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Ionization layer at the edge of a fully ionized plasma

M. S. Benilov and G. V. Naidis*

Departamento de Fı´sica, Universidade da Madeira, Largo do Municı´pio, 9000 Funchal, Portugal
~Received 22 August 1997; revised manuscript received 27 October 1997!

A model is developed of the ionization layer which separates a thermal plasma close to full ionization from
the space-charge sheath adjacent to the surface of an electrode or of an insulating wall. The multifluid descrip-
tion of the plasma is used. Asymptotic solutions are obtained for the cases in which the thickness of the
ionization layer is much larger or much smaller than the mean free path for ion-atom collisions. The solution
obtained for the latter case describes an interesting new regime which is in some aspects similar to the
conventional diffusion regime, though essentially different from the diffusion regime in other aspects. Formu-
las are derived for the ion flux coming from the ionization layer to the edge of the space-charge sheath.
Application of results to atmospheric-pressure argon and mercury plasmas is considered.
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I. INTRODUCTION

A nonequilibrium region separating a thermal plasm
from the surface of an electrode or of an insulating w
includes a number of physically different subregions. A su
region adjacent to the surface is the space-charge sh
Adjacent to the sheath is a subregion in which ionizat
equilibrium is established, i.e., in which a transition occu
from boundary conditions at the sheath edge to a char
particle density determined by the Saha equation. The la
subregion is usually referred to as the ionization layer.
theoretical description of this layer plays a central role in a
theory of near-cathode phenomena in high-pressure arc
charges~e.g., Refs.@1–8#!.

According to conventional concepts, the physics of
ionization layer is as follows. In the inner section of the lay
where the density of the charged particles is small, domin
ing processes are ambipolar diffusion of the charged parti
and ionization; recombination is a minor effect. As a d
tance from the edge of the space-charge sheath increase
density of the charged particles grows and the recombina
rate increases, while the effect of ambipolar diffusion d
creases. At the ‘‘edge’’ of the ionization layer, the recom
nation rate becomes equal to the ionization rate and the
crease of the charged particle density ceases: ioniza
equilibrium is attained.

The thickness of the ionization layer under conditions
practical interest may be not large as compared to the m
free path for ion-neutral collisions@9#. This means that cou
pling between the ions and the neutral particles in the laye
in a general case not strong enough and the diffusion
scription of the ion-neutral motion in the layer is not vali
one should rather employ a multifluid approach~see, e.g.,
Refs.@10,11#!.

In many experimental situations, the plasma at the edg
the ionization layer is close to full ionization.~For example,
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plasma temperatures measured recently@12–17# in front of a
thoriated-tungsten cathode of a 200-A atmospheric-pres
argon arc are in excess of 20 000 K, which corresponds to
equilibrium ionization degree exceeding 98%.! A question
arises concerning a role of recombination in the ionizat
layer under such conditions. In other words, one can think
a model of the ionization layer in a fully ionized plasm
disregarding recombination. In the framework of such
model, the increase of the charged particle density wo
cease at the edge of the ionization layer not because o
combination, but rather because the full ionization of t
plasma has been reached.

Such a model is developed in the present paper. In o
to give a simple introduction, we start with developing
theory of the ionization layer disregarding recombination
a diffusion approximation~Sec. II!. The multifluid model is
written down in Sec. III. Asymptotic solutions are obtaine
in Secs. IV and V, and discussed in Sec. VI. Application
the results to particular experimental situations is conside
in Sec. VII.

A theory of the ionization layer in a partially ionize
plasma was considered previously in Ref.@9#. A comparison
carried out in Appendix A shows that the diffusion solutio
@9#, if written in an appropriate form, also remains applicab
to the case of a fully ionized plasma. On the other hand
multifluid solution for a plasma close to full ionization wa
not found in Ref.@9#.

II. DIFFUSION THEORY

We consider a quasineutral layer of a plasma contain
one species of neutral atoms, singly charged positive ion
the same species, and electrons. Supposing that the thick
of the layer is much smaller than the transversal dimensio
one can write the system of governing equations in a o
dimensional form

d

dy
~niv i !5kinina , niv i1nava50, ~1!

s-
,
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57 2231IONIZATION LAYER AT THE EDGE OF A FULLY . . .
2k~Th1Te!
dni

dy
2

ninakTh

~ni1na!D ia
~v i2va!50, ~2!

nik~Th1Te!1nakTh5p, ~3!

where they axis is directed from the ‘‘edge’’ of the space
charge sheath into the plasma,ni , na , v i , andva are num-
ber densities and mean velocities of the ions and atomsTh
andTe are temperatures of heavy particles~ions and atoms!
and electrons,p is the plasma pressure,k is the Boltzmann
constant,ki is the ionization rate coefficient, andD ia is the
binary-diffusion coefficient evaluated for a binary mixtu
constituted by the ion and neutral species. Variation of
electron temperature across the ionization layer is small@18#
due to the high thermal conductivity of electrons, and is
glected. For simplicity, we also neglect variations of t
heavy-particle temperature.

The first equation in Eq.~1! is the equation of conserva
tion of ions written for the case when the dominating proc
of ionization is ionization by electron impact while recomb
nation is insignificant. The second equation in Eq.~1! fol-
lows from conservation of nuclei, and is valid provided th
there is no influx of the nuclei from the surface. Equation~3!
follows from conservation of momentum of the plasma
the whole. Equation~2! is the transport equation for charge
particles written in the diffusion approximation; the terms
the left-hand side describe, respectively, the pressure g
ent of ions and electrons and the friction force due to ela
collisions between ions and neutral atoms. Afterva has been
eliminated by means of the second equation in Eq.~1!, Eq.
~2! assumes the form of Fick’s law for ambipolar diffusio

niv i52~11b!D ia

dni

dy
, ~4!

whereb5Te /Th .
The coefficientD ia in the framework of the first approxi

mation in expansion in Sonine polynomials in the method
Chapman-Enskog~e.g., Refs.@19–21#! is given by the for-
mula

D ia5
3p

32

Cia

~ni1na!Q̄ia
~1,1!

