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Abstract

Superradiant instabilities may create clouds of ultralight bosons around rotating black holes,

forming so-called “gravitational atoms.” It was recently shown that the presence of a binary

companion can induce resonant transitions between bound states of these clouds, whose backre-

action on the binary’s orbit leads to characteristic signatures in the emitted gravitational waves.

In this work, we show that the interaction with the companion can also trigger transitions from

bound to unbound states of the cloud—a process that we refer to as “ionization” in analogy with

the photoelectric effect in atomic physics. The orbital energy lost in the process overwhelms the

losses due to gravitational wave emission and contains sharp features carrying information about

the energy spectrum of the cloud. Moreover, we also show that if the companion is a black hole,

then the part of the cloud impinging on the event horizon will be absorbed. This “accretion”

leads to a significant increase of the companion’s mass, which alters the dynamical evolution

and ensuing waveform of the binary. We argue that a combined treatment of resonances, ion-

ization, and accretion is crucial to discover and characterize gravitational atoms with upcoming

gravitational wave detectors.
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1 Introduction

Black holes are remarkably simple objects. The spacetime around a black hole is uniquely de-

termined by its mass and spin, and the gravitational waves (GWs) released in the merger of two

black holes can be predicted very precisely. This makes black holes exceptionally clean environ-

ments to probe the fundamental laws of nature [1–4], with any deviation from the predictions of

general relativity being an indication of new physics.

A particularly well-studied example of new physics, accessible with future GW observations,

are ultralight bosons. Such bosons can be generated by superradiance [5], forming long-lived

condensates (“clouds”) around rotating black holes [6–9]. Due to their strong similarity with the

hydrogen atom, such systems have been called “gravitational atoms.” For isolated gravitational

atoms, there are essentially two ways of inferring the presence of these boson clouds. First, rotat-

ing clouds will emit gravitational waves [7] that can be looked for in continuous-wave searches [10].

Second, the clouds extract spin from their parent black holes and this spin-down can be inferred

statistically in a population of rotating black holes [7, 11–15]. The existence of rapidly spinning

black holes would then rule out ultralight bosons in a certain mass range. Unfortunately, neither

of these effects is very distinctive, so it is hard to use them as a way of unambiguously discovering

gravitational atoms in the sky.

Recently, a new avenue for detecting gravitational atoms has been explored which exploits

their effects in binary systems. When a gravitational atom is part of a binary it gets perturbed

by the companion. As was shown in [16], the gravitational interaction between the companion and

the boson cloud is resonantly enhanced when the orbital frequency matches the energy difference

between two eigenstates of the cloud; see [17–28] for related work. This leads to an analog of the

Landau–Zener transition in quantum mechanics [29–31], where the companion forces the cloud

to smoothly transition from one state to another. These transitions are a distinctive fingerprint

of a boson cloud.

In this paper, we extend the treatment of [16, 31] to allow for transitions to unbound states of

the cloud. When these transitions are effective, the cloud escapes from the parent black hole and

the gravitational atom gets “ionized,” like in the photoelectric effect for ordinary atoms. Figure 1

illustrates the main result of this analysis. Shown is the ionization power Pion, the rate of energy

lost by the binary due to ionization, as a function of the separation R∗ between the parent black

hole and companion for typical parameters of the system. We see that the effect of ionization can

be orders of magnitude larger than the rate of energy lost due to GW emission, Pgw, and therefore

dominate the binary’s dynamics. Moreover, this ionization power is not a smooth function of R∗,
but contains interesting “discontinuities” at specific separations. These sharp features arise when

the bound state begins to resonate with the continuum. Like the resonant transitions between

bound states [16, 31], the ionization signal therefore contains very distinctive information about

the microscopic structure of the cloud. We will show how these features are imprinted in the

binary’s dynamics, and thus in the emitted gravitational waves.

For the first time, we also include the accretion of the cloud onto the companion. Although

accretion is suppressed for the wave-like boson cloud (compared to an equal density of particles),

it is nevertheless a large effect, since the typical densities of the boson clouds are large. In many
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Figure 1: Schematic illustration of the ionization of the gravitational atom. In the bottom panel, we plot

the ratio of the ionization power Pion and the power lost due to GW emission Pgw. We see that the energy

loss due to ionization can overwhelm that due to GW emission and hence dominate the binary’s dynamics.

