equation of motion are

avm q —twt
—Bt_ — Q(t)vy = —MReal (E..,:e )
Ovy

5 T Qt)v, = %Rcal (Eye_i“’t) ,

where ()(t) is the local gyrofrequency seen by the particle as it moves along the field

line. Defining u = v, + iv, and E, = 1 (E, £E,), and ignoring the non-resonant E_
term, the solution can be written as

. pt1 t .t _ ’
ulty) = e"fto ﬂdt[u(to) N _q_E+/1e_zfto(w Q)dt dt].
m to

The integral is approximated by the method of stationary phase, expanding §2(t) =
w + (Ot near the resonance, where () = v 0Q/0¢€. The change in energy as the particle
passes through a resonance is given by

My g @IE betjarinsa | 27
5W = — [|u(t — |uft :——:————|—Real u"t E e’ 0/+11r/4 —— 1.
L=75 [| ()" — | (o)l] M| (to)gE4 1)
Particles may either absorb or lose energy, depending on whether they are in or out of

phase with E,. Assuming that the wave-particle phase is random, the average change
in energy as a particle passes through the resonance layer is

W921E+’2

(W) = Mo 09/8¢)’

(41)

where all quantities are evaluated at resonance. It is also useful to know that
<(5WL)2> — (6W)? = 2W, (§W,). Defining the time required for a particle to travel
from one banana tip to the other as 75 = [d¢/ lvj|, and noting that a particle passes
through the resonance layer twice in this time, we find that the RF causes particle
banana tips to move radially at the velocity:

(6r)  2ky(6WL) (2

m’rf:TB/2_ MwﬂgTB.

Equation 41 says that particles which pass through the resonance layer slower (have
smaller (v“)m) will absorb more energy. The singularity at vy = 0 can be eliminated
by including finite k; or higher order time derivatives in the expansion of Q(t) ~
w — kyvy(t) + Qt 4 Q% /2 near the resonance. In many cases these corrections can be
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ignored since the v singularity in Eq. (41) is integrable. As Stix found, integrating
Eq. (41) over all particles leads to a finite expression for the absorbed RF power.
Likewise, integrating Eq. (42) over all particles leads to a finite total particle flux.
The number of particles per second which pass through the resonance layer is given
by 2x 27 R|By/B| [ d*vf|v)|. Each of these particles’ banana tip will move radially by
a distance (ér) o« 1/|vj|. Ignoring the small contribution of passing particles to the
transport, we calculate the total radial convective flux to be

2

Nt.p.) ]

4 _ 47R|By/B| [,,, d*vflvy|(67) _ B ( R? ke
T 2rr2m Ry By \ Ryr|sinf| w

where N, is the density of trapped particles in the resonance layer. Integrating over

the wave k, spectrum produces Eq. (35).

Although we will not go through the details here, a complete Fokker-Planck equation
for the evolution of f can be derived from this single particle model. There will be
terms proportional to (§W,) and <(5Wl)2> which describe quasilinear heating, a term
proportional to (6r) which results in I'# found above when integrated over all particles,
and other transport terms proportional to ((6r)?) and (6ré6W,). In particular, the
diffusive I'? flux of Eq. (36) is proportional to the radial diffusion coefficient

~{(87)?) — (or)? _ 2kiW_}_ (6W )
rrf ™ 2(7‘3/2) - Mzwzﬂﬁ TB )

CE+
B

(43)

5 Discussion

It is possible to assess the importance of ICRF-driven transport using Eqgs. (42) and
(43) without a detailed knowledge of (§W ), instead using a simple energy balance to
estimate its order of magnitude. During ICRF minority heating, the ICRF wave directly
heats a small concentration of resonant minority ions, which then transfer their energy
to the rest of the plasma via collisions. The resonant minority ions heat up until a
balance occurs between the RF power per particle, which is of order (§W,) /(75/2),
and the collisional drag, which is of order (W — 2T)/mw, where 7' is the rate of
energy equilibration between the minority ions and the thermal plasma which is at
temperature T. (A similar result could be obtained by using Eq. (41) relating (6W, )
to | E4|?, and using Stix’s quasilinear formulas([11] to relate |E, |* to the average energy
of the minority ions.) Assuming that the RF power is large enough so that the average
energy of the minority ions, ~ W, satisfies W > 2T, we can use the balance between
RF heating and collisional drag,

L2 (49)
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to write the order of magnitude of RF-driven convection and diffusion as

2
7= P8 72 2 Pe
V;-r ~ kyp— D rerf ™ kip®—

where kg is an average of ks over the local wave spectrum. We emphasize that the E.

dependence of V; .; and D, ,; has been hidden in the velocity dependence of these ex-
pressions. This form allows easy comparison with neoclassical transport using Eq. (38),

r4 V» — a1
r ~ ) f ~ k¢Ri__ - .
Ioee Dip/a R2q rwuy

The quantity rw;; measures the amount of pitch angle scattering that occurs in a
slowing down time, and can be written as

Zets
24 (Z2/A) (1+ W/ wel?)’

