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Ionic screening and dissociation are crucial for
understanding chemical self-propulsion in
polar solvents

Aidan T. Brown,*a Wilson C. K. Poon,a Christian Holmb and Joost de Graaf*ab

Polar solvents like water support the bulk dissociation of themselves and their solutes into ions, and the

re-association of these ions into neutral molecules in a dynamic equilibrium, e.g., H2O2 " H+ + HO2
�.

Using continuum theory, we study the influence of these association–dissociation reactions on the

self-propulsion of colloids driven by surface chemical reactions (chemical swimmers). We find that

association–dissociation reactions should have a strong influence on swimmers’ behaviour, and therefore

should be included in future modelling. In particular, such bulk reactions should permit charged swimmers

to propel electrophoretically even if all species involved in the surface reactions are neutral. The bulk

reactions also significantly modify the predicted speed of chemical swimmers propelled by ionic

currents, by up to an order of magnitude. For swimmers whose surface reactions produce both anions

and cations (ionic self-diffusiophoresis), the bulk reactions produce an additional reactive screening

length, analogous to the Debye length in electrostatics. This in turn leads to an inverse relationship

between swimmer radius and swimming speed, which could provide an alternative explanation for

recent experimental observations on Pt-polystyrene Janus swimmers [S. Ebbens et al., Phys. Rev. E: Stat.,

Nonlinear, Soft Matter Phys., 2012, 85, 020401]. We also use our continuum theory to investigate the

effect of the Debye screening length itself, going beyond the infinitely-thin-screening-length approximation

used by previous analytical theories. We identify significant departures from this limiting behaviour for

micron-sized swimmers under typical experimental conditions and find that the approximation fails entirely

for nanoscale swimmers.

1 Introduction

The 20th century witnessed a revolution in condensed matter

physics, due to the ready availability of well-characterised

colloidal particles (1 nm to 10 mm in size). These particles are

often viewed as ‘large atoms’: they are small enough to be subject

to Brownian motion, and thus to all the machinery of equili-

brium statistical physics, but large enough that their microscopic

dynamics and interactions can be observed and tuned. Studying

colloidal particles has led to fundamental breakthroughs.

Most notably, the observation and subsequent understanding

of Brownian motion in colloidal systems1 led to acceptance of

the molecular picture of matter.

Moving into the 21st century, physicists have started to recruit

colloids to tackle systems that are intrinsically out-of-equilibrium,

specifically where the components are themselves self-propelled.

This is the field of ‘active matter’. A wide range of novel, self-

propelled colloids2–9 have been synthesised—see example sketches

in Fig. 1 for two designs relevant to this work. Such self-propelled

Fig. 1 Cartoon of the two paradigmatic chemical swimmers discussed in the

text. Both swimmers move at a few mm s�1 in 10% H2O2 solution, powered by

the decomposition of H2O2 on their surfaces. (a) Bimetallic (typically gold–

platinum) rod,2 of typical length 2 mm and width 300 nm. The accepted

propulsion mechanism for these swimmers is via a H+ current, as shown.

(b) Platinum–polymer (usually polystyrene) Janus sphere,3 of typical radius 1 mm.
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colloids are intrinsically out of equilibrium—they continuously

transform chemical, thermal, or electromagnetic energy into

directed motion—and recent work has focussed on using these

systems to experimentally explore exciting non-equilibrium phenom-

ena such as phase separation and collective motion.10–13

In parallel with this research, much work has gone into

understanding the experimental propulsion mechanisms at the

level of surface chemical reactions.2–4,14–17 Working out how

these tiny motors function is a fundamental problem in its own

right. However, understanding the propulsion mechanism is

also an essential first step in understanding the experi-

mental collective behaviour. This is because unlike biological

swimmers such as E. coli, where the biochemical reactions

responsible for propulsion take place internally, synthetic

swimmers are usually propelled by surface chemical reactions

that directly modify the chemical, electrostatic, or temperature

fields of their surroundings. These fields modify the propul-

sion speed of other swimmers, generating so-called ‘phoretic’

swimmer–swimmer interactions in addition to the hydrodynamic

and contact interactions experienced by all swimmers.18–21 As

these phoretic interactions are directly coupled to the chemical

reactions responsible for propulsion, knowing how artificial

swimmers self-propel is essential for understanding their

collective behaviour.

This bottom-up approach contrasts with the tactic employed

by most theoretical modellers of active matter, which is to

explore the phenomenology arising from minimal or effective

models of swimmer–swimmer interactions, by which we mean

models that have no explicit connection with microscopic para-

meters. Minimal models include the Vicsekmodel22 or the active

Brownian model23,24 which considers only contact forces, while

more complex, but still effective, hydrodynamic25–27 and phore-

tic models18,28–31 are now also being explored. This research is

valuable in unlocking generic non-equilibrium physics principles

and is often able to reproduce experimental behaviour (phase

separation, etc.) surprisingly well. However, it is often unclear

whether such agreement is due to judicious tuning of parameters,

or whether there is a real correspondence in generic physics so

that details do not matter. In lieu of a general theory for non-

equilibrium physics, only in-depth knowledge of the microscopic

physics for specific swimmers is likely to allow the resolution of

this issue. If a microscopically justified model predicts the same

phenomenon as generic models, then details may indeed not

matter. On the other hand, if a microscopic model fails, then new

physics is indicated.

That said, current understanding of self-propulsion mecha-

nisms is often very incomplete, and hence the necessary founda-

tions for models which can reproduce multiparticle behaviour

from a bottom-up perspective are lacking. In particular, most

research so far has focussed on unravelling the surface chemistry

of the swimmer itself.2,14–17,32–34 This is understandable and

necessary, but it has meant that other aspects, such as the

chemistry of the bulk solvent, have been neglected.

In this article, we show that taking into account the chemistry

of common polar solvents such as water and hydrogen peroxide,

significantly, and often qualitatively, modifies the predicted

propulsion behaviour of almost all self-propelled synthetic

swimmers. In this first study, we limit our discussion to the

propulsion of single particles, because this is a necessary first

step in understanding more complex behaviour. For most of the

paper, we also do not go into the details of the surface chemistry,

which are not well understood. This allows us to highlight the

bulk solvent effects, at the expense of explicit predictions for the

propulsion speed. However, in Section 7, in order to compare our

results with experiments, we do examine the predicted propul-

sion speed obtained with suitably simple assumptions for the

surface chemistry. One of the main conclusions of our paper is

that more detailed experimental studies of both the surface

and bulk chemistry are crucial for a detailed understanding of

self-propulsion.

2 Chemical propulsion
2.1 Self-electrophoresis

We discuss here the most experimentally typical self-propelled

colloids, which we term ‘chemical swimmers’. They are most

easily defined by example. Fig. 1 shows two chemical swimmers,

both powered by the catalytic decomposition of hydrogen peroxide

on their surfaces. Because the colloid surface is anisotropic, this

reaction produces chemical gradients which, via interaction with

the particle surface, eventually lead to self-propulsion.

We say ‘eventually’ because the propulsion mechanism of

these swimmers is somewhat involved. For the example given in

Fig. 1a, H2O2 decomposition does not occur just by the simple

chemical reaction

2H2O2 - 2H2O + O2, (R1)

but also occurs partially electrochemically, with two half reac-

tions taking place preferentially on the Au or Pt surfaces2,4 for

example

H2O2 �!
Pt

O2 þ 2Hþ þ 2e�;

2e� þ 2Hþ þH2O2 �!
Au

2H2O:

(R2)

These half reactions produce a proton gradient outside the

colloid, which generates a local electric field. The colloid sur-

face, like most surfaces in water, is charged, so this electric

field causes electroosmotic flow over the colloid surface, leading

to self-propulsion. This propulsion mechanism is called ‘self-

electrophoresis’.4 The electric field also generates a proton

current outside, which is balanced by an electric current inside

the conductive swimmer.

A large body of experimental evidence confirms that self-

electrophoresis is the appropriate propulsion mechanism for

these bimetallic swimmers. For example, their propulsion speed

scales inversely with salt concentration,11,16 which is expected

from a simple application of Ohm’s law. Recent results16,17

indicate that self-electrophoresis is also the appropriate propul-

sion mechanism for the type of colloid shown in Fig. 1b, which

has a single metallic coating. This is at first surprising because

there is no obvious mechanism for producing the ionic gradient
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needed for self-electrophoresis. However, geometrical differences

between the equator and pole of the catalytic coating, such as

thickness variation, may couple to the half-reaction rates in (R2)

and so provide the necessary asymmetry.17 In this paper, we go

further and show that these effects are not limited to swimmers

that can support ionic currents. All swimmers in aqueous

solution are likely to be self-electrophoretic to a major degree,

whatever their surface reaction mechanism.

2.2 Surface chemistry

Before we discuss the effects of the bulk solution, we point out

one general difficulty with self-electrophoresis that will also

apply to other complex propulsion mechanisms. This is that the

relevant surface reaction rates are extremely hard to measure. The

overall reaction rate (R1) can be easily obtained by measuring

reactant or product concentrations,16,17 but for self-electrophoresis

the important rate is the proton production rate (R2), and this

is likely to make up only a tiny proportion of the overall

reaction, with the remainder proceeding via (R1).2 Measuring

the rate of an individual reaction pathway like (R2) is challenging,

and has not yet been done, to our knowledge, for any self-

propelled particle.

This would not be a problem if we could predict these rates.

However, surface catalysis is a notoriously sensitive phenomenon,

and these surface reaction rates are likely to vary unpredictably

with almost every parameter, e.g., pH, ionic strength, and surface

roughness.35 Reversing the argument, the only currently available

method of estimating these reaction rates is from the particle

propulsion velocity itself. That is, with a sufficiently accurate

microscopic model, the surface reaction rates can be inferred from

the propulsion speed.32 The catalytic chemistry of micro- and

nanoparticles is of huge industrial importance, so this provides

another major motivation for obtaining a detailed theoretical

understanding of self-electrophoresis.

2.3 Bulk chemistry

At first glance, the chemistry of the bulk solution is much

simpler than that of the surface. However, a polar solvent such as

water presents two complications which have not yet been fully

taken into account. The first of these is electrostatic screening.

In so-called phoretic mechanisms, such as self-electrophoresis,

fluid flow is generated in a layer around the particle surface.

In self-electrophoresis, the thickness of this interaction layer is

given by the electrostatic screening or Debye length k�1: outside

this screening layer, the free charge density, which is responsible

for fluid flow, decays rapidly to zero.

Analytical studies typically make use of a thin-screening

approximation kac 1, where a is the swimmer radius, because

this dramatically simplifies the calculation of propulsion

speed, flow fields, etc.16,17,33,36 However, this assumption is

not generally valid: k�1 is of order 100 nm for an experimentally

typical 3 M H2O2 solution,
16 and active colloids typically range

in size from 10 nm37 to 10 mm.15 In this paper, we show that the

thin-screening approximation can be dropped from analytical

calculations, and that this dramatically reduces the predicted

propulsion speeds, by up to several orders of magnitude for

nanoscale swimmers. To the best of our knowledge, this result

has not been shown even with numerics, such as the finite

element method (FEM), for which the thin screening approxi-

mation is not employed.14,34 Here, we use FEM calculations to

verify the analytical results.

The second complication of aqueous and similar polar

environments is that the solvent is not chemically inert. It is

an ‘active fluid’ that can be driven out of chemical equilibrium

by the reactions on the particle surface. This consideration has

been appreciated for biological fluids such as the cytoplasm,20

where biomolecules are continuously synthesized and broken

down, but it is also true for simple fluids like water which

permit the ionic dissociation of both themselves and any polar

solutes, e.g., H2O " H+ + OH� and H2O2 " H+ + HO2
�. The

implications of these reactions for self-electrophoresis are the

main focus of this paper. The most striking implication is that

a gradient of a neutral molecule like H2O2 will result in ionic

gradients, here of H+ and HO2
� ions, which will themselves

produce electric fields. This means that a surface reaction with

only uncharged species like H2O2 or H2O can itself generate

self-electrophoretic propulsion.

It is worth highlighting that these bulk reactions should also

qualitatively modify interparticle interactions. To demonstrate

this, we describe an effect called ‘reactive screening’,20which will

underlie much of our later discussion. We illustrate this effect

with a simple 1Dmodel, see Fig. 2. Let an unchargedmolecule of

diffusivity D be produced uniformly at a plane surface z = 0 and

consumed in the bulk (z 4 0) with rate g. The steady-state

concentration profile c(z) then obeys

D
@2c

@z2
¼ gc; (1)

where diffusion, on the left, is balanced by consumption, on

the right. The solution to eqn (1) is an exponentially screened

concentration profile, c = c0 exp(�qz), with c0 the concentration

at the surface, and the reactive screening length q�1 = (D/g)1/2.

