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Ionization-induced annealing of pre-existing
defects in silicon carbide
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A long-standing objective in materials research is to effectively heal fabrication defects or to

remove pre-existing or environmentally induced damage in materials. Silicon carbide (SiC)

is a fascinating wide-band gap semiconductor for high-temperature, high-power and

high-frequency applications. Its high corrosion and radiation resistance makes it a key

refractory/structural material with great potential for extremely harsh radiation environ-

ments. Here we show that the energy transferred to the electron system of SiC by energetic

ions via inelastic ionization can effectively anneal pre-existing defects and restore the

structural order. The threshold determined for this recovery process reveals that it can be

activated by 750 and 850 keV Si and C self-ions, respectively. The results conveyed here can

contribute to SiC-based device fabrication by providing a room-temperature approach to

repair atomic lattice structures, and to SiC performance prediction as either a functional

material for device applications or a structural material for high-radiation environments.
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S
ilicon carbide (SiC) is a wide-band gap semiconductor1–5,
key refractory ceramic6,7 and radiation-tolerant structural
material8–11 that can be functionalized by ion-implantation

doping and has great potential for device and structural
applications in space and nuclear radiation environments. The
capability to retain an ordered atomic structure is essential for
reliable device function or material performance in a radiation
environment. In these applications, various defects are induced in
SiC by interactions with electrons12,13, ions14–16, neutrons17 and
cosmic rays. During a particle–solid interaction, two distinct
energy transfer processes occur: atomic collision cascades and
electronic excitation on the atomic and electronic structures,
respectively. Often overlooked is the fact that a substantial
amount of energy is transferred to electrons directly from such
energetic particles or through primary knock-on atoms (PKAs),
and this energy can profoundly affect atomic defect evolution.
Understanding the effects of electronic energy deposition is
particularly important in manufacturing devices, engineering
nanoscale structures and predicting material performance for
nuclear reactors or space applications where electronic energy
deposition and displacement damage occur simultaneously.

In an ordered crystalline structure, the exchange of energy
between electrons and atoms, via electron–phonon coupling,
leads to local heating. Except for the case of swift heavy ions (see
Supplementary Discussion for details), this heating has been
either (1) simply neglected in the past under an assumption that
the thermal effect is separated from the atomic processes and is
dissipated without impact on the atomic structure or (2) more
recently considered to enhance defect/damage production
(a synergetic effect)18, create additional atomic defects (an
additive effect)19 or cause defect/damage recovery (a competitive
effect, induced by swift heavy ion irradiation)20. In a defective
structure, which is normally the case in many applications, the
effects of ionization due to electronic energy loss are largely
unknown. Our hypothesis is that ionization effects due to the
energy loss to target electrons can anneal pre-existing defects, and
therefore may effectively modify or alter microstructure evolution.
In the current study, we confirmed this hypothesis and bridged the
knowledge gap by quantitatively investigating the ionization effects
on pre-existing damage in SiC. A surprisingly low threshold of this
recovery process at B1.4 keVnm� 1 induced by MeV ions is
determined, which has significant implications for material
performance evaluation in extreme radiation environments.

Radiation effects in SiC have been extensively investigated. For
ion–solid interactions in SiC at very low energies of up to a few
hundred keV (with an electronic energy loss of o1 keV nm� 1),
damage is almost solely attributed to energy transfer to the atomic
structure, which results in target atoms being directly displaced
from their lattice sites and defects being produced via atomic
collision cascades15,21,22. In the high-energy region often referred
as swift heavy ions (such as 870MeV Pb ions with an electronic
energy loss of 33 keVnm� 1), the ion energy is solely deposited to
the loosely bound electrons and then, through electron–phonon
coupling, transferred into atomic motion. Such ionization

processes in materials can either anneal pre-existing damage
or induce crystalline-to-amorphous and order-disordered
tranformations20,23,24. Most SiC applications utilize ions in the
intermediate regime where electronic and nuclear energy losses
are both significant21,25. Examples include: ion implantation, ion
beam modification and defect engineering by research institutions
and industry; ion beam analytical techniques; and ion simulation
to mimic ion and neutron radiation effects in nuclear
environments. Limited understanding of the coupled effect on
the atomic response of SiC to the two energy deposition pathways
is a long-standing roadblock to full utilization of this functional
material. Although some defects in SiC can be removed by
thermal annealing at temperatures below 1,000 K, with
recrystallization occurring at much higher temperatures, such as
B1,773K (refs 9,26), low-temperature manufacturing steps are
essential for restoring crystalline order in device applications at
nanometre scales.