The signal has sharp features when the bound state begins to resonate with the continuum, which occurs

at specific separations R∗. Shown also is the density profile of the cloud, |ψ(R∗)|2, for a |211〉 bound state.

cases, the mass of the companion can change by up to an order-one fraction during the inspiral,

leading to a significant speed-up of the merger compared to the vacuum evolution. Unlike the

ionization signal, the effect of accretion is a smooth function of the separation R∗ and hence more

degenerate with changes in the source parameters.

We conclude that ionization and accretion play a critical role in the phenomenology of gravita-

tional atoms in binaries. Rather remarkably, the effects can be so large that they overwhelm the

energy lost due to GW emission and therefore drive the inspiral (rather than just being a small

perturbation). A consistent treatment of these systems must therefore take these effects into

account, as well as their interplay with the resonances between bound states studied in [16, 31].

Outline The outline of the paper is as follows: In Section 2, we review the energy eigenstates of

the gravitational atom and describe the resonant transitions between bound states. In Section 3,

we study transitions to unbound states and describe the ionization of the boson cloud. Special

attention is paid to the sharp resonance features in the ionization power. In Section 4, we compute

the accretion of the wave-like boson cloud onto the companion black hole. In Section 5, we show

how both ionization and accretion change the dynamics of the binary. We present numerical

results for a few representative examples. Finally, we state our conclusions and discuss open

problems in Section 6.
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A number of appendices contain technical details. In Appendix A, we describe the various

approximations that are used in Section 3 to integrate out the continuum states and derive the

effective dynamics of the bound states. Such a description only holds in the Markov approxi-

mation, whose validity we discuss in Appendix B, and we argue there that this approximation

applies to the systems we consider in the main text. In Appendix C, we derive an approxima-

tion for the ionization power, which measures how quickly the companion transfers energy from

bound to unbound states. In Appendix D, we discuss the low-energy limit of the unbound states

and describe under which conditions the discontinuities seen in Figure 1 appear. Finally, in Ap-

pendix E, we describe the exact solutions of the Klein–Gordon equation in the Kerr geometry,

and discuss an approximation relevant for our derivation of the accretion rate in Section 4.

Notation and conventions Our metric signature will be (−,+,+,+) and, unless stated oth-

erwise, we will work in natural units with G = ~ = c = 1. Greek letters will stand for spacetime

indices. Quantities associated to the boson clouds will be denoted by the subscript c. For ex-

ample, the initial mass and angular momentum of the cloud are Mc and Sc, respectively. The

gravitational fine-structure constant, α = µM , is the ratio of the gravitational radius of the black

hole (which in natural units is simply rg = M) and the (reduced) Compton wavelength of a boson

field, λc = µ−1, where µ is the mass of the field.

The Kerr metric for a black hole of spin J is

ds2 = −∆

ρ2

(
dt− a sin2 θ dφ

)2
+
ρ2

∆
dr2 + ρ2 dθ2 +

sin2 θ

ρ2

(
adt− (r2 + a2) dφ

)2
, (1.1)

where a ≡ J/M , ∆ ≡ r2− 2Mr+ a2 and ρ2 ≡ r2 + a2 cos2 θ. The roots of ∆ determine the inner

and outer horizons, located at r± = M±
√
M2 − a2, and the angular velocity at the outer horizon

is Ω+ ≡ a/2Mr+. Dimensionless quantities, defined with respect to the black hole mass M , are

labeled by tildes. For example, the dimensionless spin of the black hole is ã ≡ a/M . We use an

asterisk to denote quantities associated to the black hole companion; for instance, M∗ and a∗ are

the mass and spin of the companion, while q = M∗/M is the ratio of the black hole masses.
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2 Gravitational Atoms in Binaries

We begin with a brief review of the structure of the gravitational atom. We start, in Section 2.1,

by describing the bound and unbound spectra of the atom in isolation. In Section 2.2, we explain

how a binary companion perturbs this atom, mediating transitions between different states. We

then describe the case of resonant transitions between bound states in Section 2.3.

2.1 Scalar Field around Kerr

The Klein–Gordon equation for a scalar field of mass µ in a curved spacetime is(
gαβ∇α∇β − µ2

)
Φ(t, r) = 0 . (2.1)

As is well known, in the Kerr background (1.1), the Klein–Gordon equation admits bound state

solutions that are remarkably similar to those of the hydrogen atom. When the Compton wave-

length of the field is much larger than the gravitational radius of the black hole, α ≡ rg/λc � 1,

it is useful to consider the following ansatz

Φ(t, r) =
1√
2µ

[
ψ(t, r)e−iµt + ψ∗(t, r)e+iµt

]
, (2.2)

where ψ is a complex scalar field which varies on timescales much longer than µ−1, see e.g. [32].