Twlii =

where (Z2/A;) = Y n;22/A;, and W, = 14.8 AT, (Zf/Ai>2/3 is the ‘critical’ energy above
which drag due to electrons exceeds drag due to ions. At moderate energies below W,,
Twvii ~ 1, while at higher energies pitch angle scattering becomes negligible. If there
is a very strong asymmetry in the wave spectrum so that k4R ~ 10 — 20, then RF
driven convection could be comparable to neoclassical diffusion if the minority ion
energy is below W,, while RF driven convection could dominate if the RF power is
sufficiently large to make the average minority ion energy exceed W,. The RF drives
particles inward if the wave is travelling in the same direction as the plasma current, or
outwards for counter-going waves. It is conceivable that antennas which preferentially
launch waves in one direction may be able to improve the confinement of the minority
ions, or may be able to remove unwanted helium ash. In the usual case however,
the wave spectrum will be nearly symmetric and RF driven convection will be small
compared to neoclassical diffusion. From Eq. (31) we see that RF-driven diffusion, in
contrast to convection, will almost always be negligible.

Strictly speaking, neoclassical particle transport proceeds at a very slow electron
transport rate which is /M, /M; slower than neoclassical ion heat transport because of
momentum conservation constraints. However, it is experimentally observed that par-
ticle transport is much faster than neoclassical predictions, and there is apparently a
strong, anomalous inward convective term as well. Therefore, we have been comparing
RF driven transport with a neoclassical diffusion coefficient which includes ion-ion col-
lisions, Eq. (38). Although Eq. (38) is theoretically only appropriate for heat transport,
it is also of the same order of magnitude as experimentally observed particle transport.

A term similar to I'; of Eq. (36) has been obtained in a recent work[4]. Among other
differences, their answer is smaller than ours by a factor of ~ (Bg/B)? because of an
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error in their Eq. (39) which used 8% /dr = RB instead of 8¥/8r = RB,. They do not
mention the existence of a convective term which depends on the asymmetry in the kg
spectrum. Furthermore, they compare RF-driven transport with neoclassical electron
particle transport, which is negligible compared to experimental observations. Although
the results of S.C. Chiu[6] are not in a form which can be easily compared with ours,
he does point out the existence of symmetric and asymmetric ICRF transport terms
and also concludes that they are usually small compared to neoclassical transport. Qur
results are in disagreement with another recent paper[5] which found an expression for
RF-driven transport that was independent of k.

Since the RF only heats the bulk plasma indirectly through the resonant minority .
lons, it is useful to ask how much broader the bulk plasma heating profile is than the
initial RF absorption profile (which is theoretically predicted to be very peaked) due to
radial transport of the intermediary resonant ions. The relevant criterion is the distance
that a particle may be displaced in an energy transfer time . (This criterion comes

from solving a model heat transport equation for the minority ions of density n, and
average energy 31,

?_anm:():?prf_w+

6t 3 Tw V. ["’W,rfanm + v (Dr,rfanm)]

in the limit of short 7w and large P,;.) Again using Eq. (44), we find RF-driven con-
vection may lead to a displacement of order Ar =V, ;rw ~ k4ppg, RF-driven diffusion

will lead to Ar = \/2D, ;1w ~ (Z:ngpng / 2), and neoclassical diffusion will lead to
(fl—r) = /2Dy p ™w ~ pe/Twvii. Since the RF power absorbed by the minority ions

is spread out by at least a distance of order (r/ R)l/ ? pp because of the banana width
alone, we can see that broadening due to ICRF-driven transport is negligible if kep < 1,
a condition which is satisfied in most experiments. Neoclassical transport may lead to
some broadening of the heating profile for moderate minority energies W < W, where
Twvi ~ 1.

It is difficult for the RF-driven heat flux to be important because of the shortness
of mw, but RF-driven particle transport can operate on a longer time scale because
collisions conserve particles. In turn, this can affect the RF heating profile, since
P.§ o nun(r) |E4(r)|? /r.[11] Most models in the past have assumed that the minority
density profile ny,(r) is simply proportional to the electron density profile. The issue
of particle transport in tokamaks is not very well understood, but it seems that ICRF
may change ny,(r) either directly, if the k; spectrum is sufficiently asymmetric that
I'# is large, or indirectly, if the minority ions become sufficiently energetic that they
become decoupled from the assumed turbulence-driven inward pinch needed to explain
the peaked density profiles observed in tokamaks.
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Although our present calculations would need some generalization before detailed
application to the case of RF-driven o transport (since our quasilinear calculations
assumed kjv)/w < 1 and our single particle calculations of (§W, ) assumed k-7 Jw < 1,
while for CIT-type parameters, 3.5 MeV a-particles have a gyroradius p ~ 3.0(v_ / v)em,
ky ~.1 cm™ and k; ~ 1.0 cm™), it is still possible to draw some general conclusions
based on Eq. (42). We can not use Eq. (44) as before since o’s are energetic because
they are produced by fusion reactions and not necessarily because they have absorbed
much RF power. Instead noting that the RF power absorbed by the a’s, P,s_,q, is of
order n, (6W.)_ /(78/2), and that the a heating power of the main plasma, Py, plasma,
is of order n,W/mw we find that the RF may displace an a-particle by the distance

Ar =V, smw ~

during a slowing down time. We expect that as long as P,f_, is small compared to
Py plasmay RF-driven transport of o’s can be ignored during their slowing down. Again,
this differs from the conclusions of a recent paper[4] because they compare RF-driven
transport with neoclassical transport, which is negligible for a’s during their slowing
down.

While transport driven directly by the RF is probably unimportant in most experi-
ments, there are a number of other mechanisms which may be playing important roles.
In some experiments, the RF may produce energetic ions which have such large banana
widths that unconfined orbit losses are important. Additional transport may be caused
by large banana width neoclassical effects, toroidal field ripple, sawtooth and fishbone
instabilities, or other instabilities.
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