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ABSTRACT.

The electromagnetic dispersion relation for two counterstreaming

ion beams of arbitrary relative strength flowing parallel to a dc magnetic

field is derived. The beams flow through a stationary electron background

and the dispersion relation in the fluid approximation is unaffected by the

electron thermal pressure. Magnetic effects on the ion beams are

included but the electrons are treated as a magnetized fluid, m -*0.
6

The dispersion relation is solved with a zero net current condition applied

and the regions of instability in the k-U space (U is the relative velocity

between the two ion beams) are presented. These results are extensions

of Kovner's analysis for weak beams. The parameters are then chosen

to be applicable for parallel shocks. We find that unstable waves with

zero group velocity in the shock frame can exist near the leading edge
v,

of the shock for upstream Alfven Mach 'number's" greater than-5-r5-. - It- i-s

suggested that this mechanism could generate sufficient turbulence within

the shock layer to scatter the incoming ions and create the required

dissipation for intermediate strength shocks.
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INTRODUCTION

The instabilities that result from the presence of two inter-

penetrating ion streams immersed in an electron background may

provide the mechanism for collisionless momentum coupling between

the two streams. The presence of a weak magnetic field can have a

significant effect on the physical process. First, gradients in the

magnetic field give rise to electron currents that can drive ion acoustic

waves unstable and increase the effective collision frequency; '

second, when the propagation is perpendicular to the magnetic field,

the magnetic field can inhibit the electrons from shorting out ion plasma

oscillations for wavelengths long compared to the electron gyroradius;

and third, whistler mode-ion beam interactions are likely to be

important, and the existence of whistler modes depends on the presence

of a magnetic field. It is this third aspect, and in particular, its

application to collisionless oblique and parallel shock wave structures,

that i s o f interest in'this- paper. - • - - - . _ _ . _

Significant among recent advances in magnetic streaming in-

stabilities and their applications to collisionless oblique shock wave

7 8
structures are the so-called "beam-cyclotron" (BC) ' and "beam-

9
whistler" (BW) instabilities. These are characterized by possible

interaction between one of the two counter streaming ion acoustic beam

modes and the electron cyclotron or whistler mode (Fig. 1). While

the BC instability does result in electron heating, it nevertheless maybe



SLOW ION ACOUSTIC
BEAM MODE

WHISTLER MODE

D56I7

Fig. 1 Schematic of the Dispersion Relation Showing the Interaction
Regions Leading to Beam-Cyclotron (BC) and Beam-Whistler
(BW) Instabilities.

-2-



inadequate as a mechanism for ion-ion momentum coupling, for this

instability can be stabilized by electron heating or by resonance broadening

7
or by ion trapping. On the other hand, BW instabilities do result in

turbulence which can suitably couple the two ion beams. The application

of BW interactions to collisionless shock structures is especially

attractive since they are found to be operative over a substantially

larger range of Mach numbers than are the so-called "magnetic counter-

streaming ion-ion" and "modified" ' two stream instabilities

associated with perpendicular shocks.

It is interesting to note that for parallel propagation (k || B )

the ion acoustic modes of the counter streaming ions uncouple from the

whistler mode in the linear BW dispersion relation cited by Biskamp
Q

and Welter. Thus, in their assumed frequency range fi . «|co|«fi' ^ * & ci ' ' ce

(fi . and fi being the ion and electron cyclotron frequencies), the
C1 C 6

whistler modes are stable. On the other hand, if one relaxes the

frequency restriction to lower frequencies, i.e. , 0<|w| « fi , then,
CG

even in the case of parallel propagation, a beam mode can, in fact,

enter into unstable interaction with the whistler leading to coupling of

the two ion beams. The object of this paper is to analyze this instability -

especially for parameters that can be related to parallel shocks.