This uncharged model has been applied to the diffusiophoresis

of small particles inside a biological cell, where the relevant bulk

reactions are the breakdown of biomolecules in the cytoplasm.20

With self-electrophoresis, as we shall see, reactive screening

Fig. 2 Schematic representation of the simple 1D molecular screening

model introduced in the text. A wall releases molecules (red triangles) which

diffuse with D (black arrow) and are consumed in the bulk with a rate g (blue

symbol). This leads to an exponential decay of the concentration, as indicated

using the dashed red line and continuum-level red gradient.
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can also exponentially screen the electrostatic potential, effec-

tively turning off the long-range electrostatic interactions, which

would otherwise be inevitable. Hence, this reactive screening is a

qualitatively new effect of bulk reactions, which cannot be

ignored a priori even at the level of phenomenological models

of collective motion.

3 Overview of main results

The theory of self-electrophoretic propulsion is mathematically

involved, even without the introduction of additional bulk

reactions, so we will use this section to sketch out our main

results in advance. This will necessarily skim over or simplify

many relevant details that will be addressed fully in later

sections.

3.1 Overall framework

Our main mathematical result is that the self-electrophoretic

propulsion speed of an arbitrary, uniformly charged, spherical

swimmer can be written, if a suitable linearization is applied,

in the form

U = USM( js, csalt, s,. . .)F(ka)B(qa,. . .), (2)

where USM is the ‘standard model’ propulsion speed assuming

the thin screening limit without bulk reactions, explored for

example in ref. 33 and 38. USM depends on, among other para-

meters, the surface reaction rates js, the salt concentration csalt,

and the surface charge density s. Here we introduce two new

factors, F and B, to account for realistic electrostatic screening

and bulk reactions, respectively. These factors depend on the

dimensionless parameters ka and qa, with k and q the inverse

electrostatic and inverse reactive screening lengths, and a the

swimmer radius.

3.2 Electrostatic screening

The new dimensionless factor F(ka) is exactly analogous to the

well-known function f (ka) (Henry’s function39) that controls the

speed of a particle undergoing electrophoresis in an external

field via Uext = mEE
N, with mE = zef(ka)/Z the electrophoretic

mobility, e the dielectric constant, z the particle’s surface

potential, Z the solution viscosity, and EN the external electric

field.39,40 Both f and F are plotted in Fig. 3. For ka { 1, i.e., for

small particles or low salt concentration, F decreases rapidly,

scaling as (ka)3. This is different from external electrophoresis

because of the different geometries of the driving fields—a

uniform field for external electrophoresis compared with a

dipole for self-electrophoresis.

The implication of this a3 scaling is that, other things being

equal, nanoswimmers should swim much slower than micro-

swimmers. Experimentally, however, nanoswimmers are found

to swim faster than equivalent microswimmers.37 From this we

conclude that other things are not equal: either the surface

reaction rates are much larger for nanoswimmers, or the standard

self-electrophoresis theory does not apply for these small swimmers.

If this issue can be resolved, which we do not attempt here,

it will likely also give insight into the related phenomenon of

directed motion in nanoscale biological enzymes.41,42

3.3 Bulk reactions

The effects of ionic dissociation depend upon the nature of the

surface reaction responsible for propulsion. A common feature

is the importance of the reactive screening length q�1 which

controls the propulsion behaviour through the parameter qa.

We can understand why qa is the relevant parameter as follows:

for qa { 1, the swimmer is smaller than the reactive screening

length, so any molecules produced at the swimmer surface will

diffuse away or return to the swimmer surface before they have

time to react. In this ‘reactionless limit’, the swimmer will behave

as though there are no bulk reactions, which is the usual, tacit

assumption. For swimmers larger than the reactive screening

length, qa c 1, we are in a ‘reactive limit’ where the bulk ionic

reactions dominate the behaviour. For typical experimental

conditions, e.g., 3 mol L�1 H2O2, we find a reactive screening

length q�1
E 70 nm, which is in the centre of the experimental

range of swimmer radii.15,37 Both the reactionless and reactive

limits, and the intermediate regime (qa E 1), should therefore

be experimentally relevant.

We now explain the effect of bulk reactions on specific types

of swimmer. The overall surface reaction we focus on is the

H2O2 decomposition reaction (R1). As we have seen, this overall

reaction can occur through several different pathways. We there-

fore define three model swimmers, shown in Fig. 4 with surface

reactions that are representative of these different pathways. A real

swimmer might exhibit any or all of these.

The upper panels (a–c) of Fig. 4 show these model swimmers

without bulk reactions. In (a), there is a single surface flux

of neutral H2O2 molecules. This models the purely neutral

decomposition of H2O2 in reaction (R1). Here we first make

three general points: first, O2 and H2O are not included here for

modelling simplicity. This is justified because O2 does not

dissociate, and H2O dissociates much less than H2O2, so neither

species should contribute strongly to self-electrophoresis.

Fig. 3 (a) Schematic showing the difference in boundary conditions

between external electrophoresis (upper) and self electrophoresis (lower).

Thick, coloured arrows show the direction of motion of positively charged

particles. (b) Henry’s function f (ka) which determines the mobility of a

particle in an external electric field (—), and F(ka), the equivalent function

for self-electrophoresis ( ).
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Second, we assume that the chemical fluxes are dipolar rather

than monopolar, i.e., they both leave and enter the particle

surface. For a uniformly charged particle, which we assume for

simplicity, only the dipolar component of the flux contributes to

the propulsion speed,33 so our choice of a dipolar surface-flux

profile does not affect our results, and simplifies the argument.

Third, we consider only self-electrophoresis here, and ignore

‘neutral self-diffusiophoresis’, which is propulsion generated

by a direct non-electrostatic interaction between a neutral

species, such as O2 and the swimmer surface,3,43 and which

is typically much weaker than self-electrophoresis.16,34,44 Hence

the model swimmer in (a) does not move, because, without bulk

reactions, a surface reaction involving only uncharged species

cannot generate electric fields, and therefore cannot produce

self-electrophoresis.

In (b) a surface proton flux generates an electric field via

reaction (R2). We assume the particle is positively charged, and

it then swims in the direction indicated by the white arrow.

This corresponds to the standard self-electrophoresis model,

e.g., for Au–Pt swimmers.2 The electric field has a dipolar form,

like the proton flux.

In (c), we have a third mechanism, with equal fluxes of

H+ and HO2
� ions. There is no net electrical current for this

swimmer since there are equal positive and negative fluxes.

However, self-propulsion still occurs. This is because the two

ions diffuse at different rates (H+ faster than HO2
�), and this

creates a so-called diffusion potential, which acts to prevent net

charge separation. The diffusion potential leads to an asso-

ciated (self-generated) electric field, which then produces

motion via electrophoresis in the usual way (white arrow). This

propulsion mechanism is called ‘ionic diffusiophoresis’,45 and

is typically used to model swimmers composed of solid salts,

which generate propulsion through dissolution of the swimmer

itself, e.g., AgCl(s) - Ag+(aq) + Cl�(aq).46 We include this

model here because ionic diffusiophoresis may contribute to

the propulsion of Pt-Janus swimmers, for example via

2H2O2 �!
Pt

2Hþ þ 2OH� þO2 (R3)

with subsequent recombination of H+ and OH� in the bulk.

However, note that reaction (R3) is not the reaction shown

in Fig. 4c, where HO2
� is used instead of OH� for modelling

simplicity.

The lower half of Fig. 4(d–f) shows the effect on each of these

swimmers of a single ionic reaction occurring in the bulk,

aqueous phase

H2O2 " H+ + HO2
�. (R4)

As we mentioned before, this reaction will only begin to have a

significant effect when we are in the reactive, qa 4 1 regime.

In Fig. 4, the reactive screening length q�1 is indicated by the

dashed line: for these particular swimmers, qa E 3. The white

arrows show the qualitative effect of this reaction on the

propulsion speed, which is different for each of the swimmers.

For (a-d), the reaction generates propulsion, for (b-e) the

reaction increases the propulsion speed, and for (c-f) the

propulsion speed falls. We now briefly explain the reason for

these effects.

In the absence of a swimmer, reaction (R4) is in a state

of dynamic equilibrium. If a swimmer consumes or produces

molecules on either side of this equilibrium, then this will push

the reaction out of equilibrium, and the system will respond so

as to reduce the effect of that perturbation: this is Le Chatelier’s

principle. Thus, in Fig. 4d, the H2O2 flux injected from the

particle surface is to the left of the equilibrium, so the H2O2

partially dissociates into ions, producing ionic fluxes. In Fig. 4e

the proton flux is to the right of equilibrium, so there is net

ionic recombination in the bulk to give an H2O2 flux (this small

H2O2 flux is not shown because it does not significantly contri-

bute to self-electrophoresis) and an HO2
� flux in the opposite

direction to the original proton flux. In Fig. 4f, the proton and

HO2
� fluxes are both to the right of equilibrium, so these both

recombine with counterions in the bulk to give an H2O2 flux

instead of the ionic fluxes.

For (a-d), the new ionic fluxes produce a diffusion

potential, which generates motion. Hence a swimmer without

any electrochemical reactions on its surface can still exhibit

self-electrophoretic propulsion. Crucially, it will also display

the experimental behaviour that would be expected of a self-

electrophoretic swimmer, e.g., propulsion speed scaling inver-

sely with salt concentration (via the USM factor in eqn (2)). This

means that the kind of ionic behaviour observed in ref. 16, 17

and 32 does not a priori require an electrochemical surface

reaction. In practice, however, we find that, because of the weak

dissociation of H2O2, the simple non-electrochemical surface

reaction mechanism in Fig. 4a-d cannot account for the

magnitude of the experimentally observed propulsion in, e.g.,

ref. 16: genuine self-electrophoretic propulsion is still required.

In (b-e), the important point is that chemical reactions

conserve charge, and this also implies the conservation of

Fig. 4 Schematic of the effect of bulk ionic reactions on the propulsion of

three model swimmers. The upper panel shows the system without and the

lower panel with bulk reactions. Coloured arrows indicate fluxes of three

chemical species H2O2 (purple), H
+ (red) and HO2

� (blue). The thickness of

the arrows corresponds very roughly to the relative intensity of the fluxes.

White arrows denote the direction of particle propulsion (x = no propulsion).

Arrow length indicates relative speed. Dashed semicircles show the approximate

extent of the reactive screening length q�1.
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electrical current. There is a net electrical current in (b), and

because this current is conserved it will have the same magni-

tude with or without bulk reactions. It is only the identity of the

current-carrying ions which changes: in this case, the current

becomes partially carried by HO2
� ions travelling in the opposite

direction, see Fig. 5. As we discuss later, the propulsion speed

scales inversely with the diffusivity of the current-carrying ion. In

this case HO2
� diffuses approximately 10 times slower than H+,

and this is why the speed increases. In fact, in the appropriate

environment of high pH (= high HO2
� concentration), the pre-

dicted speed increases ten-fold because the current becomes

entirely carried by HO2
� ions.

In (c-f), on the other hand, there is no net electric current to

be conserved and both anions and cations react freely with their

counterions in the bulk. Hence, far from the swimmer, the ionic

gradients become vanishingly small, with a resultant drop in

propulsion speed compared to the case without bulk reactions.

In detail, the presence of ions in the bulk, due to the surface

reactions, generates a diffusion potential (similar to the situation

in Fig. 4d). However, since the ions in Fig. 4f can recombine

through bulk reactions, the further one is from the swimmer

surface, the fewer ions generated by the surface reaction remain to

induce the diffusion potential. This shows up as an exponentially

screened potential, with screening length q�1. This also affects the

swimming speed, because we find that the magnitude of the

diffusion potential scales with the thickness of the screening layer,

leading to a scaling of Up 1/(qa) for large swimmers. This lowers

the predicted propulsion speed by up to a factor of approximately

100 for the largest E10 mm radius swimmers.

3.4 Comparison with experiments

As previously discussed, measurements of relevant surface

reaction rates are not currently available. This makes it difficult

for us (or others) to predict propulsion speeds that can imme-

diately be compared with experiments. Nevertheless, we will

present some speed calculations with the simplest assumption

of fixed surface reaction rates in Section 7. These comparisons

indicate that the U p 1/a scaling observed with Pt-polymer

Janus particles15 might come from an ionic diffusiophoretic

mechanism like that discussed above, see Fig. 4c-f. In addition,

our results indicate that the speed of nanoscale swimmers is too

high to be explained by self-electrophoresis with fixed surface

reaction rates, see Section 3.2.