Previous studies24,27 have demonstrated that swift heavy ion
irradiation with electronic energy deposition ranging from 10 to
33 keV nm� 1 leads to some damage annealing. Here we report a
significant competitive effect, promoted by the electronic energy
loss of ions with energies in the intermediate regime accessible
to industrial accelerators, whereby nearly complete defect
annihilation or damage recovery in pre-damaged 4H-SiC is
achievable. The ionization-induced annealing process (recovery
of the ordered atomic structure) in SiC has a significant impact on
low-temperature processes for eliminating defect production
during ion-implantation doping, suppression of single-event
upset damage in SiC devices, enhanced radiation tolerance and
reliable performance prediction for materials in extreme radiation
environments.

Results
Displacement damage. To better understand and quantify
ionization effects on damage recovery, pre-damaged states were
introduced using low-energy ion irradiation with 900 keV Siþ

self-ions (see Supplementary Methods—Ion Energy Deposition).
The high nuclear stopping power (0.38 keVnm� 1) and com-
parable electronic to nuclear ratio (1.75), in comparison to other
ions (Table 1), are responsible for the displacement damage
production. Different fractional disorder levels were produced
under different fluences, with peak disorder at a depth of
B650 nm, S0, of 0.36, 0.72, and close to 1.0 (the fully amorphous
state). Examples are shown in Fig. 1 for the cases of 0.72 and close
to 1.0. The sequential evaluation of ionization-induced recovery
on these pre-damaged disordered states was carried out at room
temperature over a range of electronic energy losses from 1.9 to
7.2 keVnm� 1 (Table 1). Such irradiation conditions allow a
controlled investigation to separately evaluate the ionization
effects without introducing significant displacement damage
through elastic collisions and to determine the possible threshold
of electronic energy loss for the competitive (ionization-induced
self-annealing) effects.

Table 1 | Ion irradiation condition and predicted stopping powers using the stopping and range of ions in matter (SRIM) code.

Ions Energy dE/dxele-s dE/dxNucl-s Ratio-s dE/dxele-p dE/dxNucl-p Ratio-p

Ni 21 8.2 6.6� 10� 2 124 7.6 7.9� 10� 2 96
Si 21 5.0 1.0� 10� 2 483 5.0 1.2� 10� 2 422
O 6.5 2.6 6.0� 10� 3 431 2.6 7.8� 10� 3 334
C 4.5 1.8 3.7� 10� 3 496 1.8 4.7� 10� 3 383
Si 0.9 1.6 1.2� 10� 1 13 0.65 3.8� 10� 1 1.75

Medium mass ions, their energy (MeV), electronic stopping powers dE/dxele (keVnm� 1) and nuclear stopping powers dE/dxNucl (keVnm� 1) at both sample surface (-s) and 650nm, where the damage
peak (-p) is produced from the 900 keV Siþ irradiation are summarized. The corresponding ratio of dE/dxele to dE/dxNucl is also calculated at the surface and the damage peak.
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Ionization-induced annealing. Ionization-induced recovery
process in SiC (see Supplementary Methods—Ion Energy
Deposition) is observed at irradiation conditions as low as
4.5MeV C, with 21MeV Ni being the most effective ion beam.
Two examples of the annealing effect under 21MeV Niþ

irradiation are shown in Fig. 1. High-disorder profiles of B0.72
and 1.00 are produced using 900 keV Siþ at fluences of 6.3 and
12 ions per nm2, respectively. For 21MeV Ni the electronic
stopping power (Se) is B7 to 8 keV nm� 1 from the surface to the
damage peak region, and the nuclear stopping (Sn) is negligible at
levels below B0.1 keVnm� 1, within the first micrometre from
the surface (Supplementary Fig. 1). Given the low nuclear
stopping values and high Se/Sn ratio (Table 1), negligible damage
buildup from the nuclear energy deposition within 1 mm of the
surface region is expected. This assumption is confirmed as no
damage buildup is observed on either the Si or the C sublattice
along the o00014 channelling direction in a pristine crystal
under 21MeV Niþ irradiation for ion fluences of up to 10 ions
per nm2 (Supplementary Fig. 2). Significant damage annealing is
observed in the pre-damaged region as a result of sequential Ni
irradiations for ion fluences up to 10 ions per nm2