If Φ is itself a complex scalar field, then we only use the first term in (2.2). We will often refer

to ψ as the wavefunction of the cloud. Far from the black hole and at leading order in α, the

Klein–Gordon equation (2.1) is then identical to the Schrödinger equation for the hydrogen atom,

i
∂

∂t
ψ(t, r) =

(
− 1

2µ
∇2 − α

r

)
ψ(t, r) . (2.3)

In this limit, the scalar field can be studied using standard techniques of nonrelativistic quantum

mechanics. This Schrödinger equation permits two qualitatively different sets of eigenstates (see

Fig. 2), whose properties we will now review.

Bound states

We first consider the familiar bound state solutions, which are labeled by three integers: a prin-

cipal “quantum number” n, orbital angular momentum `, and azimuthal angular momentum m.

At leading order in α, these bound state solutions have the form

ψn`m(t, r) = Rn`(r)Y`m(θ, φ)e−i(ωn`m−µ)t , (2.4)

where Y`m(θ, φ) are spherical harmonics and Rn`(r) are the hydrogenic radial functions. The

latter are given by

Rn`(r) =

√(
2µα

n

)3 (n− `− 1)!

2n(n+ `)!

(
2αµr

n

)`
exp
(
−µαr
n

)
L2`+1
n−`−1

(
2µαr

n

)
, (2.5)

where L2`+1
n−`−1(x) is the associated Laguerre polynomial. For small values of α, the radial profile

peaks at a multiple of the “Bohr radius” rc ≡ (µα)−1 and decays exponentially as r →∞. These
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Figure 2: Illustration of the spectrum of bound and unbound states of the gravitational atom.

bound state solutions are defined for n ≥ ` + 1, ` ≥ 0, and ` ≥ |m|. For notational simplicity,

it will be convenient to lean on the quantum mechanical analogy and represent (2.4) using the

bra-ket notation |n`m〉. The normalization of the bound states is chosen so that

〈n`m|n′`′m′〉 =

∫
d3r ψ∗n`m(t, r)ψn′`′m′(t, r) = δnn′δ``′δmm′ . (2.6)

The amplitude of (2.4) is determined by the total mass of the cloud and will be restored when

necessary.

There is one important difference between the hydrogen atom and the gravitational atom.

While the wavefunctions of the former are regular at r = 0, the latter must be purely ingoing

at the black hole’s outer horizon since no physical mode can escape from the black hole. This

“dissipative” boundary condition forces the bound state eigenfrequencies of the boson cloud to

be complex,

ωn`m = En`m + iΓn`m , (2.7)

where En`m and Γn`m denote the energies and instability rates, respectively. At leading order in

α, these are

En`m = µ

(
1− α2

2n2
+O

(
α4
))

, (2.8)

Γn`m = 2r̃+Cn`g`m(ã, α, ω)(mΩ+ − ωn`m)α4`+5 +O
(
α4`+7

)
, (2.9)

where the numerical coefficients Cn` and g`m can be found in [32]. As discussed there, these bound

states are still labeled by the “quantum” numbers n, `, and m, and the latter two reduce to the

orbital and azimuthal angular momenta of the cloud in the α → 0 limit. Crucially, the nonzero

instability rates allow a rapidly spinning black hole to spontaneously shed a sizable fraction of

its mass and angular momentum to form the boson cloud. Even though these rates are highly

suppressed for α � 1, the cloud can still grow very quickly on astrophysical timescales. The
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gravitational atom is the endpoint of this process. Since the state |211〉 grows fastest, we will

take this as the initial configuration of the cloud when the binary inspiral begins.

In the non-relativistic limit, a cloud in a state |ψ〉, with wavefunction ψ(t, r), has mass density

ρ(t, r) =

{
Mc|ψ(t, r)|2 (complex field) ,

2Mc|Reψ(t, r)|2 (real field) ,
(2.10)

where Mc is the initial mass of the cloud. By convention, we require that the cloud’s wavefunction

is initially unit normalized, 〈ψ|ψ〉 = 1. Superradiant growth can be quite efficient and, depending

on the initial spin of the parent black hole, the mass of the cloud Mc can be a significant fraction

of the total mass of the system (up to 0.1M , where M is the mass of the central black hole).

Since the typical size of the cloud rc is between 10 and 103 times the Schwarzschild radius of the

parent black hole for typical values of α, the cloud can be an exceptionally dense region of matter

compared to other astrophysical environments. For example, if the cloud sits around a stellar

mass black hole with M = 10M�, then the average mass density is between 108 and 1012 kg/m3.