3.5 Summary

In brief, we find that ionic reactions and electrostatic screening

should have very significant and system-dependent effects on

the propulsion of a wide range of chemical swimmers. These

effects include increasing or decreasing the predicted speed by

several orders of magnitude, as well as the qualitatively new

behaviour of reactive screening. In addition, we find that even

swimmers with no ionic surface reaction can behave as though

they are self-electrophoretic. The remainder of this paper provides

a detailed account of the theory that gives rise to these results, and

compares them to experiments as far as current data allow.

4 Theoretical model

In this and the following two sections, we present a quantitative

model of self-electrophoresis. Here in Section 4, we will lay out

the general theoretical model and detail how this will be applied

to the specific H2O2 reaction system described above. In order to

obtain analytical results we also linearize our theory. We will then

apply this model to obtain explicit results, first for a system with

only surface reactions (Section 5), and then with bulk reactions

(Section 6).

4.1 General model

The standard theoretical approach to self-electrophoresis involves

coupling the chemical fluxes arising from reactions on the particle

surface to bulk differential equations (Nernst–Planck, Poisson, and

Navier–Stokes).14,34 This treatment generally ignores bulk chemical

reactions by assuming that each chemical species is conserved.

We adopt the standard approach, but include bulk reactions by

coupling chemical fluxes to local reaction rates. We solve this

model numerically using COMSOL. Separately, and in common

with previous work,33 we also linearize the model to obtain an

analytical approximation. Unlike in previous work, the analytical

solution does not require the assumption of a thin electrostatic

screening layer.

We consider a spherical swimmer of radius a and uniform

surface charge density s, see Fig. 6. The electrostatic boundary

condition of such a particle is

n̂ � rfðsÞ ¼ �s

e
; (3)

with f the electrostatic potential field and e the dielectric

constant of the fluid (the dielectric constant of the particle is

assumed to be zero). Here (s) and n̂ indicate evaluation at, and

the normal out of, the particle surface. We have chosen a

uniform, dielectric boundary condition for simplicity. However,

in Appendix A.5 we show formally that, with an appropriate

choice of surface potential, an equipotential (conducting)

surface gives the same swimming speed as a dielectric. We do

not deal with mixed dielectric/conducting particles here, but

this should not qualitatively affect the basic physics of the

self-propulsion.

Propulsion is generated by reactions on the swimmer surface.

These reactions produce and consume N different chemical

species, labelled l = 1. . .N. The surface production (or, if negative,

consumption) rate per unit area of each species is jsl (y), and is a

function only of y, the polar angle with respect to the symmetry

axis ẑ, see Fig. 6. The surface reaction rates can be equated to the

Fig. 5 The effect of bulk reactions on ionic currents. Regions with excess

H+ ions become depleted in HO2
� ions and vice versa. This means that an

initial H+ current flowing from excess to depleted regions (left) is partially

replaced by a HO2
� current flowing in the opposite direction (right).
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bulk flux jl of each species out of the particle surface, giving the

boundary condition

n̂�jl(s) = jsl (s). (4)

These bulk fluxes obey the classical Nernst–Planck equation34

jl ¼ clu�Dlrcl �
Dlzle

kBT
clrf; (5)

with zl, Dl, and cl, respectively the valence, diffusivity, and

concentration field of each chemical species, u the fluid flow

field, e the fundamental charge, kB Boltzmann’s constant, and

T temperature. Physically, eqn (5) expresses the bulk fluxes

as linear sums of advective, diffusive, and conductive terms

respectively. Eqn (5) is the standard flux expression used in

studies of self-electrophoresis. Its main simplification is the

neglect of cross-coupling terms between the molecular fluxes,

and this is valid as long as we are in the dilute limit with

relatively small ionic gradients,44 which is true here.

Without bulk reactions, conservation of chemical species

would require that the bulk fluxes are incompressible vector

fields, i.e., r�jl = 0. This is the standard approach, see ref. 14

and 34, and Section 5 here. Bulk chemical reactions can be

incorporated by writing instead

r�jl = Rl(c1. . .cN), (6)

where Rl is the local rate at which each chemical is produced

(if negative, consumed), in chemical reactions. In general,

Rl depends on the local concentration of all chemical species

involved in reactions with species l. Note that chemical reac-

tions are charge-conserving, i.e.,
X

l

zlRl ¼ 0; (7)

everywhere, and combining this condition with eqn (6) implies

the conservation of electrical current

r�i = 0. (8)

where the electrical current i ¼ e
P

l

zl jl .

Infinitely far from the particle, the chemical concentrations

are labelled cNl , and are determined by equilibrium equations

and charge neutrality. The other boundary conditions at infinity

are jNl = 0, fN = 0, uN = 0 (in the lab frame), and pN = patm, where

p is the hydrostatic pressure field and patm is the atmospheric

pressure, whose absolute value does not affect the calculations.

The electrostatic potential f is determined by the Poisson

equation

er2f = �re, (9)

with charge density re ¼ e
P

l

zlcl . The interaction of the electro-

static potential and the unbalanced charge density (re a 0)

generates a force density

f = �rerf, (10)

and this drives fluid flow via the Stokes equations for low-

inertia, incompressible flow

Zr2u = rp � f, (11)

r�u = 0. (12)

Finally, the swimmer is not held in place, so fluid flow around

it will cause it to move with some propulsion velocity U. This

propulsion velocity is determined by the condition that there is

no net force acting on the total system of swimmer plus fluid out

to infinity.47 This force-free condition is simply a reflection of the

fact that all the forces are internal to this total system—there are

no long-range, external forces like gravity. The force-free condi-

tion can be translated into an expression for U by using the

Lorentz reciprocal theorem, which is a restatement of the Stokes

equations in integral form. This gives a closed-form expression

for the propulsion velocity48

U ¼ � ẑ

6pZa

ð

V

3a

2r
� a3

2r3
� 1

� �

cos yr̂

�

� 3a

4r
þ a3

4r3
� 1

� �

sin yŷ

�

� f dV ;

(13)

where r is the distance from the particle centre, r̂ and ŷ are unit

vectors in the r and y directions, and the scalar speed U is

defined by U = Uẑ. The volume integral is over the region outside

the particle.

4.2 Numerical solution

We solve the full non-linear model numerically using FEM imple-

mented in COMSOL. To do this, we make several modifications to

the above equation system. In particular, we define a new force

density fFEM to replace f in eqn (10). The two quantities are

related by

f FEM ¼ f � kBT
X

zla0

rcl : (14)

Fig. 6 Diagram of a model swimmer, highlighting the distinction between

bulk and surface parameters. In the bulk, we have an electrostatic potential

field f, chemical concentration fields cl, a pressure field p, and fluid velocity u.

Far from the particle, these fields approach uniform values (superscriptN). On

the particle surface, the uniform surface charge density s and the nonuniform

molecular fluxes out of the surface jsl set boundary conditions for the bulk

potential and concentration fields, respectively. The particle, of radius a, is

axisymmetric around the z axis, so the surface fluxes are parameterized by the

polar angle y. The swimming velocity, which we calculate, is U = Uẑ.
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This redefinition does not influence the result of the calculation,

but limits spurious flows related to numerical artefacts in the

electrostatics.49 Our calculations are performed on an axi-

symmetric spherical domain of radius L = 10a + 25k�1, which

we verified to be sufficient to eliminate most finite-size effects

in our speed calculations. This frame co-moves with the colloid.

We impose no-slip at the colloid surface, and on the edge of the

domain we employ the same boundary conditions as the theory

has at infinity. For the fluid velocity we impose a no-stress

condition on the edge of the domain

[Z(ru + (ru)*) � pI]�n̂ = 0, (15)

with n̂ the normal to the domain, * denoting transposition, and

I the 3D identity matrix. This is equivalent to imposing a force-

free condition on the swimmer–fluid system.44,50

Our technique is to first obtain approximate numerical

solutions for the electrostatic and concentration fields in the

absence of advection, so neglecting the first term in eqn (5).

This approach is justified because experimental swimmers

generally have low Péclet numbers, i.e., molecular diffusion

D dominates over advection. The Péclet number is defined as

Pe = Ua/D, with U E 10 mm s�1, a E 1 mm, and D E 10�9 m2 s�1

typical for experiments on microswimmers, leading to Pe E 0.01.

The flow field is then computed self-consistently on the domain

by employing the force density, eqn (14), following from the

concentration and potential fields. The speed of the swimmer is

determined by taking the average of the fluid velocity on the edge

of the domain: U = �huir=L, where U is in the lab frame and u in

the co-moving frame. We subsequently verified the low-Pe approxi-

mation by solving the fully coupled equations (with advection)

directly in a limited number of cases, which gave agreement to

within a few per cent. See Appendix C for full details of the

numerical calculations.

4.3 Analytical solution

We also linearize the model to provide an analytical solution.

To do this we assume that the fields f and cl have only small

deviations from their values in the uncharged, unreactive state

where f = 0 and cl = cNl everywhere (for f, this assumption

corresponds to the usual Debye–Hückel approximation, f{ kBT/e).

We then expand the model to linear order in the small dimension-

less parameters c = fe/(kBT) and xl = (cl � cNl )/cNl . Applying this

linearization to eqn (5) gives

jl = �cNl Dl[rxl + zlrc], (16)

where the advection term has been dropped entirely because

u scales quadratically with the small parameters (eqn (10) con-

tains a product of re and f, which are both small). We must also

Taylor expand the production rates Rl to linear order, i.e.,

Rl ¼
X

m

klmxm þ O xm
2

� �

; (17)

where O (�) means ‘of order �’, and the elements

klm ¼ @Rl

@xm

	
	
	
	
x1;x2 ...xN¼0

: (18)

are components of a matrix k which we can call the linear reaction

matrix. Its meaning will become clearer when we consider specific

reactions. From eqn (6) and (16), we have, to linear order
X

m

klmxm ¼ �c1l Dl r2xl þ zlr2c

 �

: (19)

This set of N equations, together with the Poisson equation,

which we rewrite as

kBTe
2

e

X

l

c1l zlxl ¼ �r2c; (20)

makes up a system of N + 1 linear differential equations in N + 1

fields (xl, l A 1. . .N and c).

This system of equations is soluble in a spherical geometry

by standard spectral methods, and the electrostatic potential

field so obtained can then be used to calculate the propulsion

speed by evaluating the integral in eqn (13). In doing this, we

make the further usual assumption of a relatively small driving

field.39 That is, if we define f = feq + fsr where feq is the

electrostatic potential in the absence of surface reactions and

fsr is the additional potential generated by these reactions then

fsr
{ feq. As a result, the surface reaction rates jsl , which only

come into fsr, contribute linearly to the final velocity. The algebra

required to solve eqn (19) and (20) is significant, so we go through

this explicitly in Appendix A.

4.4 Specific H2O2 reaction model

The chemical reaction system we consider is the simplified

version of the H2O2 reaction system described in Section 3.

On the particle surface, H2O2 decomposes into O2 and H2O. For

simplicity, however, we ignore both products of this reaction:

O2 because it is electrically neutral and does not dissociate, and

H2O because it dissociates much less than H2O2—the respective

equilibrium constants51 are Keq,H2O
= 1.0� 10�14mol L�1 (pH = 7)

and Keq,H2O2
= 2.5� 10�12mol L�1. In the bulk, we ignore any slow

decomposition of H2O2 via reaction (R1), and the only bulk

reaction we consider is the ionic dissociation reaction (R4), which

we rewrite here

H2O2 Ð
kforward

kreverse
Hþ þHO2

�: (R40 )

We therefore have only three chemically active species, with

associated subscripts in brackets: H2O2 (�), H+ (+), and HO2
� (�).

Protonation reactions like (R40) are normally extremely rapid, with

kinetics controlled by the diffusion and collision of the ions,52

and with simple first order rate expressions

kforward = kdisc�,

kreverse = kasc+c�, (21)

where we estimate the association rate constant to be kas =

4.9 � 1010 mol�1 L s�1 using the Smoluchowski–Debye theory

for diffusion-limited reactions, see Appendix B. This theoretical

value agrees closely with experimentally measured rates for

similar reactions,52 e.g., H+ + HCO3
�
" H2CO3 in water has

kas = 5 � 1010 mol�1 L s�1 (ref. 53).
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The dissociation rate constant kdis = 0.12 s�1 is then deter-

mined from the equilibrium constant Keq = kdis/kas = 2.5 �
10�12 mol L�1 (ref. 51). Far from the particle, the system is in

equilibrium, so we have

cN+ cN� = Keqc
N
� , (22)

The production rates are R+ = R� = kforward � kreverse and

R� = kreverse � kforward, and linearizing using eqn (18) gives the

linear reaction matrix

k ¼ kdisc
1
�

�1 1 1

1 �1 �1

1 �1 �1

0

B
B
B
@

1

C
C
C
A
; (23)

where the order of rows and columns is �, +, �.