(Supplementary Fig. 3). As shown in Fig. 1a,b, clear damage
reduction over the entire damage profile is evident after the
lowest-fluence irradiation to 0.2 ion per nm2. The relative
recovery rate depends on the initial disorder level, and a relatively
larger annealing effect is observed for the less-damaged sample
(S0¼ 0.72). For this highly disordered sample (Fig. 1a), con-
siderable damage recovery is observed after Ni irradiation at ion
fluences up to 3 ions per nm2, and the relative disorder decreases
from 0.72 to 0.16. At an ion fluence of 10 ions per nm2, the Si
ion-induced damage is almost fully healed; and the ordered
atomic structure is confirmed, as shown by the very low disorder
level. For the high-disorder sample with S0¼ 1.0, a higher-fluence
Ni beam is needed to repair the pre-existing damage, as shown in

Fig. 1b. Substantial recovery is observed under the Ni irradiations
when the ion fluence increases from 3 to 10 ions per nm2, with
the disorder levels dropping to 0.75 and 0.36, respectively.
Additional Ni irradiation is required to fully heal the damaged
crystalline structure.

Ionization-induced recovery under MeV C, O, Si and Ni ion
irradiation is observed as a reduction in disorder with increasing
ion fluence. The damage recovery behaviour in the pre-damaged
samples with S0¼ 0.36 and 0.72 is shown in Fig. 2. The recovery
from disorder, averaged from both the Si and the C sublattices, as
a function of ion fluence is shown in Fig. 2a for O, Si and Ni
irradiation of the S0¼ 0.36 samples. To demonstrate consistent
ionization-induced recovery on both the Si and C sublattices, the
disorder recovery determined from both sublattices is presented
in Fig. 2b for the S0¼ 0.72 samples. Compared with C, O and Si
irradiation, a significant recovery from Ni ion irradiation is
evident in Fig. 2b. In the intermediate MeV energy regime with a
high ratio of electronic to nuclear stopping powers (Table 1), the
results suggest that energy deposited to the target electronic
system can effectively anneal irradiation damage. In addition, the
ionization-induced annealing increases with ion mass and ion
energy. Moreover, compared with the results from the ions with
lower healing power (O and Si) in Fig. 2a,b, the relative recovery
(when normalized to the pre-existing disorder level) is nearly a
factor of two higher for the samples with the lower initial
disorder. At lower levels of disorder, there is an increasing
fraction of simple defects, while at higher levels of disorder,
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Figure 1 | Damage recovery in SiC under 21MeV Niþ ion irradiations.
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more thermally stable defects (for example, clusters and small
amorphous domains) are present. Owing to simpler defect types
and structure at lower damage levels, recovery is easier in the
samples with lower initial disorder.

Under the MeV irradiation in this study, electronic energy
deposition (electronic excitation and ionization) is dominant over
atomic energy deposition in the pre-damaged region. Electronic
excitation (electronic energy transfer), atomic displacement
(momentum transfer) and electron–phonon coupling are
entangled with equilibrium heating and non-equilibrium excita-
tion processes21. To understand the ionization-induced recovery
process at the levels of atoms and electrons, a molecular dynamics
approach with a thermal spike model is used. Irradiation-induced
recovery from the thermal spike (Supplementary Fig. 4) due to
16MeV Ni ions with an electronic energy loss ofB7.2 keV nm� 1

was calculated using cubic 24� 24� 24 nm3 simulation cells (1.3
million atoms of SiC) containing Frenkel defect concentrations of
B0.1 and 1.0 % (Fig. 3a). The initial damage is shown as ‘0’
overlapping ions. Energetic ions lose their energy as they travel
through solids. The Ni energy of 16MeV was chosen, since this is
the average energy of the 21MeV Ni ions at the depth of the pre-
damage peak, B650 nm below the sample surface. As shown in
Fig. 3, a more effective healing effect is observed for the case with
a lower defect concentration, consistent with our experimental
results shown in Fig. 1. To evaluate the efficiency of the annealing
power with different electronic stopping powers, molecular
dynamics simulations of O ion impacts were also performed.
The ion energy of 6.5MeV is chosen for its flat energy deposition
profile within the first micrometre of depth in SiC (Supple-

