
Supplementary information to the letter 
 
Ionic liquid near a charged wall: structure and capacitance of 
electrical double layer, M. V. Fedorov and A. A. Kornyshev 
 
1  Simulation Methodology 
 
1.1  Model of ionic liquid 

 We consider a 1 to 1 mixture of counter-like singly charged spheres with a short-
range repulsive Lennard-Jones potential ( ) 12

0 0( ) = 2 /ij i j
LJ Bu r k T r r r⎡ ⎤+⎣ ⎦  between the particles 

i  and j  ( Bk  - Boltzmann constant, T  - Temperature). The radii of the spheres 0r  were 0.5  
nm for cations ( 0

cr ) and 0.25  nm for anions ( 0
ar ) reflecting typical asymmetry of ion sizes in 

ILs [1]. We screened all Coulomb interactions by an effective dielectric constant * = 2.0ε , 
which accounts for electronic polarizability of the ions (see some discussion below). 
Masses of cations an anions were the same and were equal to 100 proton masses each. 
 
1.2  Simulation cell 
        We put 1050  cations and 1050  anions between two electrodes in a rectangular unit 
box with periodic boundary condition in XY-direction. We took the box size in X and Y 
direction equal to 11 nm and 40  nm in Z direction. The electrodes were modeled as two 
parallel XY square lattices of densely packed Lennard-Jones spheres with 0

wr  radii 0.11  
nm; surface charge densities on the electrodes were varied by the partial charge of those 
spheres. No image forces were thus included into the simulation. To suppress the effects 
of periodicity of the simulation cell in Z-direction, each pair of electrodes was separated by 
the 24  nm distance filled by IL, and a 16  nm slab of vacuum separating each pair from the 
next periodic image in Z direction (see Figure S1). The inclusion of the vacuum slab into 
the unit cell was done to avoid artifacts from the periodic images in Z direction [2, 3]. 

 
Figure S1. Geometry of the simulation cell shown in the XZ plane. Cations are shown as red spheres, anions 
are shown as blue spheres. The size of the particles is rescaled to make them more visible. 



 
1.3  Algorithms 
        For molecular dynamics simulations we used Gromacs 3.3 software [4, 5]. The 
electrostatic interactions were treated with the use of Particle-Mesh Ewald summation with 
3.0 nm real-space cut-off and some corrections for slab geometry proposed in [2, 3] which 
we briefly describe below. The Verlet algorithm has been used to integrate the equations of 
motion with a time step of 10 fs. We performed 24  molecular dynamic productive runs of 
25  ns at constant box volume, number of particles and temperature, preceded by 10  ns 
equilibration runs. In all runs the simulation temperature was kept at 450  K using the 
Berendsen thermostat method [6]. Each run was performed for a given charge density of 
the electrodes σ  in the interval between 80−  to 80+  μ C/cm 2 . We collected the data on 
the particle positions with 5 ps time interval. 
 
1.4  Capacitance calculations 
        Using the obtained MD trajectories, for each value of σ  we calculated the averaged 
charge distributions along the Z-axis ( )zρ  using a uniform grid with 0.025  nm distance 
between the nodes of the grid. 
        Then we calculated the total electrostatic potential tΦ  in the region between the 
electrodes as  

 ( ) = ( ) ( ),t ILz z zσΦ Φ +Φ  (1) 
where σΦ  is the potential of external electric field created by the charge on the electrodes, 
which is in the Gaussian system of units reads  

 *

4( ) = ,z zσ
π σ
ε

Φ  (2) 

         Here *ε  is the effective dielectric constant of the `background medium' in which the 
ions are dissolved. Of course, there is no solvent and solutes in an ionic liquid -- there are 
only ions which form the `solvent' to themselves. Thus the introduction of a background 
dielectric constant screening Coulomb force-fields in the simulation is a trick, which is 
aimed to take into account the effects of electronic polarisability of the particles without 
explicitly considering it. Hence, then assuming * = 2ε . ILΦ  is the potential of electric field 
created by ions of the liquid in response to the external electric field, averaged over lateral 
z-crossection . This potential can be calculated using the solution of the Poisson equation 
as 

  ( )* 0

4( ) = ( ) ,
z

IL ionz z z z dzπ ρ
ε

′ ′ ′Φ − −∫  (3) 

where ( )ion zρ is the charge density of ions averaged over lateral z-crossection. The 
integration was done numerically using the trapezoidal rule. Fig. S2. shows the potential 
profiles ( )U z  across the simulation box in z - direction as  