, ~5!

where Q̄ia
(1,1) is the average cross section for momentu

transfer in ion-atom collisions,Cia5(16kTh /pmi)
1/2 is the

mean relative speed of ions and atoms, andmi is the mass of
a heavy particle.

Boundary conditions for the considered equations are
follows. The density of the charged particles at the edge
the space-charge sheath should be set equal to zero in
diffusion approximation. At the edge of the ionization laye
the plasma is fully ionized and the charged particle densit
ni`5p/k(Th1Te).

Substituting Eq.~4! into the first equation~1!, and exclud-
ing na by means of Eq.~3!, one obtains an equation forni

~11b!ni`D ia
~0!

d

dyF 1

~11b!ni`2bni

dni

dy G52kini~ni`2ni !.

~6!
e

-

s

t

di-
ic

f

as
f

the
,
is

The quantityD ia
(0)5D ia(ni1na)kTh /p introduced here does

not depend onni or na , and may be considered as given.
may be interpreted as the diffusion coefficient of the ions
a gas of neutral atoms under the pressurep and the tempera-
ture Th . In the framework of the diffusion theory,D ia

(0) co-
incides withD ia evaluated at the edge of the space-cha
sheath.

It is natural to introduce the dimensionless variablesj
5yAkini` /D ia

(0) and f 5ni /ni` while treating Eq.~6!. A
first integral found with the use of the boundary conditi
f (`)51 reads

~11b!S 1

11b2b f

d f

dj D 2

5~12 f !F11 f

b
1

2

b2
2

2~11b!

b3~12 f !
ln~11b2b f !G . ~7!

Note that at largej where f is close to unity the quantity
in the square brackets on the right-hand side of Eq.~7! is
approximately equal to 12 f , which ensures an exponentia
decay of 12 f at largej:

12 f 5OXexpS 2
j

A11b
D C. ~8!

Equation ~7! is to be solved with the boundary conditio
f (0)50. Solutions for finiteb should be found numerically
solutions forb small or large may be found analytically an
read, respectively,

f 5

2 tanh
j

2S 2 tanh
j

2
1A3D

S tanh
j

2
1A3D 2 , f 5

j~j12!

j212j12
. ~9!

Before presenting the solutions, it is convenient to int
duce a dimensionless distance from the sheath edgeh
5y/d, in such a way thatf 'h at smallh. It follows from
Eq. ~7! that

d5
1

C1
AD ia

~0!

kini`
, ~10!

where

C15F ~11b!~21b!

b2
2

2~11b!2

b3
ln~11b!G 1/2

. ~11!

The coefficientC15C1(b) defined by Eq.~11! is depicted
by the solid line in Fig. 1. Note that its limit values for sma
and largeb are finite:C1(0)5A3/3 andC1(`)51. These
values are shown in Fig. 1 by the dashed lines. Forb of
practical interest,b>1, C1 varies in a relatively narrow
range from 0.674 to unity.

The dimensionless charged particle densityf as a function
of the dimensionless distance from the sheath edge,h, is
shown in Fig. 2. The solutions forb51 and 5 were obtained
by means of a numerical integration of Eq.~7!, and the so-
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2232 57M. S. BENILOV AND G. V. NAIDIS
lutions forb50 and` were calculated by means of Eqs.~9!.
One can see that an increase ofb results in a decrease of th
normalized charged particle density for fixedh; however,
this effect is weak: all the solutions are rather close betw
themselves. The lengthd used for normalization of absciss
in Fig. 2 represents a reasonable scale of thickness of
ionization layer: for example, in the rangey.2d, the
charged particle density deviates from the equilibrium va
by no more than 20%.

Thus the diffusion model of the ionization layer disr
garding recombination is complete. The density of the
flux generated in the ionization layer and coming to the e
of the space-charge sheath is given by the formula

Ji5C1~11b!AkiD ia
~0!ni`

3 . ~12!

III. MULTIFLUID MODEL

The aim of this section is to replace the conventional d
fusion model~i.e., a model of one fluid with diffusing spe
cies! used in Sec. II with an approach regarding each spe
of the plasma as a separate fluid coexisting with the flu
made up of other species. To this end, one has to supple
Eq. ~2! with terms accounting for ion inertia and momentu
transfer from the neutral-atom species to the ion species
to ionization; Eq.~3! should be supplemented with term
accounting for dynamic pressure of the ion and atom spe
@9#

d

dy
~nimiv i

2!52k~Th1Te!
dni

dy
2

ninakTh

~ni1na!D ia
~v i2va!

1kininamiva , ~13!

miniv i
21minava

21nik~Th1Te!1nakTh5p. ~14!

The boundary conditionni50 at the edge of the space
charge sheath should be replaced by the Bohm criterion~e.g.,
Refs.@10,22#, and references therein; see also a discussio
Appendix B!: v i52vs , wherevs5@k(Th1Te)/mi #

1/2.
Excluding va from the system~1!, ~13!, and ~14! and

introducing dimensionless variables, one obtains

FIG. 1. CoefficientC1 determining the ion flux from the ioniza
tion layer, calculated in the diffusion approximation.
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a~11b!
d~ f w2!

dj
52a~11b!

d f

dj
1a2f w~ f 1n!1 f 2w,

~15!

a~11b!
d~ f w!

dj
52 f n, ~16!

f w21
f 2w2

n
1 f 1

n

11b
51, ~17!

where

w52
v i

vs
, n5

na

ni`
, a5

kTh

@mipkiD ia
~0!#1/2

. ~18!

The boundary conditions for Eqs.~15!–~17! read

w~0!51, f ~`!51. ~19!

After the problem~15!–~17! and ~19! has been solved, on
can find the ion flux coming from the ionization layer to th
edge of the space-charge sheath,Ji5ni`vsf w , where f w
5 f (0).

We shall need to know asymptotic behavior of a soluti
at largej. Retaining in Eqs.~15!–~17! terms of the first order
in 12 f , w, andn, one obtains equations

2a~11b!
d f

dj
1~11a2!w50, a~11b!

dw

dj
52n,

w2

n
1

n

11b
512 f . ~20!