The three reactive species have diffusivities D� = 1.7 �
10�9 m2 s�1 (ref. 54), D+ = 9.3 � 10�9 m2 s�1 (ref. 55), and

D� = 0.9 � 10�9 m2 s�1 (ref. 56). We also have two unreactive

ions, which we take to be Na+ and Cl� with diffusivities

DNa+ = 1.3 � 10�9 m2 s�1 and DCl� = 2.0 � 10�9 m2 s�1 (ref. 57).

Because these ions are not involved in chemical reactions at the

surface or in the bulk, their concentration fields are in equilibrium

with the electrostatic potential. The implication is that the diffu-

sivity of these ions does not contribute to the propulsion speed in

the linear regime. We show this mathematically in Appendix A.1.

The chemical concentrations at infinity are determined by

the chemical equilibrium, eqn (22) and by charge balance

c1� þ c1Cl� ¼ c1þ þ c1Naþ : (24)

These two equations (eqn (22) and (24)) connect five concentra-

tions, so we can set three concentrations freely. In practice, we

choose instead to set the H2O2 concentration, the total ionic

strength, and the pH. The reaction scheme presented here is the

simplest possible that gives the necessary freedom: bulk ionic

dissociation reactions require at least three reactive species, and

the two non-reactive ions are necessary to allow the ionic strength

to be modified independent of other parameters.

For the variable parameters, our base set, used unless specified

otherwise, is 1 mmol L�1 salt, i.e., c1Naþ ¼ c1Cl� ¼ 1 mmol L�1,

a = 500 nm, and cN� = 3 mol L�1. For these parameters,

k�1 = 10 nm, and cN+ = cN� = 3 � 10�6 mol L�1. These values

were chosen because micron-sized particles and H2O2 concen-

trations of order 3 mol L�1 are experimentally typical,16 while

the 1 mmol L�1 baseline salt concentration allows us to scan a

wide range of the important parameter ka for realistically sized

particles.

Meanwhile, the surface reactions are specified by surface

fluxes jsl , l A {�, +, �}, of the three active species. We consider

the three model swimmers shown in Fig. 4, referred to as: S�, the

nominally neutral swimmer; S+, powered by a proton current;

and S=, powered by ionic diffusiophoresis. As mentioned above,

only the dipolar part of the fluxes, that is the 1st Legendre

component, contributes to the propulsion speed of uniformly

charged swimmers,33 so we include only this term by setting

jsl � jsl,1 cosy for each surface flux where jsl,1 is a constant coefficient.

For S�, only j
s
�,1 is finite; for S+, only j

s
+,1 is finite; and for S=, j

s
+,1

and j s�,1 are equal and finite, with j s�,1 = 0.

Our model makes a number of simplifications. This includes

those chemical simplifications already discussed, as well as the

neglect of potential contaminants such as CO2, which also

undergo ionic dissociation. The main purpose of this paper is

to illustrate the physical principles behind the effect of bulk

reactions on self-propulsion. These physical principles will also

apply to a more complex and realistic H2O2 reaction system, as

well as to other chemical systems.58,59 We also neglect any

dependence of the surface parameters on environmental condi-

tions, so, for example, we take s = constant, independent of pH,

salt concentration etc. This does not imply that surface para-

meters are independent of the environment; it is just that

detailed knowledge of this dependence is currently lacking.

The ‘pure’ effect of bulk reactions which we capture will occur

in addition to any such interdependence.

5 Electrophoresis without bulk
reactions

Before discussing the effect of bulk ionic reactions, it is important

to set out the basic theory for propulsion by self-electrophoresis

without such reactions. This theory has been set out multiple

times before for the limit of vanishing electrostatic screening

length, ka c 1, ref. 14, 33, 34, 36, and 60. Here we extend the

theory to include the effect of a finite ka.

For comparison, we first write down the standard results for

electrophoresis in an external, linear field,40 Fig. 3a (top). We

align the external field along the z axis and consider the velocity

Uextẑ of a uniformly charged spherical particle with radius a and

small surface (z) potential40

z ¼ sa

eð1þ kaÞ; (25)

in an externally imposed electric field E = �rf. Far from the

particle, E is a constant linear field E = ENẑ. The particle is

suspended in an aqueous solution of a monovalent salt, e.g.,

NaCl. In a weak field, particle velocity is proportional to electric

field strength, Uext = mEE
N, with mE called the electrophoretic

mobility. The standard expression for mE for small z is39,40

mE ¼ ze

Z
f ðkaÞ; (26)

where f (ka) is Henry’s function,39 which accounts for electro-

static screening and depends only on ka, the ratio between

particle radius a and the electrostatic screening length k�1. The

function f is plotted in Fig. 3b: it has constant limits of f (N) = 1,

(the Debye or Smoluchowski limit) corresponding to high salt

concentration or large particles, and f (0) = 2/3, (the Hückel limit)

corresponding to small particles or non-polar solvents. Eqn (26),

typically in either the high or low ka limit, is the expression

commonly used to compute colloidal z potentials from mobility

measurements in, e.g., commercial Zetasizers.

In self-electrophoresis, the independent parameters are the

surface reaction rates, and therefore the ionic fluxes, rather than
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the electric field. To facilitate understanding, we translate the

expression for external electrophoresis into these terms. We

write down expressions for the inverse electrostatic screening

length

k2 ¼ e2

ekBT

X

l

c1l ; (27)

the ionic conductivity

K ¼ e2

kBT

X

l

Dlc
1
l ; (28)

and the concentration-averaged diffusivity

�D ¼
X

l

Dlc
1
l

 !,

X

l

c1l

 !

; (29)

together with Ohm’s law

E1 ¼ i1

K
; (30)

which relates the electric field to the ionic current density at

infinity iNẑ and which we can rewrite as

rf ¼ � i1ẑ

ek2 �D
: (31)

Combining eqn (31) with eqn (26) we then have

Uext ¼ i1
1

Zk2 �D
zf ðkaÞ: (32)

Note that for electrophoresis in an external field, the particle

speed is inversely proportional to the concentration-averaged

diffusivity
�
D.

We now compare eqn (32) with the analogous expression for

the most well-studied self-electrophoretic swimmer, a proton-

powered bimetallic swimmer.14,36 Consider a spherical swimmer

of radius a, with surface charge density s, a surface proton flux

js+(y) = js+,1 cos y and no bulk reactions: we call this model SNBR+ .

In this case eqn (19) and (20) can be easily solved to yield, after

some algebra

f ¼ sa

eð1þ kaÞ
a

r

� 


e�kðr�aÞ þ
eajsþ;1

2k2Dþe

a

r

� 
2

cos yþ � � � ; (33)

where the first and second terms are feq and fsr, the potentials

generated, respectively, by the surface charge and the surface

reactions. The � � � indicate additional, electrostatically screened
terms that are necessary to match the electrostatic boundary

conditions, but which make no contribution to the propulsion,

see Appendix A.5. The propulsion speed is obtained by evaluating

eqn (13) with eqn (33) to give

UNBR
þ ¼

�jsþ;1e

3

1

Zk2Dþ

s

ek
FðkaÞ; (34)

where F is, like f, a function of ka only. The full form of F is

given in Appendix A.3.

Eqn (34) corresponds closely to eqn (32), the particle velocity

with external electrophoresis, and we compare these expres-

sions factor by factor:

(I) The relevant current density iN becomes �js+,1e/3 because

of the exclusive dependence of the propulsion speed on the first

Legendre component of the flux33 discussed in Section 4.4.

(II) The relevant diffusivity
�
D becomes D+ because, for self-

electrophoresis in steady state, the ionic current can only be

carried by the active ion involved in reactions at the particle

surface, in this case H+. There can be no net flux of the other ions,

or they would build up at the particle surface. In fact, the other

ions are in local equilibrium with the electrostatic potential f,

i.e., cNaþ ¼ c1Naþ exp �f=kBTð Þ etc., from standard Debye–Hückel

theory,40 and the swimmer behaviour therefore cannot depend

on their dynamic properties at all. The appropriate version of

Ohm’s law for the self-electrophoretic swimmer is thus not

eqn (31), but instead61

rf ¼ � i

k2eDþ
; (35)

which depends only on the mobility of the active ion, and the

electrical current. Eqn (33) and the propulsion speed have the

same dependencies. This difference between external- and self-

electrophoresis has been confirmed in numerical calculations60,61

and the inverse scaling of self-propulsion speed with the diffusivity

of the active ion will be crucial for understanding the effects of

bulk ionic reactions in Section 6.

(III) We have chosen to parameterize our model in terms of

s rather than z because this is the most natural choice from a

microscopic point of view. Much of the charge on the surface,

both of conducting and dielectric particles, is due to surface-

absorbed groups, leaving s fixed as other parameters, such as k,

vary. This has been demonstrated experimentally for dielectric

particles.62 Nevertheless, the experimental evidence indicates

that self-electrophoretic propulsion speeds scale with k�2

(ref. 11, 16 and 32) which is consistent with a fixed z, not a

fixed s, though to our knowledge there is no microscopic justi-

fication for this. Since we are most interested in bulk effects, we

do not insist upon a particular surface parameterization, and

eqn (25) can be used to translate our results into a parameter-

ization where z is fixed, which gives at small radius, a speed

scaling as a2/k rather than a3 as in eqn (36) below. Note that

this point is distinct from the choice between conducting and

dielectric boundary conditions on the particle surface, which is

discussed in Section 4.1.

(IV) We have replaced f (ka) with an equivalent expression

for self-electrophoresis, F(ka), shown in Fig. 3b. In the thin-

screening limit, F(ka - N) = 1, and eqn (34) then agrees with

previous self-electrophoresis results in the thin-screening

limit,33 except that ref. 33 incorrectly assumes that the propulsion

is controlled by the total ionic diffusivity %D, (see point II above).

In the opposite limit, F(ka- 0) = (ka/2)3, so that for small ka the

propulsion speed scales with a3

UNBR
þ ¼ �

jsþ;1ea
3s

24eZDþ
: (36)

The reason that F(0) - 0, while f (0) is finite, is the different

geometry of the driving currents, as illustrated in Fig. 3a. For

self-electrophoresis, the driving potential is a local, dipolar field
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which decays over a length of order a, see eqn (33), whereas

in external electrophoresis the driving potential is infinite in

extent. Therefore, in self-electrophoresis, additional factors of

a in the propulsion speed are to be expected.‡

Several of the features of eqn (34) have been verified experi-

mentally for bimetallic swimmers2,4 like the Au–Pt swimmers

in Fig. 1a, which explains the wide-acceptance of the self-

electrophoretic model for this system. As discussed above,

this equation has also been found to be applicable to single-

catalyst swimmers such as Pt-polystyrene Janus particles,11,16,17

suggesting that these swimmers are also powered by proton

currents.16,17

The additional screening parameter F(ka), is more proble-

matic. It predicts that the speed of a swimmer will drop off

sharply as ka decreases, Fig. 3. This drop-off is significant for

surprisingly large ka: F(10)E 0.5, while F(1)o 0.1. This shows that

the thin-screening limit, which is commonly employed,16,17,21,33,63

is not justified even for the common situation of a 1 mm radius

swimmer in 3 mol L�1 H2O2, where ka E 10 (ref. 16). However,

to the best of our knowledge, there is no experimental evidence

for this drop off. In fact, a small number of experiments show

a larger speed for nanoswimmers37,64 than is typical for

microswimmers.3,65 We discuss this experimental comparison

in more detail in Section 7.

6 Electrophoresis with bulk reactions

We now examine the effect of bulk reactions on the propulsion

of model swimmers, in particular of reaction (R40), H2O2 "

H+ + HO2
�, on the three model swimmers depicted again

for convenience in Fig. 7a. In Section 6.1 we write down the

general form of expressions for the swimming speed when bulk

reactions are included, before focussing on the effect of two

experimentally relevant parameters—swimmer radius and H+

concentration—on the swimming speed, in Sections 6.2–6.5.

In Section 7 we will compare our predictions with experimental

observations.

6.1 General form of the solutions

Mathematically, the bulk reactions make it impractical to solve

even the linearized problem by hand. Instead, we solve the

system of equations, eqn (19) and (20) symbolically in MATLAB,

see Appendix A. The final solution is very similar to the reaction-

less solution, with an extra bulk reaction factor B(qa,. . .), so for

each of our model swimmers, we can write

Uy ¼
esjsy

3Zek3Dþ
FðkaÞ

� �

By; (37)

in the form of eqn (2). Here, † indicates a particular swimmer

type, i.e., † A {�, +, =} and j s† is the appropriate surface flux

density for that swimmer. We define js† = js�,1 for the S� swimmers,

and js† = js+,1 for the S+ and S= swimmers. The use of D+ in the

denominator of eqn (37) is an arbitrary definition. Under this

definition, the bulk reaction factors in the absence of bulk

reactions have the constant values BNBR� = 0, BNBR+ = �1 and

BNBR= = (d+ � d�)/(d+d�) = 9.3. Here, dl is a rescaled diffusivity,

dl = Dl/D+. By definition, d+ = 1, but we retain d+ for symmetry of

notation.