 ( ) = ( ) ( ),t t mU z z zΦ −Φ  (4) 
where = 12mz  nm which corresponds to the position of the middle of the IL slab. These 
curves reveal about 10 nm wide electroneutrality region in the middle of IL slab, so that the 
double layers at each electrode do not overlap. Hence we can consider each double layer 
separately. 
       Using these equations we obtain a relationship between the electrode surface charge 
density and the electrode potential, which is shown on Fig. S3. The numerical 



differentiation of this curve returns us the differential capacitance of one interface. 

 
Figure S2. Potential profiles ( )U z  across the simulation cell in Z direction. The potentials are shown for 
three different values of the absolute values of the charge density of the electrodes σ as labelled.  

 
Figure S3. Relationship between the electrode surface charge density σ and the electrode potential U. Points 
shown as circles are calculated from the results of molecular dynamic simulations performed for a model IL in 
which cations are twice as large as anions; to guide eye they are connected by dashed lines. 

 
1.5  Potential of Zero Charge 
       We have estimated the potential drop between the electrode surface and the bulk of 
the gap in this model emerging spontaneously at zero charge of the electrode. To the 
accuracy of 1±  mV we found this potential of about 23−  mV = 0.6 bk T  at 450 K. This is 
indeed a small shift, but it is difficult to expect but it is difficult to expect the potential of zero 
charge (pzc), 0U , to be substantially larger, as in the employed model we have neither 



specific adsorption, nor image forces. Still, just due to the entropy contribution, smaller 
anions statistically come closer to the electrodes than the cations, filling the voids between 
the latter. This minor excess of anions near the hard wall gives rise to this small negative 
spontaneous potential drop. Importantly, the position of the main maximum corresponds to 

300+  mV, relative to the bulk. Thus it is obvious that the position of the maximum has 
nothing to do with the pzc, unlike the situation of a mixture of ions of the same size [7]. 
There, at γ  >1/3 (see the definition of γ  below), the maximum should be at pzc, and pzc, 
measured relative to the bulk should be exactly equal to zero. 

 
1.6  Correction to 3D Ewald summation for systems with slab geometry 
        Yeh and Berkowitz [2, 3] proposed an efficent way to calculate the electrostatic 
interactions for systems with slab geometry using the standard Ewald summation 
technique in conjunction to a correction term. Here, for the sake of completeness we briefly 
outline the main idea of the method, the details of which are well described in their papers 
[2, 3]. 
         Let us consider a system of N point charges iq  with vector-coordinates ir  in a 
rectangular simulation cell with lengths { , , }X Y ZL L L  in { , , }X Y Z  dimensions. Let as assume 

that the system satisfies the charge neutrality condition 
=1

= 0N
ii

q∑ . 
         When the boundary conditions are periodic in all three dimensions, there are few 
standard algorithms of treating the electrostatic interactions in such systems using the 3D 
Ewald summation technique. One of the most popular is the Particle Mesh Ewald (PME) 
algorithm [8] which we are using in this work. 
         Generally, there exist some formulae for treating the electrostatic interactions in the 
case when only two dimensions (say, X and Y) are periodic - so called 2D Ewald 
summation technique [9]. However, this method is much more computationally expensive 
that the 3D-like method. One of the simplest approaches to employ the efficient 3D 
algorithms for a system with 2D geometry is to use a simulation cell with a slab of empty 
space in Z direction between the periodic images. For ion-molecular systems, it was done, 
e.g. in Ref. [10]. However, Spohr [11] and, later, Yeh and Berkowitz [2, 3] have shown, 
that, even with a slab which is four times larger than the maximal distance between the 
charges, this approach does not provide a reasonably accurate treatment of electrostatic 
interactions. Instead, Yeh and Berkowitz [2, 3] proposed an approximate correction term 

iFΔ  to the electrostatic force iF  acting on a particle with charge iq , the { , , }X Y Z  
components of which are given as 
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where ZM  is the z component of the total dipole moment of the simulation cell M , and V  
is the volume of the unit simulation cell given by X Y ZL L L . It has been shown in Ref. [2, 3], 
that this correction provides accurate treatment of electrostatic interactions when:  

 = ,Z X YL L LΔ ≥  (6) 
where ZLΔ  is the thickness of the vacuum slab in the unit cell. We have used this 
technique in the present study, having set the geometry of our unit simulation cell to satisfy 
this condition. 