In Section II we present an analysis of the whistler mode

instability arising in a collisionless plasma configuration consisting of

two ion beams counter streaming along the magnetic field in the rest frame

of the background electrons. In Section III we shall determine when

these unstable whistler modes can grow to large amplitude inside a
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shock front propagating along the magnetic field. These calculations

are carried out in the shock frame at different upstream Mach numbers

and at different stations within the shock thickness. The result of these

calculations is a map showing the range of Mach numbers as a function

of position into the shock for which unstable whistlers can stand inside

the shock. A summary of the results is presented in Section IV.
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LINEAR ANALYSIS

We consider an unbounded collisionless plasma consisting of two

ion beams of densities n, and n~ counterstreaming with velocities V,

and V9 parallel to a steady magnetic field B taken to lie along the positive
^^* L* - ^* O

z-axis. We assume the background electrons to be at rest. The charge

neutrality and zero current conditions give

n 1 + n 2 = n e ( 1 )

and

n. V. + n, V, = 0 (2)1 ~1 2 ~2 '

where n is the number density of electrons. For the low frequency case
C

that we are interested in, it is crucial that the zero current condition (2)

be met for arbitrary values of the beam strength (0 < n,/n < 1). ' TheL, e

electron motions are modeled by fluid equations -which are valid for wave-

lengths long compared with the electron gyroradius while the ions are

assumed to be coldr The-dielectric -ten-sor-fo-r-s-uc-h a plasma is -easily

calculated and the appropriate electromagnetic streaming dispersion rela-

tion for plane waves exp [i (k. r - cot)] for the case of parallel propagation

(k 11 B ) takes the formw i i ~o

k2c2/co2 - e^k, co) = ± i e x y ( k , o>) (3)

v/here

-5-



co
(k
~

f
~

.
co 2 -

(co2 /co2)(co-k. V )
~

ce s = ci
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(CO-k- V )2

~ ~s

(CO-k- V )
v ~ ~s'

- fi2.
CI

and k =1 k I .i ^^ i

l /? ? 1 /?
' ' are the s th

ion beam (s = 1,2) and electron plasma frequencies respectively. We note

l
In the above. CO = (4irn e /m.) ' and CO = (4nn e /mps s ' i pe e e

that within the fluid approximation, the dispersion relation (3) is unaffected

by electron thermal effects for the case of parallel propagation.

We now make the low frequency approximations that the displacement

current is negligibly small (CO « kc) and that the electrons have zero mass

( I COl « fi , CO ). Introducing the dimensionless beam density r\ = n^/n

and CO . = 2 CO , the dispersion relation (3) simplifies to
pi ps

2 2

co .pi ci
co - k- v. + n .~ ~1 — ci co - k- v, + n .~ ~2 — ci

= 0 (4a, b)

where Eq. (4a) refers to the upper signs and Eq. (4b) refers to the lower

signs. In what follows, Eq. (4b) corresponding to the lower sign will be

dropped from further consideration since its solution can be recovered from

that of Eq. (4a) by the substitutions CO -* - CO and k -»• -k. It is convenient

_atthis^ point to introduce the relative drift -velocity- U-'=~V"~= Vr;~"s'o""tha.t"we~

have V, = - riU and V0 = ( l - r i ) U where use has been made of the zero current
r**t ^ ' f̂ s **** d* ***•*

condition (2). With these substitutions Eq. (4a) simplifies to
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k2c2 co (i -
+ i . - — . - - = o (5)

co2 . fi . co + TI k- u + n . c o - ( i - T i ) k ' U + n.
pi ci ' ~ ~ ci ' ~ ~ ci

Now, for 0 < i-| < 0. 5, it is clear that the ion stream 1 has more

the role of "plasma" while 2 has more the role of "beam. " When

0. 5 < T\ < 1, these roles are interchanged. However, as the interchanges

T) *-* (1 - TI) , k-U *- - k. U
I x ' ' ' *^ t^ ^-w /-w

leave Eq. (5) unchanged, the analysis of the range 0. 5 < r| < 1. 0 would be

redundant. It therefore suffices to investigate the range 0 < r) < 0. 5.