A solution to these equations can be sought in an expone
form. One finds

FIG. 2. Distribution of the charged particle density across
ionization layer, calculated in the diffusion approximation.
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57 2233IONIZATION LAYER AT THE EDGE OF A FULLY . . .
H 12 f

w

n
J 5const35

1

aA11b

11a2

a2~11b!

11a2

6 expS 2
j

A11b
D .

~21!

One can conclude that Eq.~8!, which describes asymptoti
behavior of a solution at largej in the framework of the
diffusion theory, remains valid also in the multifluid mode

IV. ASYMPTOTIC SOLUTION FOR a˜`

We shall use the method of matched asymptotic exp
sions ~e.g., Refs.@23–27#!, and seek an outer asymptot
expansion of a solution of the problem~15!–~17! and~19! in
the limit of largea in the form

f ~j;a,b!5 f 1~j;b!1•••,

w~j;a,b!5a21w1~j;b!1•••,

n~j;a,b!5n1~j;b!1•••. ~22!

Substituting this expansion into Eqs.~15!–~17!, and ne-
glecting terms of order ofa22 with respect to the leading
terms, one obtains equations equivalent to the diffus
equations treated in Sec. II. Assuming that the first term
the outer asymptotic expansion obeys the diffusion bound
condition f 1(0)50, one can conclude that this term is d
scribed by the formulas obtained in Sec. II. In particular,
asymptotic behavior of the functionsf 1 , w1, and n1 at j
→0 is

f 15C1j1•••, w15
1

j
1•••, n1→11b. ~23!

The inner asymptotic expansion, applicable in the vicin
j5O(a21) of the edge of the space-charge sheath, is

f ~j;a,b!5a21f 2~j2 ;b!1•••,

w~j;a,b!5w2~j2 ;b!1•••,

n~j;a,b!5n2~j2 ;b!1•••, ~24!

where j25aj. Substituting this expansion into Eqs.~15!–
~17! and neglecting terms of order ofa21 with respect to the
leading terms, one obtains

~11b!
d~ f 2w2

2!

dj2
52~11b!

d f2

dj2
1 f 2w2n2 , ~25!

d~ f 2w2!

dj2
50,

n2

11b
51. ~26!

The boundary conditions for these equations atj2→` fol-
low from asymptotic matching,
n-

n
f
ry

e

f 2'C1j2 , w2'
1

j2
, n2→11b. ~27!

Another boundary condition readsw2(0)51.
From Eqs. ~26!, one finds f 25C1 /w2 and n2511b.

Substituting these relations into Eq.~25! and solving the ob-
tained equation with account of the above-described bou
ary conditions, one obtains

w25
2

21j21Aj2
214j2

. ~28!

This solution is shown in Fig. 3. Also shown is it
asymptotic behavior at large and smallj2, which is gov-
erned, respectively, by the second equation in Eq.~27! and
by the formula

w2'12Aj2. ~29!

Note that the square-root behavior near the edge of
space-charge sheath described by Eq.~29! is characteristic
for problems involving the Bohm criterion. Thus, th
asymptotic solution for large values ofa is complete. It fol-
lows, in particular, that asymptotic behavior of the functi
f w(a,b) in the limit a→` is

f w~a,b!'
C1~b!

a
. ~30!

V. ASYMPTOTIC SOLUTION FOR a˜0

We start with asymptotic estimates of various terms of
equations, supposing that a characteristic length scale
variation of the solution in terms of the variablej is unity,
and orders of magnitude off , w, andn do not exceed unity.
Evidently, the term on the right-hand side of Eq.~16! cannot
be dominating~if it were, this would mean thatf or n is 0,

FIG. 3. Distribution of the normalized mean ion velocity in th
inner section of the ionization layer. Dotted line: the square-r
distribution characteristic for the Bohm criterion.~1! Second equa-
tion in Eqs. ~27! ~the diffusion solution!. ~2! Second equation in
Eqs.~45! ~the pseudodiffusion solution!.
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2234 57M. S. BENILOV AND G. V. NAIDIS
which does not make sense!. It follows thatn<O(aw). This
means, in particular, that the last term on the left-hand s
of Eq. ~17! is small.

The second term on the right-hand side of Eq.~15! may
be represented asa2f wn1a2f 2w. a2f wn does not exceed
in order of magnitudea2 with respect to the term on th
left-hand side of Eq.~15!. a2f 2w is of order of a2 with
respect to the last term on the right-hand side. Thus,
second term on the right-hand side of Eq.~15! is small. Since
the last term on the right-hand side of Eq.~15! cannot be
dominating, one findsf w<O(a).

Returning to Eq.~17!, one can see that the first term o
the left-hand side of this equation is small. Since the diff
ence 12 f is of order unity, the second term on the left-ha
side also is of order unity andn5O( f 2w2).

In order to apply the boundary conditionf (`)51, one
should consider an asymptotic expansion in whichf 5O(1).
It follows from the above thatw<O(a) in this expansion.
The term on the left-hand side of Eq.~15! does not exceed in
order of magnitudea2 with respect to the first term on th
right-hand side. Thus the only terms to be retained in
~15! are the first and last terms on the right-hand side.
one of these terms can be dominating, thereforew5O(a). It
follows thatn5O(a2). Thus an asymptotic expansion wit
f 5O(1) is

f ~j;a,b!5 f 3~j3 ;b!1a2f 4~j3 ;b!1•••,

w~j;a,b!5aw3~j3 ;b!1a3w4~j3 ;b!1•••, ~31!

n~j;a,b!5a2n3~j3 ;b!1a4n4~j3 ;b!1•••,

wherej35j2J, J5J(a,b) being an unknown quantity
The functionsf 3, w3, andn3 obey equations

2~11b!
d f3

dj3
1 f 3

2w350, ~11b!
d~ f 3w3!

dj3
52 f 3n3 ,

f 3
2w3

2

n3
1 f 351. ~32!

Excludingw3 andn3 and solving the obtained equation, on
finds

f 35
1

11C2exp~2C3j3!
, ~33!

whereC2 andC3 are arbitrary constants.
ConstantC2 may be absorbed by redefiningJ; hence one

can setC251 without losing generality. The constantC3
should be determined with the use of the boundary condi
f (`)51. However, this boundary condition is ineffective
the approximation considered, and one should treat the
ond approximation.