Note that the expression in square brackets in eqn (37) is

identical to eqn (34). This emphasizes that all the propulsion

mechanisms, S�, S+, and S=, are really forms of self-electrophoresis,

and display all the responses to, e.g., salt-concentration, particle

radius, and surface charge, which standard self-electrophoresis

models predict. The inclusion of bulk reactions just adds a new

layer of phenomena on top of this behaviour.

6.2 Influence of bulk reactions on swimming

We study the bulk reactions by varying two common experi-

mental parameters: particle radius, and proton concentration,

i.e., pH, Fig. 7b and c, respectively. Including bulk reactions

(solid curves = analytic; solid symbols = FEM numerics) intro-

duces a range of effects compared to the case with no bulk

reactions (broken, horizontal lines), with qualitatively different

behaviour for the three swimmer models.

Examining Fig. 7b first, the bulk reactions permit propul-

sion of the neutral swimmer S� (inset), and B� increases with

radius, saturating for large radii. However, the magnitude of B�
always remains smaller than that of the other swimmers by

a factor of order 10�6. In practice, this is typically partially

compensated for by the much larger flux of the neutral species.

For the proton-current-driven swimmer S+, B+ shows plateaux

at both large and small radius, with the large-radius plateau

Fig. 7 (a) Recap of the model swimmers S�, S+, and S= and the effect of

bulk reactions, from Fig. 4. (b and c) Magnitude of the dimensionless bulk

reaction factors |B| for type S� ( , insets), S+ ( ), and S= (K) propulsion,

from analytical theory with (solid curves) and without (broken curves) bulk

reactions; and FEM simulations (symbols). � indicates the base parameter

set defined in text. For (b) the particle radius and (c) the proton concen-

tration cN+ , at fixed k.

‡ The precise a3 factor in eqn (36) can be obtained from a scaling argument.

We do not include this, as it is involved, and barely more informative than this

qualitative explanation.
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approximately twice as high. For the ionic-diffusiophoretic

swimmer S=, B= scales inversely with radius for large radius,

but has a plateau at small radius.

Meanwhile, varying the proton concentration cN+ , as in

Fig. 7c, produces a peak in B� and B=, and decreases the

overall value of B= by at least a factor of 5 compared to without

reactions. For S+ there are again two plateaux, at high and low

cN+ , with the low cN+ plateau now a factor of approximately

10 higher than the other. The main control parameter for all

these effects is qa, and there is a qualitative change of behav-

iour for all three swimmers at qa E 1: the vertical lines on

Fig. 7b are for qa = 1. In Table 1, we write down the bulk para-

meters for each of the model swimmers in the limits qa { 1

and qa c 1. The full analytical expressions, which are lengthy,

are provided in Appendix A.4, but the basic physics can be

understood from the limiting behaviour. For the table, we have

also assumed weak ionic dissociation, i.e., Keq { cN� which is

valid here, and thin electrostatic screening, ka c 1. These

assumptions also apply to the analytical expressions given in

the rest of this section. Table 1 matches Fig. 7 in all but one

respect, which is the scaling of B� at qa{ 1, and this difference

occurs because the assumption ka c 1 does not hold for small

a in Fig. 7b. The parameters a and d* will be defined below. For

Fig. 7c, qa E 7 or larger, so we will assume that this figure is

always in the qa c 1 limit.

To understand the results shown in Fig. 7 and Table 1,

we will examine the bulk reactions in terms of three physical

principles: reactive screening, the composition of the electrical

current, and the dissociation of the neutral flux. Though we focus

on these underlying principles, which are crucial for understand-

ing the effect of bulk chemical reactions on any swimmer, this

structure also allows us to discuss the three model swimmers in a

logical order: S=, S+ and S�.

6.3 Reactive screening (model S=)

If an ion is released from the particle surface, it will react and

come into local equilibrium with the surrounding solution. The

characteristic distance over which this approach to equilibrium

occurs can be called a ‘reactive screening length’ q�1. As for the

simple model discussed in Section 2.3, the reactive screening

length is a balance between molecular diffusion and the

reaction rate. However, the expression for q is more complex

than in the simple model. We find

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kas
c1þ Dþ þ c1� D�

DþD�

� �
s

: (38)

Mathematically, q corresponds to one of the eigenvalues of the

linear system of equations, eqn (19) and (20), see Appendix A.2.

For our base parameter set, we obtain a screening length

q�1 = 74 nm.

Just as for the simple model, reactive screening gives an

exponential decay of chemical concentrations with distance from

the particle surface. The inclusion of charged species means

that the electrostatic potential can now also become screened.

However, we observe this reactive electrostatic screening only

for S= swimmers, where the two ions released from the surface

both react with oppositely charged ions in the bulk solution,

causing an exponential decay in the resulting diffusion potential,

see Fig. 8a.

For S+ swimmers, no such screening is observed, see Fig. 8b.

This is because the electrical current is conserved, so cannot be

screened, and hence the associated electrical field also retains

its unscreened dipolar form. Similarly, the H2O2 concentra-

tion field c� remains unscreened because this field is approxi-

mately conserved in the weak-dissociation limit. This results

in an unscreened electrostatic potential field for S� swimmers

(not shown).

For S= swimmers, reactive screening also explains the 1/(qa)

scaling of B= at high qa, as we show with a simple scaling

argument: from eqn (4) and (5), we expect a fixed ratio between

the surface reaction rates and the concentration gradients normal

to the surface. For example, at r = a

@cþ
@r

� � jsþ
Dþ

; (39)

independent of other parameters. For qa c 1, the concentra-

tion decays exponentially away from the surface

c+ p exp(�qr). (40)

Differentiating this equation with respect to r gives qc+/qr E �qc+
and comparing this with eqn (39) yields

cþðr ¼ aÞ � jsþ
Dþq

: (41)

Since the diffusion potential is proportional to the ionic con-

centrations (c+, c�), and the propulsion speed U= is proportional

to the diffusion potential, we have U= p q�1. On the other

hand, without bulk reactions the only relevant length scale is a,

so a similar argument gives UNBR
= p a. Therefore, one obtains

B= p U=/U
NBR
= = 1/(qa). Physically, for qac 1, the concentration

flux only has the small screening length q�1 over which to set

up a diffusion potential, whereas without bulk reactions a length

of order a is available.

This 1/(qa) scaling immediately explains the B= p 1/a

scaling in Fig. 7b. We can also understand the peak in B= in

Fig. 7c by noting that the screening length q�1 vanishes both for

high cN+ and for high cN� in eqn (38). Since cN� scales inversely

Table 1 The bulk mobility factors predicted in the thin-screening ka c 1,

ka c qa, and low dissociation cN+ ,cN� { cN� limits, for low, qa { 1 and

high qac 1 reaction rates. In both limits the prefactor should be multiplied

by the relevant expression in the right-hand columns. The full expressions

are given in Appendix A.4

Prefactor � qa { 1 qa c 1

B�
a
dþ � d�
dþd�

ðqaÞ2
2

1

B+ 1 � 1

dþ
� 1

d�

B= dþ � d�
dþd�

1 2

qa
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with cN+ due to the ionic equilibrium of eqn (22), this means

that q�1 vanishes at either end of the cN+ scale. As B= p q�1,

it too vanishes at either extreme and is peaked for intermediate

cN+ . Physically, at either end of the cN+ scale, the high concen-

tration of ions screens electric fields, preventing the formation

of a diffusion potential.

6.4 Composition of the electrical current (model S+)

The total electrical current in the bulk is a conserved quantity,

and is therefore not screened. However, the individual ionic

fluxes making up that current are not conserved, and the bulk

reactions modify the identity of the current-carrying ions. As

discussed in Section 5, this is important because the swimming

speed scales inversely with the diffusivity of the current-carrying

ion or ions. In our system, an initially pure proton current will be

partially replaced by HO2
� ions travelling in the opposite direc-

tion, as illustrated in Fig. 5. In the reactive, qa c 1 limit we can

calculate the composition of this electrical current relatively

simply. From this, we will obtain the propulsion speed of the

S+ swimmer.

In the qa c 1 limit, at any point outside the thin reactive

screening layer, the ions released from the surface will have had

time to come into equilibrium with each other. This is equiva-

lent to requiring that the chemical production rates vanish, i.e.,

Rl = 0. In the linear approximation, see eqn (17), this means
X

m

klmxm ¼ 0: (42)

In other words, the deviations in concentration xl of each of the

reactive chemical species are coupled by the reaction matrix k

given in eqn (23). This concentration coupling also implies a

coupling of the chemical fluxes, in the same way that charge

conservation implies the conservation of electrical current.

Consider the linearized flux equation, eqn (16). Multiplying

both sides by kml/(Dlc
N
l ) and summing over l yields

�
X

l

kml jl
Dlc

1
l

¼ r
X

l

kmlxl þrc
X

l

kmlzl : (43)

Then, from eqn (42), with l and m exchanged, the first term on

the right vanishes, while charge conservation in reactions implies
P

l

kmlzl ¼ 0 (see eqn (7)), so the second term vanishes too.

Hence, the general flux coupling equation is

X

l

kml jl
Dlc

1
l

¼ 0: (44)

For our specific system, substituting the expression for k from

eqn (23) into eqn (44) then gives

jþ
Dþc1þ

þ j�
D�c1�

¼ j�
D�c1�

: (45)

The physical meaning of eqn (45) is that each of the molecular

fluxes has a characteristic scale set by Dlc
N
l , and that, with this

scaling, the relationship between the currents is set by the

stoichiometry of the bulk reactions. Eqn (45) can be rearranged

to give each of the ionic fluxes j	 in terms of the conserved

quantities i and j�

j	 ¼ 	i

e

D	c1	
D� c1þ þ c1�
� �þ j�a; (46)

where D* is the concentration-averaged diffusivity of the active

ions§

D� ¼ Dþc1þ þD�c1�
c1þ þ c1�

; (47)

and the dimensionless factor a, which specifies the equilibrium

decomposition of a neutral current into ionic currents, is

a ¼ D�c1�
� ��1

Dþc1þð Þ�1þ D�c1�
� ��1

: (48)

The meaning of the first term in eqn (46), which is relevant for

S+ swimmers, is that the electric current is carried by a fixed

proportion of H+ ions travelling in one (positive) direction,

and a counter current of HO2
� ions in the opposite (negative)

direction. In the second term, which is relevant for S� swimmers,

the neutral flux j� continuously dissociates into H+ and HO2
�

ions, producing small, equal fluxes of these ions, which travel

with the neutral flux.

If we are also outside the electrostatic screening length, which

is the case in the kac 1 limit, we also have a zero-charge-density

condition, which reads
X

l

c1l xlzl ¼ 0: (49)

Fig. 8 Normalized surface-reaction-generated potential fsr for (a) S= and

(c) S+ swimmers, with (right) and without (left) bulk reactions. In each case,

the potentials are normalized by the largest value of |fsr| without bulk

reactions. (b) Normalized radial decay of fsr along X–X0 for (b) S= and (d) S+.

Solid curves are with bulk reactions, dashed curves without.

§ Note that D* a
�
D (eqn (29)), as

�
D includes the diffusivity of the inactive ions.

Soft Matter Paper

O
p
en

 A
cc

es
s 

A
rt

ic
le

. 
P

u
b
li

sh
ed

 o
n
 1

6
 D

ec
em

b
er

 2
0
1
6
. 
D

o
w

n
lo

ad
ed

 o
n
 8

/2
6
/2

0
2
2
 1

0
:0

8
:3

2
 A

M
. 

 T
h
is

 a
rt

ic
le

 i
s 

li
ce

n
se

d
 u

n
d
er

 a
 C

re
at

iv
e 

C
o
m

m
o
n
s 

A
tt

ri
b
u
ti

o
n
 3

.0
 U

n
p
o
rt

ed
 L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c6sm01867j


This journal is©The Royal Society of Chemistry 2017 Soft Matter, 2017, 13, 1200--1222 | 1213

Just as above, but now multiplying eqn (16) by zl/Dl, we can

derive a direct relationship between the electric field and the

chemical fluxes61

rf ¼ � e

k2e

X

l

jlzl

Dl

; (50)

which, combined with eqn (46), yields a version of Ohm’s law

for the reactive limit

rf ¼ 1

k2e
� 1

D�

� �

i þ a
Dþ �D�
DþD�

� �

ej�

� �

: (51)

Comparing the first term of this equation with eqn (35) for

self-electrophoresis without bulk reactions, we see that they are

identical apart from the switch from D+ to D*.