For TI = 0, we recover the usual whistler (Wjf) and ion-cyclotron dispersion

branches given analytically by

(6)

2 1 /2
where C A = (B /47rm.n ) ' is the Alfven speed. For weak beams

A o i e

(r| « 1), the intersection points P, Q, R (see Fig. 2) between the ion beam

mode

w = (1-1) }-u - n (7)

and the W and 1C branches of (6) suggest possible strong interactions near

these points. Indeed Kovner's analysis shows that the beam-IC interaction

is stable while the beam - W interactions are unstable with growth rates

.k u
CO = — = - C * , (i = P, Q),

C1
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w

IC-

05618

Fig. 2 Superposition of the Whistler (W ) and Ion Cyclotron (IC+)
Modes for r\ = 0 With a Weak Beam Mode. The intersection
points R, P, and Q represent regions where strong interactions
can occur.
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where, from (6) and (7) , k_ and k~ depend on the slope (- U /C . ) of the

beam line. We note that the beam-cyclotron (BC) intersection shown in

Fig, 1 does not appear in Fig. 2 due to our approximation m -*• 0.

We have extended Kovner's weak beam study by solving (5) for

arbitrary values of r\ and drift Mach number M, = U/C.. By expanding

the dispersion relation (5) for small k, one readily finds

1/2
Im CO = k CA

r 2 IL ( 1 - -n ) Md" - 1 I

so that these long wavelength modes are unstable only if

M > - 1 , (8)
d [t, d - ^ ) ] 1 / 2

This condition is thus sufficient for instability, but is not necessary as we

shall see below. We should emphasize that due to the application of the

condition (2) , we are dealing only with zero-current instabilities and thus

the stronger, current-driven instabilities often treated are excluded.

The dispersion curves and growth spectrum from (5) are plotted

in Figs. 3a, b, c and d for values of r\ - 0. 1 and 0. 5 and M , - 3 and 7.

In plotting the s e,~ kU- has -been taken-to be -negative with _a view to the

application in the shock problem discussed in the following section. We

find that for r| = 0. 1, the peak growth rate CO" (CO = CO1 4- iCO") increases

only slightly from C0"~ 0. 32 fici at Md = 3 to CO" =* 0. 38fici at Md = 7. For

r| = 0. 5, the peak growth rate increases more markedly w^ith M,, rising from

CO" ~ 0. 34fi . at M, = 3 to CO" cz 0. 72fl . at M, = 7. For r\ = 0. 5, the disper-

sion curves are symmetric in k as it is impossible to distinguish the beam

-9-



Fig. 3 The Dispersion Relation (5) for: a) TJ = 0. 1, Md = 3,
b) -n = 0. 1, Md = 7; c) i\ = 0. 5_,_Md ^_3j_d) ^ ^0^5,

— ^Note-thrat~the"verti^al"Fcalenshoul"d^be mulfiplied by 1/5
in order to obtain the correct value for Im U>.
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from the plasma while for -r\ - 0. 1, the beam-like mode can be clearly

identified. We also note that in Fig. 3a the region near k = 0 is stable in

agreement -with (8) but that there is instability for a finite range of negative k.

The regions of instability in k - U space for r\ - 0. 1 and 0. 5,

obtained by setting the discriminant of the cubic equation (5) equal to zero, are

shown in Figs. 4a and 4b respectively. Also shown by dashed lines is the

generalization for arbitrary r\ of the Kovner lines. These lines give the

values of k and U (for a given r\ ) that simultaneously satisfy (6) and (7)

and correspond to the intersection points P and Q in Fig. 2. It is easy

to show that the Kovner lines always lie in the region of instability and that

they have a minimum at kCA /ft . = (4/3) l'2 =* 1. 15 for which M , =s 2. 6/( l-q).J\- ci d

This value corresponds to the relative drift such that the beam line in Fig. 2

is tangent to the W branch, i. e. , the points P and Q coalesce.

For large drift (M , -»• °°) there are unstable modes for k in the range

kC

M - - - < - = - - < ( i - ) M -
' "ci

The width of this unstable spectrum is thus

and the peak growth rate is approximately given by CO" — TJ £2 ..