mentary Fig. 1). A comparison of the annealing powers resulting
from the thermal spike induced by 6.5MeV O and 16MeV Ni
ions on an initial defect concentration of 0.1% is shown in Fig. 3b.
Significant recovery attributed to the initial ion impact, which
heals the most unstable defects, is observed in both cases, similar
to what is shown experimentally in Fig. 2. Furthermore, our
molecular dynamics simulations suggest that, on average, about
half of the healing (decrease of the number of coordination
defects in the cell) from one ion is completed within 4 ps from the
ion passage, and a few percent stay until 80–100 ps. For the initial
ion, this annealing process is even faster, 50% within 1 ps, almost
90 % in 10 ps and B1 % occurring during the 80–100 ps time
frame. A previous molecular dynamics study28 using the same
interatomic potential has shown that recovery of close Frenkel
pairs occurs at activation energies as low as 0.22 eV for several
interstitial configurations on sub-picosecond timescales at 2,000K
(supplementary Fig. 4). Similar molecular dynamics studies29 of
interstitial self-diffusion in SiC have shown that the transition
time for single interstitial hops to be on the order of 0.01 ps at
1,500K. Moreover, for the same number of overlapping ions,
high-energy Ni ions display a much more effective recovery
process, again consistent with the experimental results shown in
Fig. 2. It is worth noting that both the simulation and the
experimental results suggest damage recovery with an exponential
dependence on ion fluence or number of overlapping ions.

Atomic-level microstructure characterization. To validate the
annealing effect and confirm defect annihilation, high-resolution
microstructural analysis was carried out. The top panel of Fig. 4
shows high-angle annular dark field (HAADF) images of the
4H-SiC samples, including a virgin undamaged sample and a pre-
damaged sample with S0¼ 0.72 before and after 21MeV Niþ

irradiation to an ion fluence of 10 ions per nm2. The images were
all taken at the same depth (B500 nm below surface) with the
sample oriented along the ð1120Þ zone axis. Compared with the
undamaged structure (Fig. 4a), larger variation in the atomic
contrast is evident in the Siþ -irradiated SiC (Fig. 4b) as a result
of atomic displacement from the irradiation. Surprisingly, the
damaged structure is nearly completely healed as a result of
irradiation with 21MeV Ni ions (Fig. 4c). Along with atomic
number, the contrast in the HAADF images also contains
information regarding lattice distortion resulting from atomic
displacements (see Supplementary Methods—Determination of
Atomic Displacements, and Supplementary Fig. 5). The atomic
displacements from an ideal position of the Si sublattice in SiC are
mapped in Fig. 4 (lower panel), which gives a fingerprint of the
Si sublattice distortion due to various ion irradiation events
corresponding to each atom shown in the top panel. The colour
maps in the lower panel represent the vector modulus of the Si
atom displacement (Supplementary Fig. 5). Whereas a high level
of contrast variation (large atomic displacement from the ideal
lattice position) is evident in the 900 keV Siþ pre-damaged SiC
(Fig. 4e), nearly identical contrast levels are observed in the virgin
structure (Fig. 4d) and the one annealed by Ni ion irradiation
(Fig. 4f). On the basis of the HAADF images and the detailed
atomic displacement analysis, it is quite clear that displacement
cascade damage introduced by 900 keV Siþ ion irradiation is
healed by the electronic energy deposition from the 21MeV Ni
irradiation.