The functionsf 4, w4, andn4 are governed by the equa
tions

2~11b!
d f4

dj3
12 f 3w3f 41 f 3

2w45~11b!
d~ f 3w3

2!

dj3
2 f 3

2w3 ,

~34!
e

e

-

.
o

n

c-

~11b!
d

dj3
~w3f 41 f 3w4!1n3f 41 f 3n450, ~35!

2
f 3w3

2

n3
f 412

f 3
2w3

n3
w42

f 3
2w3

2

n3
2

n41 f 452 f 3w3
22

n3

11b
.

~36!

Taking into account the asymptotic behavior of the functio
f 3, w3, and n3 at largej3 that follows from Eq.~33! and
making use of the fact that the functionsf 4, w4, andn4 must
vanish at largej, one finds a limit form of Eqs.~34!–~36! for
j3→`:

2~11b!
d f4

dj3
1w452~11b!C3exp~2C3j3!,

~11b!
dw4

dj3
1n450, ~37!

2

~11b!C3
w42

1

~11b!2C3
2
n41 f 4

52~11b!C3
2exp~2C3j3!. ~38!

Excludingw4 andn4, one obtains an equation forf 4,

1

C3
2

d2f 4

dj3
2

1
2

C3

d f4

dj3
1 f 45@12~11b!C3

2#exp~2C3j3!.

~39!

A solution to this equation includes a secular term

C3
2

2
@12~11b!C3

2#j3
2exp~2C3j3!, ~40!

which should be removed. It follows thatC351/A11b.
Now the functionsf 3, w3, and n3 are determined com

pletely. The asymptotic behaviors of these functions
j3→2` are

f 3'exp
j3

A11b
, w3'A11b expS 2

j3

A11b
D ,

n3→11b. ~41!

Evidently, expansion~31! cannot satisfy the boundary con
dition w(0)51. In order to apply this boundary condition
one should consider an expansion in whichw5O(1) and,
consequently,f <O(a), n5O( f 2)<O(a2). The third term
on the left-hand side of Eq.~17! is small. The term on the
right-hand side of Eq.~16! is small and this equation give
f w5const. If one assumesf ,O(a), the last term on the
right-hand side of Eq.~15! will be small and this equation
will give f w21 f 5const, which, together withf w5const,
results in a trivial~constant! solution. Hence, the assumptio
f ,O(a) is inappropriate and one should assumef 5O(a)
instead. Thus, an expansion in whichw5O(1) reads
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57 2235IONIZATION LAYER AT THE EDGE OF A FULLY . . .
f ~j;a,b!5a f 5~j;b!1•••, w~j;a,b!5w5~j;b!1•••,

n~j;a,b!5a2n5~j;b!1•••, ~42!

with the functionsf 5, w5, andn5 being described by equa
tions

~11b!
d~ f 5w5

2!

dj
52~11b!

d f5

dj
1 f 5

2w5 ,

d~ f 5w5!

dj
50,

f 5
2w5

2

n5
51. ~43!

It follows from the second and third equations thatf 5

5C4 /w5 and n55C4
2, where C4 is an arbitrary constant

Substituting these expressions into the first equation
solving it with the boundary conditionw5(0)51, one ob-
tains

w5
221

2
2 lnw55

C4

11b
j. ~44!

This solution is shown in Fig. 3. Also shown is i
asymptotic behavior at small and largej, which is governed
by the formulas

w5'12A C4

11b
j, w5'expS 2

C4

11b
j2

1

2D , ~45!

respectively. The first formula describes the square-root
havior characteristic for problems involving the Bohm crit
rion, similarly to Eq.~29!.

It is interesting to compare the functionsw2 and w5,
which describe distributions of the normalized ion veloc
in the inner section of the ionization layer fora large and
small, respectively. To this end, the scales of abscissa in
3 are chosen in such a way that Eq.~29! be represented by
the same line as the first equation in Eq.~45!. Thus the plots
of w2 andw5 are close between themselves at small val
of abscissa. At larger values, their behavior is essenti
different: w5 decreases very fast and becomes quite clos
its asymptotic representation for large arguments when
value of abscissa reaches 1, whilew2 decreases much
slower, and approaches its asymptotic representation
large arguments also slowly.

Now one should consider an asymptotic expansion v
in between the regions of applicability of expansions~31!
and ~42!. In this expansion, orders of magnitude of bothf
and w should be greater thana but smaller that unity. The
term on the left-hand side of Eq.~15! is small; it follows that
f w5O(a) and n5O(a2). The third term on the left-hand
side of Eq.~17! and the term on the right-hand side of E
~16! are small. Thus the equations describing the lead
term of the considered expansion read

2a~11b!
d f

dj
1 f 2w50,

d~ f w!

dj
50,

f 2w2

n
51.

~46!

All terms of these equations are contained both in Eqs.~32!
and ~43!. Hence there is no need to consider a solution
d

e-

ig.

s
ly
to
e

or

d

g

o

these equations: expansions~31! and ~42! can be matched
directly. Indeed, one can check easily that such a matchin
possible, and

C45A11b, J5A11bS ln
1

a
2

1

2
2 lnA11b D .

~47!

Thus the asymptotic solution for small values ofa is com-
plete. In particular, the asymptotic behavior of the functi
f w(a,b) in the limit a→0 is

f w~a,b!'aA11b. ~48!

VI. DISCUSSION OF ASYMPTOTIC RESULTS

One can see that the parametera is of order of the ratio of
the lengthd, which can be considered as a scale of thickn
of the ionization layer in a fully ionized plasma evaluated
the framework of a diffusion theory, to the mean free pa
for ion-atom collisionsl ia . The solution that has been ob
tained for the case of largea ~in other words, for the case
d@l ia) involves two asymptotic zones: the outer zonej
5O(1) and the inner zonej5O(a21). These zones may b
identified in terms of the dimensional distance from t
sheath edge,y, asy5O(d) andO(l ia).