These expressions are in agreement -with the numerical results shown in

Figs. 3 and 4.
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APPLICATION TO SHOCK WAVE STRUCTURE

The origin of the magnetic field turbulence associated with colli-

sionless shock waves has not been definitely established. If the instability

discussed in the preceding section has relevance for parallel shock wave

structure, then the unstable waves must be able to grow to large amplitude

inside the shock front. This requirement suggests that the phase or group

velocity of the whistler in the shock frame should be either zero or very

small in addition to the wave being unstable. Wave packets with zero group

velocity can be expected to remain in the shock front for a sufficiently long

time to reach large amplitude and generate turbulence. In the present

work, we consider only parallel shock waves for which the sound speed

Cg0 = ( Y K ( T e + T^/mj)1/2 and the Alfven speed CAO in the unshocked gas

are equal. The external magnetic field in this case remains constant and

parallel to the direction of plasma flow across the shock layer. We thus

exclude any consideration of "switch-on" shocks ^ that occur for

CSO< GAO' - - • • - - - - - . ' _ . .

We adopt the Mott-Smith formalism which supposes that the shock

layer is already a two-streaming environment for the ions. Therefore the

ion distribution function in the rest frame of the shock front is assumed

to be a linear combination of the upstream (u) and downstream (d) velocity

distribution functions, i. e. ,

f. (z. v) = nu(z) 6(v - Vu) + nd(z) 6(v - VJ.
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For simplicity, we take n (z) to decrease linearly from the upstream

value at the leading edge of the shock to zero at the trailing edge while

we assume n^ (z) to increase linearly from zero at the leading edge to

its downstream value at the trailing edge. A schematic of the density

and velocity distributions is sketched in Fig. 5. The electrons, on the

other hand, are treated as a single fluidjmoving with an average drift -

velocity, V (z), determined by the zero current condition

n
u (z) n

d (z)

~e (z) = n (z) ~u + n (z) ~d
G " G

= I1 - V z>] vu + T 1 (z ) vd
(11)

where the fraction of the total density represented by the downstream

species r\ (z) is now a function of position through the shock.

The appropriate dispersion relation is easily obtained from (5) by

doppler shifting the frequency CO by the amount k. Ve (z) -which is a

function of the position in the shock. The instability properties are

unchanged and depend only on the relative drift velocity U = V^ - YU

(which is independent of the position in the shock) and T] (z) (which is

dependent on the position in the shock). It is convenient, at this stage,

to specify all the properties and criteria in terms of the upstream

Alfven Mach number M. = V/C AQ anc* t^ie frac'tion t, of the distance

through the shock. From (1), we have

n (z) = (1 - &)

where n and HJ^ represent respectively the uptstream and downstream

densities at infinity. Thus

-14-



LEADING EDGE

JLJ

TRAILING EDGE

(Z)

D562I

Fig. 5 Sketch of the Ion Velocity Distribution Function Indicating
the Assumed Linear Variation Through the Shock.
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* Tl + T (1 - TI)

where T is the compression ratio across the shock which can be obtained

from the Rankine-Hugoniot relations (with Con = C A n ) as

(13)

(Y
T =

(Y - 1)
(for Y = 5/3). (14)

The local Alfven velocity decreases through the shock as the plasma

density increases and is given by

1/2

CA = CAO 3 + 3E,
(15)

while the local drift Mach number M , isd

V - V

4M
1 + (16)

With the help of (11) to (16), the dispersion relation in the shock

frame can be written as

where

U> + a (k) w + b (k) w + c (k) = 0
s s s

CO = CO + k . V (z)
S "" **• G

and a, b, and c, are known functions of k, M . and L,. The group velocity

of the wave 9 CO1 /3k -where w' is the real part of u> is given by

/ 9 k = - _ s ak
hj

for the unstable modes.

k
9(a b -c)

9k

24co' 2 + 16 a CO' •+ 2(a2 + b)
S S

(17)