For an S+ swimmer, j� = 0, and for high qa all of the electric

field outside a thin screening layer will be determined by the

first term of eqn (51). From this we can understand the 1/D*

factor which appears in B+, see Table 1. Just as without bulk

reactions (see eqn (34)) the propulsion speed is inversely propor-

tional to the diffusivity of the current-carrying ion. However,

the current is now made up of two ions, with a total effective

diffusivity D*. This explains the 2� speed increase in Fig. 7b: D+ at

low a is replaced by D* at high a, and for cN+ = cN� , which is the

case in Fig. 7b, D* = (D+ + D�)/2 E D+/2.

To understand the effect of varying cN+ , Fig. 7c, we examine

the form of D* in eqn (47). At high cN+ , D* E D+, while at low

cN+ (=high cN� ), D*E D�. Physically, this is again simply a result

of the relative number of each ionic species: if there is an

overwhelming number of protons in solution, then the ionic

current must be carried predominately by protons. This explains

the factor of D+/D� E 10 speed difference between the two

plateaux for B+ in Fig. 7c.

6.5 Dissociation of the neutral flux (model S�)

To understand the dissociation of a purely neutral flux, we

examine the parameter a in eqn (48). The form of a can be

explained by the fact that in the absence of a net electrical

current, e.g., for S� swimmers, the ionic currents are con-

strained by j+ = j�. This means that the total ionic flux will be

limited by whichever ion has the lower value of Dlc
N
l , as this ion

will contribute most to the flux balance in eqn (45). Hence the

parameter a, like q�1, vanishes at the extreme ends of the

cN+ scale: at low cN+ it is limited by the low proton concentration,

and at high cN+ , by the low HO2
� concentration.

The dissociation of the neutral flux generates a diffusion

potential. Hence, the prefactor for B� in Table 1 is made up of

two factors: a and (d+ � d�)/(d+d�), the latter of which controls

the diffusion potential just as for B=. The peak in B� as a function

of cN+ then follows directly from the behaviour of a.

Interestingly, both S� and S= show peaks in speed at inter-

mediate cN+ , but for two different reasons. For S=, the reason is

that the reassociation of ions is slowest at intermediate concen-

trations. For S�, the reason is that the least conductive fraction of

the solution limits the total carrying capacity, and this effect is

strongest at either extreme in pH.

7 Comparison with experiments

We now compare our theoretical predictions with experimental

results, in so far as this is possible at present. We stress here

again the lack of understanding of the surface chemistry, and

in particular of the effect of experimental parameters on the

ionic surface reaction rates. We have not attempted to predict

these reaction rates, so we cannot immediately test our theore-

tical predictions. In this section alone, we will make the simple

and typical3,15,16 assumption that the surface properties, i.e.,

surface reaction rates and surface charge densities, vary only

with fuel concentration and are otherwise constant, so that

Up k�3F(ka)B(qa) for all swimmers (eqn (37)). This allows us to

make some suggestive comparisons with experiments. We note

that more complex reaction rate dependencies based on electro-

chemical modelling of the surface have been proposed pre-

viously.14,17,36 However, to the best of our knowledge, these

models do not have independent experimental justification,

or experimental validation from speed experiments beyond that

achieved by the assumption of uniform surface properties.

Independent of bulk reactions and swimmer type, we pre-

dict a speed scaling with a3 for small particles. In particular, for

a proton powered swimmer UNBR
+ , the predicted speed depen-

dence is as shown in Fig. 9a (solid curve), due mostly to the new

electrostatic screening parameter F(ka)—the bulk reactions

do not significantly modify the form of this curve. Here, we

have matched the solution parameters to those of the typical

microswimmer experiments of ref. 65, choosing the (constant)

surface parameters to give a speed of 7 mm s�1 (blue circle) for a

1 mm radius bimetallic sphere, as in that paper (see Appendix B

for the surface parameters used). We also plot nanoswimmer

data (black triangle) from ref. 37, where a swimmer of radius

10 nm had U = 650 mm s�1. These two experiments used similar

concentrations of H2O2, but differed in salt concentration.

Thus, to predict the nanoswimmer results, we also plot a

theoretical curve (dashed), with the salt concentration modified

to match those of the nanoswimmer experiment,37 but keeping

Fig. 9 Comparison between theory and experiments. (a) The predicted

speed of a swimmer powered by a proton current, in the presence of

chemical reactions, with parameters chosen to match typical measure-

ments on microparticles (red solid, theory; blue circle, experiment65); and,

with the same surface parameters, but bulk solution parameters chosen to

match experiments on a nanoswimmer (red dashed, theory; black triangle,

experiment37). (b) The speed of an S= swimmer plotted against experimental

data on Janus-Pt microswimmers.15 The experimental error bars are smaller

than the data points.
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the surface parameters the same as in the microswimmer

experiments.65

If the assumption of constant surface properties holds true,

then this dashed curve should agree with the experimental value

for nanoswimmers. Instead, there is a clear disparity amounting

to several orders of magnitude. This is not the result of our linear

approximation: we find a good match between analytics and

numerics up to values of s and js+ higher than those used in

plotting Fig. 9a (Appendix C). The disparity is also not signifi-

cantly reduced if we assume uniform z rather than uniform s,

see Section 5. The discrepancy could be explained in at least two

ways. It may be that self-electrophoresis is not the correct

propulsion mechanism for bimetallic nano-swimmers. It has

recently been found that nanometre scale biological enzymes

also exhibit self-propulsion,41,42 and a range of mechanisms has

been proposed for this propulsion,66 some of which might also

apply to bimetallic nano-swimmers. Alternatively, it may be that

the assumption of constant surface properties is inappropriate.

That is, the proton current density could be much higher for

these nano-swimmers than for micro-swimmers. Whatever the

explanation, this discrepancy highlights the need for more

systematic studies of identical or comparable swimmers over

wide parameter ranges, as in ref. 15–17, and for independent

measurements of the relevant ionic reaction rates.

For Pt-polystyrene Janus particles, such systematic studies

do exist.15 These show a Up a�1 scaling for 0.2 mmo ao 5 mm

(this scaling has also been observed over a narrower range for

some bimetallic swimmers65). Self-electrophoresis S+, reaction

(R2), is currently the preferred mechanism for Pt-polystyrene

Janus swimmers,16,17 but comparison of this 1/a scaling with

Fig. 7b suggests self-ionic diffusiophoresis S= as an alternative

mechanism, corresponding to reaction (R3). This is plausible:

ion release without net electrical currents, which would corre-

spond to reaction (R3), has previously been observed for H2O2

decomposition on Pt.67 This mechanism would also avoid the

conceptual difficulty of producing a net ionic current in single-

catalyst systems.16,17 However, when we plot the experimental

data from ref. 15 against our theoretical predictions for S=
propulsion, Fig. 9b—which is again scaled to match the experi-

mental data for 1 mm radius swimmers, see Appendix B—we see

that the fit fails at small a, again due to the F(ka) parameter.

It is possible that evaluation of the complete H2O2–H2O reac-

tion system would provide a better fit, but this goes beyond the

scope of this work.

Note that the 1/a scaling has previously been explained by

postulating that the overall surface reaction rate j s� is limited by

diffusion,15 and therefore scales as 1/a just from geometrical

arguments. However, the diffusion-limit implies a large flux

density j s� E D�c
N
� /a, which for a 1 mm radius swimmer in 3 M

H2O2, as in ref. 15 requires j s� E 3 � 1024 m�2 s�1. So far, only

much smaller rates, j s� E 1022 m�2 s�1, have been measured,

both by us16 and by the authors17 of ref. 15. Therefore, these

swimmers do not appear to be in the diffusion limited regime,

so this explanation for the 1/a scaling cannot hold.

Next, we have previously calculated the values of the uncharged

flux js� and the charge density s for Pt-coated Janus swimmers.16

We estimated that the propulsion speed of such swimmers was

too high to be explained by a purely uncharged reaction like

(R1).16 This estimate did not allow for bulk ionic reactions.

However, including these reactions, we calculate in Appendix C

that such a mechanism could still only account for E5% of the

observed speed of these swimmers. Hence, a model with just

surface reaction (R1), even with bulk dissociation, cannot explain

the propulsion of H2O2-powered swimmers, so that such swim-

mers probably still require more complex ionic surface reaction

schemes like (R2) and (R3). Nevertheless, purely neutral-surface-

reactionmechanisms could still be relevant for swimmers powered

by more dissociative fuels, such as hydrazine.59

Turning to the effect of pH, there have been two suggestive

studies,16,59 but no systematic investigation. First, we found that

NaOH reduced the swimming speed of Pt-polystyrene Janus

swimmers, but that this effect was much weaker than the speed

reduction due to NaCl.16 This is consistent with our prediction

that increasing pH at fixed Debye length should raise the

swimming speed for any of the 3 swimming mechanisms

discussed. Raising the pH corresponds to moving left from

the � symbol in Fig. 7c; for all swimming mechanisms the value

of B increases in this direction.

Second, the silica–iridium swimmers of ref. 59 show a clear

spike in speed as a function of fuel (hydrazine) concentration

similar in form to the peaks in Fig. 7c. This spike could be due

to modulation of pH by the reaction product ammonia, which

would imply that either neutral self-diffusiophoresis or self-ionic

diffusiophoresis dominates this swimmer’s self-propulsion. In

both these experiments, however, variation of the reaction rates

with pH could also explain the results,68 so further systematic

study is necessary.

Finally, we note that the bulk ionic dissociation rates are also

not well known, see Section 4.4. Our estimate of the association

constant kas is a diffusion limited rate, and is therefore an

upper limit, though for a proton exchange reaction, this is likely

an accurate estimate.52 Nevertheless, it might be argued that

the effects of bulk reactions will not be observed in practice for

lower reaction rates, as we require qa ] 1. However, since

q�1 p kas
�1/2, see eqn (38), for a much lower value of kas, say

1000 times lower, we still find q�1
B 2 mm, well within the

experimental microswimmer size range. Further, the value

of q�1 becomes arbitrarily small in both high and low pH

solutions, see eqn (38).

8 Conclusion

In this article, we have theoretically explored the influence of

common polar solvents such as water and hydrogen peroxide

on the propulsion behaviour of chemically-propelled, synthetic

microswimmers. We have focussed on two unavoidable proper-

ties of such polar solvents—electrostatic screening and ionic

dissociation—and calculated their effect on the swimming

speed of a wide range of microswimmers propelled by chemical

reactions on their surfaces. These effects have not been studied

systematically before; nevertheless, they are highly significant,
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and including these effects can modify predicted swimming

speeds by several orders of magnitude.

By ionic dissociation, we mean the breaking up of neutral

molecules, including water, into charged species, for example,

H2O2 " H+ + HO2
�. One of our main predictions is that this

kind of ionic dissociation reaction allows even microswimmers

whose surface chemistry does not involve any ions, e.g.,

swimmers propelled by the simple decomposition of hydrogen

peroxide, 2H2O2 - 2H2O + O2, to generate ionic gradients

and thereby electric fields. The implication of this is that all

microswimmers in water should experience some degree of

self-electrophoresis, i.e., propulsion via self-generated electric

fields. This is significant because self-electrophoresis is much

more efficient than other putative propulsion mechanisms and

is likely to dominate over them. Put simply: our results imply

that all swimmers in aqueous solution are likely to be self-

electrophoretic to a large degree.

The second major prediction of our work is that for some

chemically-propelled swimmers, ionic dissociation reactions may

result in a kind of exponential ‘reactive-screening’.20 Electrical

and chemical concentration fields generated by surface reac-

tions on microswimmers are usually taken to decay slowly into

the bulk solution, that is, as a power-law with distance. Ionic

dissociation can instead produce a short-ranged exponential

decay of these fields, just as in electrostatic screening. This

is significant since these chemical and electrical fields are

implicated in inter-swimmer interactions and collective behav-

iour, and the interaction range will play a crucial role in this

behaviour.

Our third prediction relates to electrostatic screening itself.

Most analytical treatment of microswimmers has focussed on the

thin-screening limit, where the electrostatic screening length is

much smaller than the swimmer size. For very small swimmers,

this limit does not apply, and we find that this massively reduces

the predicted swimming speed. This is important because experi-

ments on nanoscale swimmers37 show that these in fact swim

faster than microswimmers, in apparent contradiction to our

predictions. This opens up the exciting possibility that nanoscale

swimmers move by entirely novel mechanisms compared to their

microscopic counterparts.