The conventional diffusion theory is applicable provid
that a local length scale be much larger thanl ia . Hence the
outer solution obtained in the framework of the multiflu
theory for the limit casea→` must coincide, to a first ap
proximation, with a solution in the framework of the diffu
sion theory, which is indeed the case. The first equation
Eqs.~26! shows that the ion flux is to a first approximatio
constant across the inner zone. In other words, the ion flu
generated primarily in the outer zone. Therefore, the ion fl
coming to the edge of the space-charge sheath calculate
the framework of the multifluid theory for the limit cas
a→` must coincide, to a first approximation, with th
found in the framework of the diffusion theory. One ca
check that this is indeed the case: the ion flux calculated w
the use of Eq.~30! coincides with that given by Eq.~12!.

Quantity f w may be considered as the ion flux normaliz
by the quantityni`vs , which may be treated as a characte
istic value of the chaotic ion flux. The asymptotic behav
of the functionf w(a,b) for large and smalla is described to
a first approximation by Eqs.~30! and ~48!, respectively. In
order to obtain a general idea off w for finite a, one can
approximate the functionf w(a,b) by means of a rationa
fraction in a, with coefficients determined with the use o
information available on asymptotic behavior off w(a,b) at
a→0 anda→`. In the simplest form, such a fraction mu
containa in the numerator and a polynomial of the seco
degree ina in the denominator. Asymptotic formulas~30!
and~48! allow us to find two of the three coefficients of th
polynomial. In order to find the third one, we need to det
mine asymptotic behavior of the functionf w(a,b) at a→0,
or at a→` to a second approximation. For brevity, w
present the asymptotic behavior ata→0 to a second ap-
proximation without a derivation,

f w~a,b!'aA11b22a2~11b!. ~49!
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A rational fraction determined with the use of Eqs.~30! and
~49! is

f w~a,b!5
aC1A11b

C112aC1A11b1a2A11b
. ~50!

The function f w calculated by means of this formula is d
picted by the full lines in Fig. 4. The dashed lines repres
asymptotic behavior described by Eqs.~30! and ~49!.

According to Eq.~30!, f w5O(a21) in the case of large
a, which means that the ion flux is much smaller than
chaotic flux in this case. This result conforms to the conv
tional diffusion concepts, according to which the mean
locity of the ions is of order of the thermal~chaotic! velocity
times the Knudsen numberl ia /d. As a decreases,f w in-
creases; the ion flux becomes comparable to the chaotic
when a5O(1). This, again, is quite understandable: col
sions between ions and neutral atoms are not frequent
ion-atom friction force is not large and cannot prevent acc
eration of the ion fluid by the pressure gradient and by
ambipolar electric field to velocities of order of a therm
velocity. Asa decreases further,f w starts to decrease. Whe
a becomes small,f w is small, too: according to Eq.~48!,
f w5O(a) for a→0. Thus the ion flux in the case of smalla
is much smaller than the chaotic flux, as is in the diffusi
limit casea@1. It will be shown below that the two case
are similar also in a number of other aspects, which is w
the limit case of smalla may be called a ‘‘pseudodiffusion’
regime.

In order to clarify the physics of the pseudodiffusion r
gime, it is useful to construct a simplified model for th
regime in a way similar to that in which a diffusion mod
was developed in Sec. II. It follows from the results obtain
in Sec. V that a major variation of the charged particle d
sity is localized and the ion flux to the edge of the spa
charge sheath is formed in the region described by expan
~31!. Inspection of Eqs.~32! indicates that Eqs.~13! and~14!
in this region may be written to a first approximation as

FIG. 4. The dimensionless ion flux from the ionization layer.
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2k~Th1Te!
dni

dy
1kininamiva50,

minava
21nik~Th1Te!5p. ~51!

Comparison of the first equation in Eqs.~51! with Eq. ~2!
indicates that, while ion inertia is insignificant in both cas
the pressure gradient is balanced in the pseudodiffusion
by momentum transfer from the neutral-atom species to
ion species due to ionization, rather than due to elastic
lisions as is in the diffusion case. Comparison of the sec
equation in Eqs.~51! with Eq. ~3! indicates that, while the
dynamic pressure of the ion species is insignificant in b
cases, a variation of the static pressure of the charged
ticles is balanced in the pseudodiffusion case by a varia
of the dynamic pressure of the atom species, rather than
variation of the static pressure of the atom species as is in
diffusion case.

Fick’s law ~4! remains valid in the pseudodiffusion cas
provided that the conventional diffusion coefficientD ia ~cal-
culated in terms of a cross section of elastic collisions! is
replaced by the combinationD̃ ia5kTh /mikini ~which in-
volves the ionization cross section!. The equation governing
a distribution of the charged particles in the pseudodiffus
case reads

d

dyS 1

ni

dni

dy D52
1

ni~ni`2ni !
S dni

dy D 2

. ~52!

An essential difference between this equation and Eq.~6!,
which governs the charged-particle distribution in the diff
sion case, is that Eq.~52! is invariant with respect to a linea
transformation of the independent variable and does not c
tain a length scale. A solution to Eq.~52! may be written as

ni5ni`F11expS 2
y2C5

C6
D G21

, ~53!

whereC5 andC6 are arbitrary constants.
This solution satisfies the boundary conditionni5ni` at

infinity without regard ofC5 and C6, provided thatC6.0.
Conversely, the boundary conditionni50 cannot be satisfied
at finitey. The latter means that Eq.~52! cannot be used righ
up to the sheath edge, in contrast to Eq.~6!. In perturbation
theory terms one can say that Eq.~52! describes a ‘‘shock
layer’’ positioned at y5C5, while Eq. ~6! describes a
‘‘boundary layer’’ aty50.