To quantify the annealing power, irradiation-induced recovery
cross-sections, depending on both the initial disorder level
and electronic energy loss, are determined (see Supplementary
Methods—Determination of Scattering Cross Section). The
results in Fig. 5 show the recovery cross-sections for various
ions (C, O, Si and Ni) with an initial relative disorder of 0.72 or
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0.36 as a function of electronic energy loss. Significantly increased
recovery is observed with increasing electronic energy loss from
1.9 to 7.2 keV nm� 1 for ions from C to Ni (Table 1) that is
attributed to relatively larger recovery cross-sections of 21MeV
Ni compared with those of 4.5MeV C. For the lower mass
of O and C ions, the maximum electronic stopping power
(Supplementary Fig. 1) is at B2.6 (6.5MeV O) and
1.9 keV nm� 1 (4.5MeV C); the effective recovery cross-sections
are, therefore, limited. The experimental and modelling results
(Figs 1, 3 and 5) also indicate that the recovery process depends
on the pre-existing defect structure and is more effective at lower
initial damage levels or defect concentrations. The effective cross-
section, therefore, depends on the initial damage state, which
cannot simply be described based solely on the electronic
stopping power. A threshold at about 1.4 keV nm� 1 is predicted
based on a linear fit of the low-disorder state (0.36).

Discussion
In our combined approach based on ion channelling measure-
ments, atomic-level microstructural analysis and large-scale
atomistic simulations, we quantify the effects of electronic energy
loss on pre-irradiation-induced lattice damage in SiC. These
results provide a scientific understanding of the effects of
ionization on ceramics damaged by irradiation. Such electron
excitation-induced material modifications should be taken into
account for in situ transmission electron microscope studies
under ion irradiation, in which simultaneous ionization-induced
damage recovery/evolution should be considered. Moreover, our
results demonstrate that electronic energy loss from ions and
their PKAs can repair damaged SiC lattices at unexpectedly low
values of electronic energy deposition, with a threshold value of
1.4 keVnm� 1 at room temperature. The threshold PKA energies
required to activate these processes in neutron-irradiation
environments at room temperature are, therefore, 750 and
850 keV for Si and C PKAs, respectively. It is known that SiC,
as a key nuclear material for extreme radiation environments30, is
considered for use as a structural material and a fuel coating in
fission reactors9,31, for structural components in fusion reactors32

and as an inert matrix for transmutation of plutonium and other
radioactive waste33,34. SiC is also considered for use as an
accident-tolerant cladding for light water reactors and in
structural components for advanced high-temperature gas-
cooled reactors. The energies of PKAs created by fusion
neutrons and accelerator-based neutron sources, as well as the
energies of ions used to investigate neutron damage in materials,
are in the intermediate regime where significant ionization effects
demonstrated in the current work should not be overlooked.

The significant ionization-induced annealing power can
effectively remove nearly all the radiation-induced defects, which
is different from the ion beam-enhanced crystallization process
that relies on higher temperature to promote atomic mobility
where substantial crystalline damage remains. While previous
work has focused on high-energy ions and shown ionization
effects from swift heavy ions (W, Pb, Bi, etc.)24,27,35,36 with
relatively high thresholds (410 keV nm� 1), we call attention to
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non-negligible ionization effects from light ions (C, O, Si and Ni)
with energies of a few MeVs. From separate effect experiments
and modelling work, ion annealing at room temperature in the
low-energy end of the MeV range, with a low threshold of
electronic energy deposition, is conclusively demonstrated. It is
worth noting that a threshold of 415 keV nm� 1 has been
reported for defect annealing induced by electronic energy loss
over a wider range of pure metals37. Owing to different bonding
and energy dissipation pathways in metal (metallic bonding) and
SiC (covalent and ionic bonding in ceramics), the difference in
threshold values is largely attributed to significant difference in
energy deposition profiles between pure metals and SiC, resulting
from much higher electronic and thermal conductivities, as well
as larger values of electron mean free path in metals. This
recovery process with a low threshold (1.4 keVnm� 1) may
significantly extend the performance lifetime of SiC in fusion
reactor environments. In terms of fundamental research, this
ionization-induced annealing power may have a significant
impact on prediction of radiation damage accumulation in SiC
and other nuclear materials responding to fast neutrons,
accelerator-based neutrons or surrogate ions. Consideration of
ionization-induced recovery in SiC is critical for reliable
performance evaluation.