 



2  Extended Mean-Field Theory 
 

2.1  Diffuse layer capacitance 
        Modification of the mean-field theory of the diffuse double layer in ionic liquids, which 
takes into account the nonequal size of cations and anions was described in detail in Ref. 
[12]. In short, the equations that we have used in the main text of the Letter are Eq. (20) 
and Eq. (25) of Ref. [12].  
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 Here  

 0 =
4 D

C
L
ε
π

 (8) 

is the linear Gouy-Chapman or ``Debye'' capacitance, in which 
21 4=

D B

e c
L k T

πκ
ε

≡   

 and c  is the average salt concentration in the bulk, e is the elementary charge,  
Bk T  thermal energy, ε  the intermediate frequency dielectric constant of ionic liquid, 

extrapolated from the height of a semicircle on a Bode impedance plot, the quantity close 
to 10 varying slightly from liquid to liquid [13]. 1 
         Let us denote local concentrations of cations and anions as c+  and c−  
correspondingly. In the bulk 0= = = / 2c c c c+ − . Let us introduce a parameter γ  which 
reflects the sparsity of the particle packing in the liquid as [12]:  

 02= ,
max

c
c

γ  (9) 

where maxc  is the maximal possible local concentration of ions (both cations as well as 
anions). 
         The dependence of γ  on electrode potential will be approximated by a simple 
sigmoidal curve, interpolating between the value characteristic for the cation-rich layer and 
that of the-anion rich layer (positive electrode polarization): 

 ( ) ( )0

= .
1 exp ( ) / B

U
e U U k T
γ γγ γ + −

−

−
+

+ −
 (10) 

 where andγ γ+ −  are the γ  parameters for cations and anions, correspondingly. When 
comparing the results of this approximation with our simulations, we determine the values 
of ( )γ + −  from the ratios of maximal cation (anion) density in the cation (anion) rich regions to 
the average ion density in the bulk. For our system we obtained = 0.5γ + , = 0.07γ − . For 
simplicity we did not allocate any special voltage-scaling parameter that controls the rate of 
the transition between andγ γ+ −  as a function of / BeU k T  . 
                                            
1 This value of ε  must not be confused with the value of *ε  , the electronic polarizability dielectric constant 
which screens the force-fields in our simulations. ε  represents the dielectric response of all the ``dipole 
active degrees of freedom'' of the ionic liquid.  



 
2.2  Compact layer contribution. 
        To approximate the total capacitance we add a compact layer capacitance in series 
(Eq.(37) of Ref. [12]):  

 1 1 1=
tot d cC C C

+  (11) 

 Together with the expression for dC  this will comprise the Extended Mean Field Theory 
(EMFT). 
         Although the dependence of the compact layer contribution, cC  , could be quite 
complicated and include the properties of the metal (see the corresponding Section in Ref. 
[12], we assume here a simple Stern model, compatible with the level of `complexity' of our 
simulation model:  

 = / 4cC dε π%  (12) 
Here d is the distance of the closest approach of an ion to the electrode surface, and ε%  is 
the effective dielectric constant of the compact layer, the value somewhat smaller then ε . 
This is the only adjustable parameter of the Stern layer, because the dependence of d on 
electrode potential, in the spirit of our approximation for γ , is interpolated by the equation, 

  ( ) ( )0

=
1 exp ( ) / B
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e U U k T
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−
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 where ,r r+ −  are the Van der Waals radii of cations and anions, respectively. 
 
2.3  Dielectric parameters 
        The values of dielectric constants used to plot the EMFT curve of Fig.1 for simplicity 
are taken the same as in Ref. [7] = 7ε , = 5ε% . In principle, to compare the results with 
simulations, one should use the value of ε  that corresponds to the simulated model. Such 
value could, in principle, be obtained via the MD simulations of the bulk dielectric properties 
[14] of a taken model of ionic liquid, reducing the number of adjustable parameters to one, 
ε% . However, the accuracy of such calculations is usually low and in any case, we do not 
expect this value to be considerably different. The used values of ε  and of ε%  that provided 
good fit look very reasonable.  
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