On the other hand, around an intermediate mass black hole M = 105M�, the cloud can be

much more spread out so that its average mass density is “only” 1 to 104 kg/m3. As a point

of reference, the density of water is ρH2O = 103 kg/m3, so an inspiralling black hole companion

moving through the cloud encounters a medium that can be potentially much denser than water.

As we will see, the associated large flux of mass through the companion’s horizon can strongly

impact the dynamics of the inspiral.

Continuum states

The Schrödinger equation (2.3) also permits continuum state solutions. In addition to the orbital

and azimuthal angular momentum ` and m, these solutions are labeled by a positive, real-valued

wavenumber k,

ψk;`m(t, r) = Rk;`(r)Y`m(θ, φ)e−iε`m(k)t . (2.11)

We distinguish the continuous index by a trailing semicolon and use the bra-ket notation |k; `m〉.
In the hydrogen atom, these continuum states represent those states in which the electron has

been unbound from the proton, and can thus be thought of as scattering states. A similar

interpretation applies to the gravitational atom: these states represent the situation in which the

scalar field is not bound to the black hole. The continuum radial functions are given by

Rk;`(r) =
2ke

πµα
2k |Γ(`+ 1 + iµα

k )|
(2`+ 1)!

(2kr)`e−ikr1F1(`+ 1 + iµα
k ; 2`+ 2; 2ikr) , (2.12)

where 1F1(a; b; z) is the Kummer confluent hypergeometric function. In contrast to the bound

states, these continuum states do not decay exponentially as r →∞ and are not unit-normalizable.

The normalization is instead chosen so that

〈k; `m|k′; `′m′〉 =

∫
d3r ψ∗k;`m(t, r)ψk′;`′m′(t, r) = 2πδ(k − k′)δ``′δmm′ , (2.13)

i.e. these continuum states are δ-function normalized.
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Since the boundary conditions for these continuum states are much less restrictive than those

for the bound states, the exact eigenfrequencies are known and are purely real ω(k) =
√
µ2 + k2,

with k ∈ [0,∞). We will work in the non-relativistic limit, k � µ, where the dispersion relation

for the continuum states is

ε(k) ≡
√
µ2 + k2 − µ ≈ k2

2µ
. (2.14)

In Section 3.2, we will find that only the continuum states with k ∼ O
(
µα2

)
play an important

dynamical role and, since we will always work in the limit α � 1, we will not need to consider

corrections to the non-relativistic approximation.

According to the normalization condition (2.13), the continuum states are linearly distributed

in k; that is the density of states behaves as dn ∝ dk. However, in terms of the energy ε, this

density of states diverges as ε ∝ k2 → 0:

dk =
µdε

k(ε)
. (2.15)

This diverging density of states at low energies will play a crucial role in the ionization effects we

describe in the next section.

An important related property of the continuum wavefunctions is that they vanish as
√
k

in the soft limit k → 0. As we discuss in Appendix D, this behavior is ultimately due to the

long-range nature of the gravitational potential, and we show there that

Rk;`m(r) ∼
√

4πk

r
J2`+1

(
2
√

2αµr
)
, k → 0 , (2.16)

where Jν(z) is the Bessel function of the first kind. In contrast to the free particle, the long-range

Coulombic potential localizes the zero mode to a Bohr radius-sized region around r = 0, instead of

spreading out over all of space. As we will discuss in Section 3, this seemingly innocuous behavior,

combined with the divergent density of states (2.15), is responsible for dramatic discontinuities

in the ionization power during the inspiral.

2.2 Perturbation from the Companion

Our main goal is to understand the dynamics of the cloud during a binary inspiral. To this end,

we must describe the effect that the binary companion has on the cloud through its gravitational

field. This can be encoded in an additional potential term in the Schrödinger equation (2.3) and

in this section we will describe both the structure of this potential and the transitions it mediates.

For simplicity, we restrict our attention to inspirals that occur in the equatorial plane of the

cloud. As illustrated in Figure 3, the relative motion of the companion is most conveniently

described using the distance between the parent black hole and companion, R∗, and the so-called

true anomaly, ϕ∗, which is the companion’s polar angle in the equatorial plane.