ConstantC6 has the meaning of a scale of thickness of t
shock layer. This constant cannot be determined in the
proximation considered, which is a consequence of the
that Eq.~52! does not contain any length scale. In order
determineC6, one should either consider a second appro
mation, as was done in Sec. V, or employ another bound
condition. An appropriate boundary condition is supplied
Eq. ~8!: comparing this equation with a two-term asympto
expansion of solution~53! for large values of the argumen
one finds

C65F ~11b!D ia
~0!

kini`
G1/2

. ~54!
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The constantC5 determining a position of the shock laye
remains indeterminate in the framework of the simplifi
approach considered. However, the ion flux from the ioni
tion layer to the edge of the space-charge sheath is inde
dent ofC5, and can be calculated as

Ji5F kpTh

mi
2kiD ia

~0!G 1/2

. ~55!

One can check that this formula conforms to Eq.~48!. It
should be emphasized that the ion flux depends on the
atom diffusion coefficient, in spite of the ion-atom mome
tum exchange due to elastic collisions being much sma
than the momentum exchange due to ionization. The rea
is the above-discussed fact that the scale of thickness o
considered layer remains indeterminate in the first appr
mation or, in other words, that the limita→0 is singular.

Note that the scale of thickness of the shock layer de
mined by Eq.~54! is of orderd, thus being much smalle
than the mean free path for elastic ion-atom collisionsl ia .
On the other hand, it is natural in this case to introduc
mean free path characterizing the momentum exchange
to ionization, which is related to the diffusion coefficientD̃ ia

by the conventional formulal̃ ia5D̃ ia /Cia . The mean veloc-
ity of ions in the shock layer is of order of the thermal v
locity times the Knudsen numberl̃ ia /d, similarly to the con-
ventional diffusion concepts. The mean free pathl̃ ia , being
of order of Cia /kini` , is much smaller thand: l̃ ia /d
5O(a). It follows that the mean ion velocity is muc
smaller than the thermal velocity, which explains why t
ion flux in the pseudodiffusion case is much smaller than
chaotic flux. Note that, while the velocity of the ion fluid
much smaller than the thermal velocity both in the diffusi
and pseudodiffusion cases, the velocity of the atom fluid
much larger than the thermal velocity in the pseudodiffus
case and much smaller than the thermal velocity in the
fusion case.

A diffusion theory of the ionization layer in a partiall
ionized plasma was previously considered in Ref.@9#. A for-
mula for the ion flux generated in the ionization layer writt
on the basis of the results@9# is given in Appendix A@Eq.
~A1!#. For a plasma close to full ionization, this formu
conforms to Eq.~12!. Thus the case of a fully ionized plasm
represents in the framework of the diffusion theory a regu
limit of the general case of a partially ionized plasma.

On the other hand, a multifluid solution for a plasma clo
to full ionization was not found in Ref.@9#. The reason for
this is clarified by the above asymptotic solutions, and is
follows. One can expressn in terms of f andw by analyti-
cally solving Eq.~17!. A solution to this quadratic equatio
is twofold. It can be shown on the basis of the abo
asymptotic solutions that in the case of largea the proper
branch is the one with plus, while in the case of smalla the
proper branch is that with minus. Thus one should dea
numerical calculations with both branches of the solution
Eq. ~17! with eventual switching of branches during the c
culations, while in the calculations of Ref.@9# only the
branch with plus was considered. Note that a numerical
lution with the switching of branches is not a simple tas
and is not attempted here.
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VII. IONIZATION LAYER IN ARGON
AND MERCURY PLASMAS

In order to apply the above results to a particular expe
mental situation, one has to estimate the parametera. With
the help of Eq.~5!, the functiona(Te ,Th) may be written as

a5F2

3

CiaQ̄ia
~1,1!

ki
G1/2

. ~56!

Thus one needs to know the ionization rate constantki and
the average cross section for momentum transfer in ela
ion-atom collisions,Q̄ia

(1,1) , in order to estimatea.
The ionization rate constant can be represented as a

of the rate constant of direct ionization of atoms from t
ground state and of the rate constant of stepwise ioniza
that occurs as a result of transitions between excited state
the atom due to collisions with electrons@28#,

ki5kdir1kstep. ~57!

The rate constant of direct ionization is given by the
tegral of the ionization cross section with the electron ene
distribution function. The latter in a strongly ionized plasm
considered in this work is governed by electron-electron c
lisions and is therefore close to Maxwellian. At thermal e
ergies much smaller than the ionization energyI of the atom,
the integral can be estimated as

kdir5ci S 8kTe

pme
D 1/2

~ I 12kTe!exp S 2
I

kTe
D , ~58!

whereci is a derivative of the ionization cross section wi
respect to the electron energy, evaluated at the threshol

The rate of stepwise ionization can be estimated both
merically and analytically; see, e.g., review@29#. A simple
and reasonably accurate approach is provided by the
called modified diffusion approximation~MDA ! @28#. The
process of stepwise ionization is considered in the fram
work of the MDA as a result of diffusion of bound electron
over energy levels of atoms. For a givenTe , a position in the
energy spectrum exists where a diffusing bound elect
spends most of the time~the so-called bottleneck!. With the
growth of Te , the bottleneck shifts in the direction of lowe
energy levels.

For conditions when the role of radiation is unessen
~which is the case if the electron number density exce
1021–1022 m23) the value ofkstep in the framework of the
MDA is given by the interpolation equation

kstep
215k1

211k2
21 4

3Ap
GS E

kTe
;
5

2D , ~59!

whereE is the energy of the first excited state of the ato
counted from the ionization threshold andG(x;a) is the in-
completeg function. The quantitiesk1 andk2 represent limit
values ofkstepfor the cases of high and lowTe , respectively
~in the first case the bottleneck is positioned between
ground and the first excited states of the atom; in the sec
case it is positioned between the first excited state and
continuum!.
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k1 is given by the formula@28#.

k15
4e4L1

DE S 2p

mekTe
D 1/2

exp S 2
DE

kTe
D , ~60!

whereDE5I 2E, andL1 is the Coulomb logarithm for the
ground state~a function ofkTe /DE). The latter can be ap
proximated in the range kTe /DE*0.07 as L1
50.25(kTe /DE)1.2 @30#. The use of this approximation en
ables one to rewrite Eq.~60! as

k154.3310214S kTe

Ry D 0.7S DE

Ry D 22.2

exp S 2
DE

kTe
D m3/s,

~61!

where Ry513.6 eV is the Rydberg constant.
k2 calculated in the framework of the MDA is@28#

k25
8

3S 2

me
D 1/2 e4L̄

Ry3/2

S1

g1
S Ry

kTe
D 3

exp S 2
I

kTe
D , ~62!

whereS1 is the partition sum of the ion,g1 is the statistical
weight of the atomic ground state, andL̄ is the mean value
of the Coulomb logarithm for the excited atomic states. T
ing into account that under the considered conditions
partition sumS1 is approximately equal to the statistic
weight g1 of the ion ground state, andL̄'0.2, one can
rewrite the last expression as

k251.3310214
g1

g1
S Ry

kTe
D 3

exp S 2
I

kTe
D m3/s. ~63!