Finally, the general conclusion that we draw from our results

is that more experimental work is required to understand self-

propulsion mechanisms. The effect of ionic dissociation in

particular depends crucially on the type of surface reactions

which are responsible for propulsion—and the details of these

reactions remain almost universally unknown. What is most

urgently required in this regard is the independent measure-

ment of surface reaction rates, which is challenging, and has so

far only been achieved in the simplest of cases. However, recent

results with electroosmotic pumps69 suggest that such measure-

ments will not long remain beyond our reach. We particularly

hope that our theoretical results will lead to renewed efforts in

this direction.

Looking ahead, our results suggest that a deeper under-

standing of self-propulsion will lead to greater insights into

swimmer–swimmer interactions and collective effects. This is

particularly relevant to synthetic swimmers, as their propulsion

is closely coupled to their interactions through self-generated

electrostatic, chemical, and hydrodynamic flow fields. We have

shown here that reactive screening can qualitatively change

the electrostatic interactions between swimmers. A detailed

follow-up study will look explicitly at such interactions. Further

theoretical work will focus on applying our calculations to

fully realized experimental systems, e.g., mixed metal-dielectric

swimmers.

Appendix

A Calculation of the analytical solution

In this appendix, we explicitly calculate the propulsion speed for

a general swimmer. This calculation is based on the linearized

model described in Section 4, but now with a more concise

notation, A.1. From this linearized model, we determine first the

electrostatic potential fields, A.2, then the propulsion speed, A.3,

as set out in Section 4. In A.4, we apply this general calculation to

determine the speed of the model swimmers presented in the

main text. Finally, in A.5, we demonstrate the equivalence of

uniform charge and uniform potential boundary conditions for

the calculation of the propulsion speed.

A.1 The linearized model

We begin with the linearized model described in Section 4.3.

For notational convenience, we define a composite dimension-

less parameter yl by combining the linearized potential c and

concentration xl fields

yl ¼
c; l ¼ 0;

xl ; l ¼ 1; 2 . . .N:

(

(52)

With this notation, the linear system of equations, eqn (19) and

(20) is given by

r2yl ¼
� e2

ekBT

PN

m¼1

zmc
1
m ym; l ¼ 0;

�zlr2y0 �
1

Dlc
1
l

PN

m¼1

klmym; l ¼ 1; 2 . . .N:

8

>
>
>
>
<

>
>
>
>
:

(53)

Eqn (53) represents a system of N + 1 linear equations. How-

ever, several of the species, typically inactive ions such as Na+ or

Cl�, may not be involved in any bulk or surface reactions, and

we will now show that these inactive species can be eliminated.

We specify that the first N0 indices (N0 o N) correspond to the

reactive species. For the remaining, unreactive species, all the

bulk reaction coefficients, klm are zero, and there is no surface

flux, so eqn (53) can only be satisfied if

yl = �zly0, l 4 N0. (54)

This is the linear approximation to the Boltzmann distribution,

which one expects, since these unreactive species should be in

equilibrium with the electric field. Using eqn (54), these ions
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can be eliminated from the remaining N0 + 1 parts of eqn (53)

to yield

k�2r2yl ¼

�
PN

0

m¼1

wmym

zm
þ 1�

PN
0

m¼1

wm

 !

y0; l ¼ 0;

PN
0

m¼1

zlwm
zm

� klmk
�2

Dlc
1
l

� �

ym � zl 1�
PN

0

m¼1

wm

 !

y0; l ¼ 1; 2 . . .N 0;

8

>
>
>
>
>
>
<

>
>
>
>
>
>
:

(55)

where k is the inverse Debye screening length

k ¼ 4plB
XN

l¼1

zl
2c1l

 !1
2

: (56)

with the Bjerrum length, lB = e2/(4pekBT), and where wl is a

dimensionless ionic concentration

wl = 4plBk
�2zl

2cNl . (57)

Eliminating the inactive ions makes it clear that the motion of

the swimmer cannot depend on the diffusivity of these ions,

and is only affected by them through the value of k and through

charge balance.

Finally, linearizing the boundary conditions in eqn (3) and (4)

gives

n̂ � ryl sð Þ þ zlry0 sð Þð Þ ¼ � jsl
Dlc

1
l

;

n̂ � ry0 sð Þ ¼ � se

kBTe
:

(58)

A.2 Calculation of the electrostatic potential

Eqn (55) has the form of a matrix equation with components

corresponding to the chemical concentrations and the electro-

static potential, so it is convenient to introduce some additional

matrix notation. The bold font is reserved for real-space vectors,

such as the fluid velocity u, while vectors in this concentration-

potential space will be underlined. A general vector �t will have
N0 + 1 components labelled tl, while a matrix T will have

(N0 + 1) � (N0 + 1) components labelled Tlp. A point in the

concentration-potential space is specified by the vector �y, with

components yl, as defined in eqn (52). Using this notation,

we can rewrite eqn (55) as

r2y ¼ My; (59)

which can be solved by finding the N0 + 1 eigenvectors of the

matrix M, with eigenvalues mp. These eigenvectors define a new

basis, in which M is diagonal. Defining �w as the representation

of �y in this basis, we have

r2w ¼ G2w; (60)

where the matrix G is diagonal, with components Glp = dlpgp,

where dlp is the Kronecker delta and gp ¼ ffiffiffiffiffi
mp

p
is an inverse

screening length. For the model system described in the main

text, the unique values of gp are k, 0 and q, as given in eqn (38).

Here, for clarity, we use the index p to refer to the screening

lengths, and the indices l or m to refer to the concentrations

and potentials, even where these are dummy indices.

Eqn (60) is a series of N0 + 1 independent Helmholtz

equations, and the full solution to this equation is just a vector

of individual solutions to the Helmholtz equation. In spherical

polar coordinates, these solutions have the form20,70

wp ¼
X

n

wp;nPnðcos yÞ
a

r

� 
nþ1Tn gpr
� �

Tn gpa
� �e�gpðr�aÞ; (61)

with wp,n an as yet undetermined surface coefficient, Pn the

Legendre polynomial of order n,71 y the polar angle, and

TnðxÞ ¼
Xn

s¼0

2sn!ð2n� sÞ!
s!ð2nÞ!ðn� sÞ!x

s: (62)

We refer to the Legendre components by the subscript n through-

out, and where we have multiple subscripts, the Legendre

subscript shall be preceded by a comma. Transforming back

into the original coordinate frame linearly combines the solu-

tions in eqn (61), so that the final form for the electrostatic

potential is

f ¼
X

p;n

fp;nPnðcos yÞ
a

r

� 
nþ1Tn gpr
� �

Tn gpa
� �e�gpðr�aÞ; (63)

with analogous expressions for each concentration field. Here,

fp,n are surface coefficients which we will now determine.

Transformation back into the original coordinate system is

achieved with a transformation matrix K

y ¼ K w; (64)

where each element Klp of K is equal to the lth component

(in the original coordinate system) of the pth eigenvector.

Applying this transformation to eqn (61) gives

yl ¼
X

p;n

Klpwp;nPnðcos yÞ
a

r

� 
nþ1Tn gpr
� �

Tn gpa
� �e�gpðr�aÞ: (65)

The boundary conditions specified in eqn (58) can also be

rearranged into a matrix equation

Bn̂ � ry
	
	
	
r¼a

¼ b; (66)

where �b is a vector specifying each of the boundary fluxes or

charge density. We define the harmonic components �bn of �b by

b ¼
P

n

Pnðcos yÞbn, with analogous expressions defining B
n
. The

solution to the boundary conditions is found by inverting eqn (66)

to yield

wn ¼ L
n
bn; (67)

where

L
n
¼ B

n
K D

n

h i�1

; (68)
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in which the diagonal matrix D
n
has elements

Dlp;n ¼ dlp gp
@ logTnðxÞ

@x

	
	
	
	
x¼gpa

� nþ 1

a
þ gp

� �
" #

: (69)

Inserting the boundary conditions into eqn (65) then gives

yl ¼
X

p;n

ylp;nPnðcos yÞ
a

r

� 
nþ1Tn gpr
� �

Tn gpa
� �e�gpðr�aÞ; (70)

where the surface coefficients are

ylp;n ¼ Klp

X

m

Lpm;nbm;n: (71)

In particular, this yields for the surface coefficients of the

electrostatic potential (for which the index l = 0)

fp;n ¼
kBT

e
K0p

X

m

Lpm;nbm;n: (72)

Eqn (72), together with eqn (63) completely determines the

electrostatic potential field.

We can also determine the equilibrium and non-equilibrium

components of the potential. Writing f = feq + fsr, where

feq = f({jsl } - 0) is the equilibrium potential distribution

without any surface chemical reactions (here, {jsl } is the com-

plete set of surface fluxes), and fsr = f(s - 0) is the additional

potential generated by the surface reactions, we have

feq ¼
X

p;n

feq
p;nPnðcos yÞ

a

r

� 
nþ1Tn gpr
� �

Tn gpa
� �e�gpðr�aÞ; (73)

fsr ¼
X

p;n

fsr
p;nPnðcos yÞ

a

r

� 
nþ1Tn gpr
� �

Tn gpa
� �e�gpðr�aÞ; (74)

with surface coefficients

feq
p;n ¼

kBT

e
K0p

X

m

Lpm;nb
eq
m;n: (75)

fsr
p;n ¼

kBT

e
K0p

X

m

Lpm;nb
sr
m;n: (76)

Here �b
eq = �b({j

s
l } - 0) is the vector specifying the boundary

conditions for a charged but unreactive particle, and �b
sr =

�b(s - 0) specifies the boundary conditions for an uncharged

but reactive particle.

A.3 Calculation of the propulsion speed

Having determined the electrostatic potential, we calculate the

fluid flow by making use of the Lorentz reciprocal theorem.38

This allows one to transform the Stokes equation, eqn (11),

from a 3D partial differential equation into an integral equation

on the 2D domain boundary (the swimmer surface). Using this

approach, a general formula for the propulsion velocity U of a

non-slip sphere generated by an axisymmetric distribution of

force density f has been derived48

U ¼ � ẑ

6pZa

ð

V

3a

2r
� a3

2r3
� 1

� �

cos yr̂

�

� 3a

4r
þ a3

4r3
� 1

� �

sin y

�

� f dV ;

(77)

where the volume integral is over the region outside the sphere,

and the scalar speed U used in the main text is defined by

U = Uẑ. Here f = �rerf from eqn (10).

For a uniformly charged sphere, the equilibrium potential

distribution is

feq ¼ sa2e�kðr�aÞ

reð1þ kaÞ : (78)

Making the usual assumption of a small driving field, i.e.,

fsr
{ feq then gives

U ¼ 2s

3Za

X

p

k� gp

kþ gp
� �2

fsr
p;1F ka; gpa

� �

; (79)

where the fsr
p,1 are to be read out from eqn (76) and

Fðx; yÞ ¼ ðxþ yÞ3
6ð1þ xÞð1þ yÞe

xþy

�
ð1

1

ðt� 1Þ2ð2tþ 1Þ
t5

ð1þ xtÞð1þ ytÞe�tðxþyÞdt;

(80)

which is the self-electrophoretic equivalent of the Henry func-

tion for electrophoresis in an external field.39 We have verified

that eqn (79) is also obtained by solving the 3D Stokes equa-

tions directly, following Henry’s methods.39,40,70 We also write

down a single-argument form of the self-electrophoretic func-

tion F(x) = F(x,0), which is useful when considering swimmers

without bulk reactions, for which y = qa = 0

FðxÞ ¼ x3ex

6ð1þ xÞ

ð1

1

ðt� 1Þ2ð2tþ 1Þ
t5

ð1þ xtÞe�txdt: (81)

This is the function discussed in Section 6.

A.4 Propulsion speed for the model swimmers

We now write down the propulsion speed for the 3 model

swimmers discussed in the main text. These expressions

were determined by solving eqn (79) symbolically in MATLAB,

and making the further assumption of weak ionic dissocia-

tion. We find that the bulk reaction factors, as defined in

eqn (37) are

B� ¼ dþ � d�ð ÞKeq

c1þ þ c1�
� �

d�d�
1�Yðka; qaÞ½ 
;

Bþ ¼ � 1

d� 1� c1� dþ � d�ð Þ
dþ c1þ þ c1�
� �Yðka; qaÞ

" #

;

B¼ ¼ dþ � d�
dþd�

Yðka; qaÞ;

(82)
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where Y(ka,qa) depends on the relationship between the

3 length scales a, k�1 and q�1 and is

Yðka; qaÞ ¼ ka

kaþ qa

� �3
2ðaqþ 1Þ

ðaqÞ2 þ 2aqþ 2

Fðka; qaÞ
FðkaÞ : (83)

With the limits k c q, and either qa c 1 or qa { 1, we obtain

the expressions given in Table 1.