-16-



The unstable "regions in k - M .space are as before easily obtained

by setting the discriminant of (17) equal to zero. These are presented in

Figs. 6a and 6b for two different values of £,. These figures are different

from Figs. 4a and 4b since the value of r\ varies for different values of

M A for constant £,. We see that near the front of the shock there is a

wide range of unstable wave numbers for M. >3. The growth rate is

of the order ^ c^- However, most of these waves have positive group

velocities and are swept downstream with the flow before they have

had a chance to grow significantly. Only unstable waves with nearly

zero group velocity can be expected to grow to large amplitude. In

Fig. 6a, the values of k for zero group velocity waves in the unstable

region are shown by a dashed line. Thus, Mach numbers in the range

6. 8 < M . < 9. 1 should be able to produce turbulence at £, > 0. 05 according
.A.

to the linearized analysis presented here. Such waves do not exist for the

parameter ranges shown in Fig. 6b at t, >0. 2.

Figure 7 shows the range of upstream Alfven Mach numbers for

which unstable -whistlers will stand in the shock as a function of distance

into the shock. Two immediate conclusions can be made. The first is

that the mechanism can be important only for M. > 5. 5. The second is
./V

that these waves are confined to the leading edge of the shock; unstable

waves near the middle or trailing edge will be swept downstream. This

result is in agreement with laboratory experiments that measured

magnetic field fluctuations in lower Mach number shock waves.

-17-



0)

a
o

M-l

I-LI 0)
W r-l
<U ,£>
!H OS
M +>0 » ?, 8a .s ° §

o *• a, 3

•j3 ri c^S
I a- s
3 ? -2 S

nl 0)
T3 >

^ CO
<U O
^A

fM V
.,£

O *»

" •S

•84-> SH IT)
O

nJ o N

cu
3

O *
Q) M

bo ® ̂  rt <u
« > > « ! > >

GC

-18-



24

20

16

12

8

0

D56I9

0.05 0.15 0.2

Fig. 7 Range of Alfven Mach Numbers for Which Unstable Whistlers
Will Stand in the Shock as a Function of Position Within the
Shock.
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SUMMARY

We have derived the electromagnetic dispersion relation for

two counter streaming ion beams in a stationary electron background.

The dispersion relation which is unaffected by electron pressure terms

in the fluid approximation has been solved numerically to find the regions

of instability in k - M , space. It is found that for beam-whistler

modes to be unstable, it is necessary that the relative drift Mach

number be greater than 2.0 although this condition is not sufficient for

instability. The bandwidth of k over which the unstable modes exist

is shown to decrease inversely with the relative drift velocity for

large relative drift velocities.

By modeling the shock structure in a Mott-Smith formalism

as consisting of streaming upstream and downstream ions, the linear

analysis was applied to the study of shock wave structure propagating

along the magnetic field. Invoking the criterion that only unstable waves

with zero group velocity will have time to grow within the shock

thickness, we found the range of Mach numbers for which some unstable

beam-whistler modes could grow to large amplitudes. We suggest that

this may be a possible mechanism to generate turbulence that many

experiments have shown to be associated with shock wave structures.

The plasma turbulence in turn can provide the explanation for anomalous

dissipation. However, in our model, the unstable beam-whistler modes

can stand near the leading edge of the shock only for upstream Mach

-21-



numbers greater than 5.5.

The most serious limitation of the present analysis is the restriction

k II B . For waves propagating at an angle to the magnetic field, the
*•»»•• *+*sQ

dispersion relation becomes much more complicated and electron thermal

effects have a significant interaction with the magnetic modes treated here.

The analysis presented here ought to be extended to include the stability

properties of these obliquely propagating waves. The assumption of cold

ions ought to be relaxed particularly since one of the ion species in this

study has been taken to be the shocked ions. Ion thermal effects could

have a significant effect on the stability properties of counter-streaming

ion beams. The results of the stability analysis for hot streaming

plasmas will be reported later. As a final comment, it should be

emphasized that this instability depends on having included the effect

of the magnetic field on the ions. If fi .-»0 in (4), the instability disappears.
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