As pointed out above, this value represents the rate cons
of stepwise ionization in the limit of lowTe ; it is related
through the detailed balance~Saha! equation to the well-
known expression for the electron-ion recombination r
constant involving the factorTe

29/2 ~e.g., Ref.@31#!.
Resonant charge exchange is a dominating mechanis

momentum transfer between singly charged ions and pa
atoms. The energy-dependent momentum transfer cross
tion Qia

(1) is related to the total charge exchange cross sec
Qex ~which is measured in experiments! by the formula@32#
Qia

(1)(«)'2Qex(«), where« is the energy of collision. Tak-

TABLE I. Atomic parameters used in calculations of the ioniz
tion rate constant, of the average cross section for momentum tr
fer, and of equilibrium composition for argon and mercury plasm

Ar Hg

I , eV 15.75 10.44
E, eV 4.11 5.26
I 1 , eV 27.63 18.76
g1 1 1
g1 6 2
g21 9 1
ci ,10222 m2/eV 18 30
a,10210 m 7.0 11.9
b,10210 m 0.60 0.56
-
e

nt

e

of
nt
ec-
n

ing into account the formulaQex
1/2(«)5a2b ln« @32#, where

a andb are constants, one can calculateQ̄ia
(1,1) approximately

as

Q̄ia
~1,1!~Th!'2@a2b ln~2kTh!#2. ~64!

As an example, we consider an application of the abo
formulas to argon and mercury plasmas. Atomic parame
used in the calculations are given in Table I; also shown
the ionization potential of the singly charged ion,I 1 , and
the statistical weight of the ground state of the doub
charged ion,g21 . ParametersI , E, I 1 , g1, g1 , and g21

were taken from Ref.@33#. The values ofci were obtained
from the data on ionization cross sections for Ar and
given in Ref.@34#. The parametersa andb for Ar were taken
in accordance with Ref.@35#; for Hg they were obtained by
approximating the measured resonant charge exchange
section@36# (« is in eV!.

Dependencies of the ionization rate constantki on Te are
shown by the full lines in Fig. 5. The values ofkdir are also
shown. A major contribution to the ionization rate in th
considered range of electron temperatures is due to step
ionization both in Ar and Hg. A contribution of direct ion
ization in argon is much greater than that in mercury, wh
is a consequence of different structures of energy levels:
first excited state in Ar is relatively close to continuum,E
'I /4, while in HgE'I /2. Note that in the whole range ofTe
the values ofki are close tok1; that is, the ionization rate is
governed mainly by transitions between the ground state
the first excited state. Also shown in Fig. 5 is the coefficie
k2, which corresponds to the ionization rate constant cal
lated with the use of the electron-ion recombination rate c
stant proportional toTe

29/2 and the Saha equation. One ca
see that such a calculation results in a considerable over
mation of the ionization rate in the conditions of practic
interest.

The values ofa as functions ofTe are shown in Fig. 6 for
two values of the heavy-particle temperatures. The dep

s-
.

FIG. 5. Ionization rate constants in argon and mercury plasm
~1! and~2!: The total ionization rate constants.~3! and~4!: The rate
constants of direct ionization.~5! and~6!: The rate constants calcu
lated by means of Eq.~ 63!. ~1!, ~3!, and~5!: Ar. ~2!, ~4!, and~6!:
Hg.
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dence ofa on the heavy-particle temperature is rather we
As a is proportional toki

21/2, values ofa in Hg are essen-
tially smaller than those in Ar.

The theory developed in the preceding sections is ap
cable provided that the plasma at the edge of the ioniza
layer is close to full ionization while the percentage of m
tiply charged ions is small. It is convenient to define t
ionization degreev as a ratio of the electron number dens
to the total number density of the heavy particles; then
condition of applicability of the theory is thatv be close to
unity. Values of the equilibrium ionization degree
atmospheric-pressure argon and mercury plasmas are
shown in Fig. 6.~In calculations, neutral atoms and sing
and doubly charged ions were taken into account, and
atomic parameters shown in Table I were used.! Assuming
thatv can differ from unity by no more than, say, 20%, o
can see that atTh53000 K the theory is applicable in th
range Te517 000–25 000 K for Ar and in the rangeTe
513 300–19 500 K for Hg. The ranges atTh530 000 K are
Te516 000–24 000 K for Ar andTe512 300–18 500 K for
Hg.

One can see from Fig. 6 that values ofa for Ar in the
above-mentioned ranges ofTe are essentially greater tha
unity. Hence, the ion flux from the ionization layer in a
argon plasma to the edge of the space-charge sheath m
estimated by means of Eq.~12!. In the case of a mercury
plasma, the respective values ofa are comparable to unity
and one can employ Eq.~50! as a first guess for the ion flux
Note that an increase of pressure will result in a shift of
range of values of electron temperature in whichv'1 to
larger values, that is, in the direction of smallera.

VIII. CONCLUDING REMARKS

A specific case important for applications in the theory
the ionization layer at the edge of a thermal plasma is re
sented by the case when the plasma is close to full ion
tion. The recombination in the ionization layer is negligib
in this case, which allows one to construct a model which
mathematically simpler and more transparent physically t

FIG. 6. ~1! and~2!: Parametera in argon and mercury plasmas
~3! and ~4!: Equilibrium ionization degree in atmospheric-pressu
argon and mercury plasmas. Full lines:Th53000 K. Dashed lines:
Th530 000 K.~1! and ~3!: Ar. ~2! and ~4!: Hg.
.
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a general model for a plasma of an arbitrary ionization
gree. In the framework of such a model, the increase of
charged particle density ceases at the edge of the ioniza
layer because the full ionization of the plasma has been
tained, rather than because a balance between ionization
recombination has been reached.