In summary, we have investigated ionization-induced healing
of ballistic damage in SiC and identified an unexpectedly low
threshold value of electronic energy loss for initiating the healing
process at room temperature. Our findings are validated by a
substantial reduction in dechannelling yield due to the effective
annihilation of a high concentration of interstitials and small
defect clusters over a sub-micrometre depth, by evidence of a
repaired crystalline structure with much less observed displace-
ments at the atomic level and by insights into corresponding
defect dynamic processes revealed by molecular dynamics
simulations. Understanding this recovery mechanism in SiC has
significant implications for the study of irradiation effects in other
ceramics for applications in extreme radiation environments.
Scientific advances based on this work not only will facilitate the
design of radiation-tolerant materials for advanced nuclear
energy systems and space exploration but also will contribute to
a foundation for the design and control of material properties.
That foundation will enable broad advances in device fabrication,
sustainable energy technologies and national security involving
materials subjected to ion beam modification or severe radiation
environments.

Methods
Ion irradiation. Quantitative damage recovery studies were performed by first
introducing different disorder levels containing various concentrations of Frenkel
pairs and defect clusters in SiC through ballistic collision processes initiated by
low-energy 900 keV Siþ ions. The damage profile is peaked at B650 nm from
the surface. Ionization-induced recovery was quantitatively investigated using
high-energy ions of 4.5MeV C, 6.5MeV O, 21MeV Si and 21MeV Ni at room
temperature (see Supplementary Methods—Ion Energy Deposition). The ion
flux was 1.7� 1012 cm� 2 s� 1 for C and O, 1.7� 1011 cm� 2 s� 1 for Si and
1.5� 1011 cm� 2 s� 1 for Ni, respectively. These MeV ions deposit their energy
with very high ratios of electronic to nuclear energy loss (Table 1).

Ion beam analysis. Irradiation-induced damage in crystalline samples was
quantified using backscattering techniques: Rutherford backscattering spectro-
metry (RBS) and non-Rutherford backscattering spectrometry (NRBS). Helium
ions with an energy of 3.5MeV were employed to significantly enhance the
scattering cross-section of C atoms, and the disorder analysis on both Si (RBS) and
C (NRBS) sublattices along the o00014 direction was performed from a single
channelling backscattering measurement (see Supplementary Methods—Ion
Channeling Measurements). If a crystal contains displaced lattice atoms, there will
be an increased yield resulting from direct backscattering and dechannelling of the
probing ions due to the interaction with the displaced atoms. Following the
900 keV Siþ irradiations, subsequent in situ channelling measurements were
carried out, with a Si detector located at a scattering angle of 155� relative to the

incoming beam, before and after the additional MeV irradiations. The channelling
spectra were analysed using an iterative procedure to achieve the relative disorder
level25.

Molecular dynamics. Large-scale classical molecular dynamics studies were
performed that simulated electronic energy loss generated by passing ions38.
The radial distribution of electronic heating from the passing incident ions
(supplementary Fig. 4) is determined by applying the thermal spike model39. The
local temperature from ionization as a function of time and radial distance from
the ion trajectory was calculated and transferred to atoms along the ion track as
kinetic energy at the beginning of the molecular dynamics simulation (see
Supplementary Methods—Molecular Dynamics Simulations). Irradiation-induced
recovery due to a series of directly overlapping 16MeV Ni ions, each separated by a
120-ps relaxation to 300 K temperature, was calculated using simulation cells
containing Frenkel defects of both B0.1 and 1.0 %, as shown in Fig. 3a. The
16-MeV Ni and 6.5-MeV O results were compared using a cell with an initial
disorder level of 0.1%.

STEM characterization. Samples were prepared for scanning transmission
electron microscope (STEM) analysis using a focused ion beam (FIB) in a cross
beam Zeiss Auriga FIB/SEM. A lamella of B800-nm thickness was prepared using
a gallium FIB beam probe with a current of 2 nA at 30KV. The current was
gradually reduced to 10 pA to minimize FIB beam damage while thinning the
lamella to B100 nm. As a final step, a Fischione 1040 nanomill was used to further
thin the sample at 900 eV from each side of the sample at an angle of ±7� for
5min. HAADF imaging was performed on various samples in a fifth-order
aberration-corrected STEM (Nion UltraSTEM200) operating at 200 KV. A detector
with an inner angle of 65mrad was used to collect electrons for HAADF imaging.
The electron probe current and the exposure time/pixel for imaging in the
experiment were 30 pA and 16ms, respectively, to minimize the electron beam-
induced modification.
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