A.5 A note on electrostatic boundary conditions

In this section, we show that a particle with fixed, uniform

surface charge s has the same propulsion velocity as an equiva-

lent particle with fixed, uniform surface potential z, as long as

z ¼ sa

eð1þ kaÞ: (84)

To do this, we first need to show that modifying the electro-

static boundary conditions of the particle has only a limited

effect on the fields of concentration and potential; namely,

that such modifications can only introduce electrostatic fields

corresponding to the equilibrium Debye–Hückel solutions

around passive colloids.

We take a swimmer, in a given chemical environment, and

apply to it three sets of boundary conditions. Boundary condi-

tions (1) and (2), with corresponding solutions �y
(1) and �y

(2), have

equal chemical flux boundary conditions (equal surface reac-

tion rates), but have arbitrary, different electrostatic boundary

conditions. Boundary condition (3) consists of a no flux condi-

tion on all species (no surface reactions), and the electrostatic

boundary condition

y(3)0 (s) = y(2)0 (s) � y(1)0 (s). (85)

Since there are no fluxes through this particle’s surface, each

chemical species is in equilibrium, and the solution to this

boundary condition is just the equilibrium, Debye–Hückel

solution

y
ð3Þ
l ¼

ec

kBT
l ¼ 0;

�ezlc

kBT
l ¼ 1; 2 . . .N 0;

8

>
>
>
<

>
>
>
:

(86)

where the equilibrium potential field c must satisfy both the

electrostatic boundary condition, eqn (85), and the Debye–Hückel

equation

r2c = k2c. (87)

One can then show by direct substitution of eqn (86) into

eqn (55), that the solutions to the three boundary problems

are related by �y
(2) � �y

(1) = �y
(3). In particular, f(2) � f(1) = c, which

implies, from eqn (87)

r2[f(2) � f(1)] = k2[f(2) � f(1)]. (88)

Hence the difference f(2) � f(1) between the electric potential

fields of particles (1) and (2) corresponds to an equilibrium

Debye–Hückel solution around a passive colloid.

As before, we make the assumption of a small driving field,

fsr
{ feq, where f = feq + fsr. Now, consider two particles (10)

and (20), with equal surface reactions, but where (10) has uni-

form surface charge density s, and (20) has uniform surface

potential z, with s and z satisfying eqn (84). In this case, the two

equilibrium fields are equal, i.e., f(10)eq = f(20)eq, and are given

by eqn (78). Subtracting this equality from eqn (88) yields, for

the remaining, non-equilibrium part of the potential

r2[f(20)sr � f(10)sr] = k2[f(20)sr � f(10)sr]. (89)

In other words, the difference in the reaction-generated electro-

static potential field between (10) and (20) is an equilibrium,

Debye–Hückel type field, which has an inverse screening length

gp = k. Since there is a (k � gp) factor in eqn (79), we see that

such a field can have no effect on the propulsion speed. This

proves the assertion that, to linear order, a particle with fixed,

uniform surface charge s will have the same propulsion velocity

as an equivalent particle with fixed, uniform surface potential z,

as long as eqn (84) is satisfied.

In fact, one can make a more general statement, which we will

not prove. For any two particles (10) and (20), with equal arbitrary

shape, surface reactions, and equilibrium (possibly non-uniform)

fields feq, not only the propulsion speed but the entire flow field

will be the same. A physical justification for this conclusion

is that if the interaction between one equilibrium field (feq)

and another (the difference field between (10) and (20)) could

generate fluid flow, then this would constitute a perpetual-

motion machine. Analogous conclusions have also been drawn

for electrophoresis in an external field.72

B Experimental parameters
B.1 The ionic association constant

An important parameter in our calculations is the ionic reac-

tion association constant kas in (R40), H+ + HO2
�
" H2O2 in

water, see Section 4.4. We were unable to find a value for this

constant in the literature. However, reactions involving the

transfer of a proton or a hydroxyl ion are normally sufficiently

fast to be diffusion limited.52 It has been shown,73 that the

diffusion-limited rate constant between two species, A and B,

with diffusivities DA, DB, and valences zA, zB, which react at a

short distance rAB is74

kas = [4p(DA + DB)rAB]f (zAzB,rAB). (90)

Here, f (zAzB,rAB) is a modifier for charged species

f ¼ zAzBe
2

4perABkBT
exp

zAzBe
2

4perABkBT

� �

� 1

� ��1

: (91)

For reactions between oppositely charged species, over a typical

reaction distance in water of rAB = 0.2 nm,74 f (�1,rAB) = 3.59.

For the reaction between H+ (species A) and HO2
� (species B),

this yields, using the diffusivities quoted in the main text,

kas = 4.9 � 1010 mol�1 L s�1.

B.2 Comparison with experiments

For the comparison of self-electrophoretic micro- and nano-

swimmers in Fig. 9, we take experimental parameters from
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ref. 65 (microswimmers) and ref. 37 (nanoswimmers). For micro-

swimmers, we use a = 1 mm, cN� = 1.5 mol L�1 and no added salt.

For nanoswimmers, we use a = 15 nm, cN� = 1.5 mol L�1,

pH 7 and 5 mmol L�1 NaCl (this has the same Debye length as

1 mmol L�1 trisodium citrate, which was used in practice37).

For both swimmers, we take s = 10�2 e nm�2 (ref. 21) and

js+,1 = 1.66 � 10�7 mol m�2 s�1, which is chosen to match the

microswimmer speed in ref. 65.

For comparison between S= and polystyrene-Pt Janus particles,

we take experimental parameters from ref. 15, which are

cN� = 3 mol L�1 with no added salt. We used s = 10�2 e nm�2

again and js+,1 = 6.42 � 10�6 mol m�2 s�1, which is chosen to

match the experimental propulsion speed at a = 1 mm s�1.

C Finite element method calculations

In this section we give additional details for the numerical

FEM calculations discussed in Section 4.2. FEM calculations

are performed using the COMSOL 5.1 Multiphysics Modelling

package.

We employed the following strategies to accelerate the

calculations and obtain high quality results. (i) The solutions

were obtained in a 2D cylindrically symmetric geometry. (ii) We

ignored the advective coupling term in eqn (5). This allowed us

to split the problem into electrostatic plus hydrodynamic parts,

as for the linear theory, and thus solve the uncoupled equations

more efficiently. This approach is justified, since the Péclet

number (Pe) t 10�2 for typical experimental systems. We also

verified this directly, by including the advective coupling term

in a subset of the data points, finding good agreement. (iii) We

created a physics-specific mesh, see Fig. 10, on which we solved

the system. Quadrilateral elements were used out to a distance

of 3k�1 from the colloid surface. These elements grow expo-

nentially in size with increasing distance, whilst maintaining a

constant number along the tangential direction. The remainder

of the domain was meshed with triangular elements which

grow larger with distance from the colloid. This approach is

necessary to ensure convergence of the model. (iv) The following

polynomial orders were employed for the test functions: electro-

statics (3), diffusion (5) and hydrodynamics (2 + 3). These higher

orders proved necessary to reduce spurious flow (see also ref. 44).

(v) Finite-size scaling was employed to check for artefacts arising

from the finite extent of the simulation domain, we found that

for L = 10a + 25k�1 the effects on the speed of the particle were

negligible. (vi) Mesh refinement was used for several simulations

to determine the dependence of our result on the element size.

(vii) We also varied the tolerance on the residual for a few cases

to verify that our solutions had sufficiently converged.

To verify the analytic results, we first performed calculations

with sufficiently low values of the surface charge density and

flux to remain in the linear regime. These js and s are given in

Table 2. Fig. 7 in the main text shows that there is excellent

correspondence between the theory and FEM calculations

in this regime. Different fluxes were used for the different

propulsion models because the low efficiency of type S� and

S= propulsion mean that numerical errors become significant

more quickly as the flux density is reduced for these models.

In addition, the FEM calculations and the linearized theory

produce essentially identical electrostatic potential fields. Fig. 11a

illustrates this for type S+ electrophoresis. Note that we had to

use a much smaller computational domain than we typically

use (L = 6a here, rather than L = 10a + 25k�1), in order to show

details in Fig. 11a. This means that the deviation from the

theory, which stems from the f = 0 boundary condition on the

edge of the domain (Fig. 11b), occurs closer to the particle

than in our regular calculations. However, the potential and

Fig. 10 The mesh on which the FEM calculations are performed. This

particular mesh was generated for radius a = 0.5 mm and a salt concen-

tration of 10�5 mol L�1, but illustrates the generic features of all the meshes.

The rotational symmetry of the simulation domain is exploited to calculate

on a quasi-2D domain: the symmetry axis is indicated by the dashed red line.

The domain typically has a radius L = 10a + 25k�1 in size. This domain is

subdivided into two pieces on which triangular and quadrilateral elements

are used. In a range of 3k�1 around the colloid the domain consists of

quadrilaterals, which grow in size geometrically, see the zoom-in (blue box).

Beyond this range the elements are triangular and are allowed to grow

out linearly to best fit the domain boundary and reduce the overall number

of elements.

Table 2 The charge densities and the first Legendre components of

the surface flux densities used in Fig. 7 in the main text and Fig. 12 here.

The flux densities have units mol m�2 s�1, and the charge densities have

units e nm�2. The final column gives the product of s and the relevant

non-zero flux density, with units e mol m�2 nm�2 s�1

Fig. Type j s�,1 j s+,1 j s�,1 s sj s

7 S� 3 � 10�1 0 0 10�4 3 � 10�5

S+ 0 3 � 10�7 0 10�4 3 � 10�11

S= 0 3 � 10�5 3 � 10�5 10�4 3 � 10�9

12 S� 1.5 � 10�2 0 0 10�2 1.5 � 10�4

S+ 0 1.5 � 10�5 0 10�2 1.5 � 10�7

S= 0 1.5 � 10�5 1.5 � 10�5 10�2 1.5 � 10�7
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flow-fields decay sufficiently rapidly that this does not affect the

potential near the particle, or the propulsion speed beyond a

few per cent.

We can also use the FEM to go beyond the linear approxi-

mation. We defer to future work a systematic investigation of

the non-linear behaviour, and here focus on the propulsion

speed for selected experimentally relevant values of the surface

charge density and chemical fluxes. These values are taken

from measurements on the Pt-polystyrene Janus swimmers in

ref. 21, and are listed in Table 2. The neutral flux density j s�,1 is

that which would be produced by a Janus particle which uni-

formly consumes H2O2 on one hemisphere at a rate G = 8 � 1010

molecules per second per particle. This rate was measured for

a = 1 mm radius particles in 3 mol L�1H2O2.
16 The surface charge

density is taken from the electrophoretic mobility measurements

made on the same particles in ref. 16. The ionic fluxes are unknown,

but we arbitrarily set j s	,1 = 10�3 j s�,1, so that S+ electrophoresis

gives a speed of order 100 mm s�1, which is somewhat larger than

typical experimental values, E10 mm s�1 for Au–Pt spherical

microswimmers.10,65 Hence, our results should overestimate the

non-linear behaviour of the propulsion speed. Note that though

the ionic flux densities for the experimentally realistic case

are sometimes lower than those for the linear case, the product

of charge density and surface flux is always greater in the

experimentally realistic case, Table 2.

Fig. 12a and b, both with 1 mmol L�1 NaCl, correspond to

Fig. 7 in the main text. We see that the analytical theory con-

tinues to match the FEM calculations well even for these

realistic values of the flux and charge densities. However, many

experiments are performed with no added salt, and as shown in

Fig. 12c, the agreement worsens as the salt concentration falls.

This is to be expected, since it is low salt that generates a high-z,

large-screening-length regime where linear approximations

break down.75 In fact, with 0 mmol L�1 NaCl, the dimension-

less zeta-potential ze/(kBT) = 5.6 for these particles, well beyond

the Debye–Hückel regime of ze/(kBT) { 1. Nevertheless, for all

propulsion types, the agreement remains semi-quantitative

between simulations and theory over the whole radius range

for 0 mmol L�1 NaCl, Fig. 12d.

From Fig. 12d, we obtain a speed of 0.5 mm s�1 for type S�
electrophoresis with particles of radius a = 1 mm, no salt, and

3 M H2O2 (the black arrow indicates the relevant data point).

As stated in the main text, this predicted speed can account for

at most 5% of the experimentally measured propulsion speed of

15–20 mm s�1 obtained for Pt-polystyrene Janus particles under

the same conditions.16
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