A character of a solution in the framework of this mod
has been studied on the basis of asymptotic analysis for
casesa@1 anda!1, i.e., for the cases in which the thick
ness of the ionization layer is much larger or much sma
than the mean free path for elastic ion-atom collisions. A
other interpretation of the physical sense of these limit ca
is suggested by Eq.~56!, according to whicha2 is of order of
the ratio of the frequency of elastic ion-atom collisions to t
ionization frequency.

An unexpected result of the analysis is that a regime
curring in the limit casea!1 is similar in a number of
aspects to the conventional diffusion regime that realize
the casea@1. Characteristic features of the former regim
~which has been called the pseudodiffusion regime! have
been found and discussed.
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APPENDIX A: DIFFUSION FORMULA FOR THE ION
FLUX GENERATED IN THE IONIZATION LAYER IN A

PARTIALLY IONIZED PLASMA

A diffusion theory of the ionization layer in a partiall
ionized plasma was developed in Ref.@9#. The results of Ref.
@9# for the ion flux cannot be directly applied to a plasm
close to full ionization since they involve the diffusion coe
ficient of ions in the neutral gas evaluated at the edge in
ionization layer, which tends to infinity when the plasm
approaches full ionization. However, these results can
transformed to give a formula which does not give rise
such a problem,

Ji5C7F ~11b!kiD ia
~0!ni`

2 p

kTh
G1/2

, ~A1!

whereC75C7(b,g) is a coefficient determined by Eq.~37!
of Ref. @9# ~hereg5ni` /na`).

One can check that the coefficientC7(b,g) tends as
g→` to a finite limit coinciding withC1(b). It follows that
Eq. ~A1! for a plasma close to full ionization conforms to E
~12!. In order to give an idea of values of the ionizatio
degree at which the model of a fully ionized plasma is a
plicable in the diffusion limit, a comparison of the coeffi
cientsC7 andC1 is shown in Fig. 7.@The lineb50 in this
figure has been calculated by means of the form
C7(0,g)5A(2g13)/(6g16).# One can see that the mod
of a fully ionized plasma already provides a good appro
mation forg*5. For example, in the rangeb>1, the coef-
ficient C1 differs from C7 for g*5 by no more than 1%.
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Thus Eq.~A1! may be used for a weakly to fully ionize
plasma. It is convenient for practical applications to rewr
this equation with the help of Eq.~5! as

Ji5C7ni`F3p~11b!kiCia

32Q̄ia
~1,1! G 1/2

. ~A2!

APPENDIX B: BOHM CRITERION AS A BOUNDARY
CONDITION FOR HYDRODYNAMIC EQUATIONS

A brief comment in this respect seems appropriate, gi
the recent controversy@37–40#. In the present paper, th
Bohm criterion is invoked along the lines~Ref. @10#, pp.
26–28! as a boundary condition for equations of a quasin
tral plasma taking into account ion inertia~Sec. III!, when
the solution has a singular point. In Sec. II, in which t
conventional diffusion description of the plasma is cons
ered, the Bohm criterion is not used, and the boundary c
dition for diffusion equations at the edge of the space-cha
sheath is that of zero charge-particle density,ni50. No ex-

FIG. 7. Coefficients determining the ion flux generated in
ionization layer, calculated in the diffusion approximation. F
lines: C75C7(b,g), the model of a partially ionized plasma
Dashed lines:C7(b,`)5C1(b), the limit of a fully ionized plasma.
Dotted line:C7(b,0)5A2/2, the limit of a weakly ionized plasma
in
a

ys
n

-

-
n-
e

plicit limitation on the space-charge sheath being collisio
less or collisional is imposed in either section.

This approach may seem to contradict the reasoning
Refs. @38,40#, according to which the Bohm criterion is ap
plicable at the edge of the space-charge sheath provided
the sheath is collisionless. It is easy to see, however, that
approach involves implicit limitations, which when take
into account are totally consistent with Refs.@38,40#.

Consider first the case when ion inertia is essential.
suming that the respective term@the one on the left-hand sid
of Eq. ~13!# is not much smaller than the pressure-gradi
term, one finds that the mean velocity of the ions is com
rable to the thermal velocity. Assuming that the ion iner
term is not much smaller than the term accounting for
ion-atom friction, one finds that a local macroscopic leng
scale is comparable to the mean free ion-atom path,l ia .
Since the plasma is assumed to be quasineutral on the le
scale considered, this implies thatl ia is much larger than the
local Debye length. Hence the space-charge sheath is c
sionless and the Bohm criterion applies at its edge, thus
viding an appropriate boundary condition for the equatio
of a quasineutral plasma accounting for ion inertia.

Now consider the case when the bulk plasma is contro
by diffusion. A local macroscopic length scale is much larg
thanl ia , and the space-charge sheath may be collisionles
well as collisional. Treatments of a situation with a col
sional sheath@40–43# indicate that the Bohm criterion is no
appropriate, and the proper boundary condition at the sh
edge for diffusion equations describing a quasineutral plas
is ni50. If the sheath is collisionless, the Bohm criterio
applies at its edge. However, the diffusion equations can
be extended right up to the sheath edge in this situation
pointed out in Ref.@40#, an intermediate~transitional! layer
exists, separating the diffusion-controlled bulk plasma fro
the sheath. The thickness of this layer is of order ofl ia , and
it may be called a Knudsen layer. This layer appears in
present analysis as the inner zone considered in Sec. IV,
is described by solution~28!. Thus a boundary condition fo
diffusion equations describing the bulk plasma should be
tablished at the edge of the Knudsen layer rather than at
sheath edge, and the treatment of Sec. IV indicates that
proper condition isni50. One can conclude that it is a
appropriate boundary condition for diffusion equations
gardless of whether the sheath is collisional or collisionle
ys.
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