Denoting the spatial coordinates of the cloud in its Fermi frame with r = {r, θ, φ}1 and

working at leading order in α, the Schrödinger equation (2.3) is modified by the addition of the

1These coordinates coincide with the familiar Boyer–Lindquist coordinates at leading order in the post-

Newtonian expansion. See [16, 31] for more details.
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Figure 3: Schematic diagram of an equatorial binary inspiral. The position of the companion with

mass M∗ can be described by the distance between the two black holes, R∗, and the true anomaly ϕ∗,
which is the polar angle of the companion in the equatorial plane.

companion’s gravitational potential

V∗(t) = −qα
∑
`∗≥2
|m∗|≤`∗

ε`∗m∗e
−im∗ϕ∗Y`∗m∗(θ, φ)

(
r`∗

R`∗+1
∗

Θ(R∗ − r) +
R`∗∗
r`∗+1
∗

Θ(r −R∗)
)
,

(2.17)

where q ≡ M∗/M is the mass ratio between the companion and the parent black hole, Θ is

the Heaviside step function, and ε`∗m∗ ≡ 4π
2`∗+1Y

∗
`∗m∗

(π2 , 0). Importantly, we explicitly exclude

the fictitious `∗ = 1 dipole contribution, as it vanishes in the freely falling frame and always

eventually cancels in others [16].

This perturbation acts like a periodic driving force whose frequency slowly increases with time.

In terms of the instantaneous frequency Ω(t) ≡ |ϕ̇∗(t)|, the true anomaly evolves according to

ϕ∗(t) = ±
∫ t

0
dt′Ω(t′) , (2.18)

where t = 0 is an initial reference time, and the upper (lower) sign denotes an orbit in which the

companion co-rotates (counter-rotates) with the cloud. For the quasi-circular equatorial orbits

we consider in this paper, the power emitted by gravitational waves is

Pgw ≡
dEgw

dt
= −32

5

q2

(1 + q)2
M2R4

∗Ω
6 , (2.19)

and the orbital frequency evolves according to [33]

dΩ

dt
= γ

(
Ω

Ω0

)11/3

, with γ ≡ 96

5

q

(1 + q)1/3
M5/3Ω

11/3
0 , (2.20)

where Ω0 is a reference orbital frequency and γ is the “chirp rate”.

While the equation of motion (2.20) can be solved exactly, Ω(t) = Ω0

(
1 − 8γt/(3Ω0)

)−3/8
, it

will be convenient to work on timescales shorter than Ω0/γ and linearize this solution to

Ω(t) ≈ Ω0 + γt , (2.21)

so that ϕ∗(t) ≈ ±(Ω0 + 1
2γt)t. Note that the frequency “chirps,” and thus the two black holes

merge at t = 3
8Ω0/γ, so that this linear approximation is useful as long as the inspiral has not

reached the merger phase (see Figure 4).
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Figure 4: Time dependence of the orbital frequency and its linear approximation.

The chirp rate γ is defined in (2.20) with respect to a reference frequency Ω0. Our primary

interest in Section 3 and beyond, is in understanding how the cloud responds to the companion’s

gravitational perturbation when Ω0, or an integer multiple of it, matches the energy difference

∆E between an occupied bound state and one of the continuum bands. Throughout this paper,

we will use γ to denote the chirp rate for the specific transition under consideration, with reference

frequency Ω0 = ∆E. This should be contrasted with the instantaneous chirp rate ϕ̈∗(t), which is

equal to γ up to small corrections since the inspiral evolves very slowly. We justify this definition

of the chirp rate γ in Appendix A.5.

2.3 Resonant Transitions

In [16, 31], it was shown that the companion’s gravitational perturbation can force the cloud to

transition from one bound state to another. We will briefly review these resonant transitions and

establish a convenient notation.

Throughout this work, we will denote a generic bound state with a lower-case multi-index,

e.g. |a〉 ≡ |n`m〉. The matrix elements ηab(t) = 〈a|V∗(t)|b〉 enable resonant transitions between

different bound states when the orbital frequency satisfies a resonance condition. Because of the

quasi-periodic nature of ϕ∗, we can decompose each of the matrix elements into their Fourier

coefficients:

ηab(t) =
∑
mϕ∈Z

η
(mϕ)

ab (t)e−imϕϕ∗(t) , (2.22)

where the functions η
(mϕ)

ab (t) are slowly varying in time. Since both |a〉 and |b〉 have definite angular

momentum—say ma and mb, respectively—the coupling oscillates with a definite frequency

ηab(t) = e−i(ma−mb)ϕ∗(t)η(ma−mb)

ab (t) . (2.23)

When the oscillation frequency matches the energy difference between the two states,

(ma −mb) Ω(t) = Ea − Eb , (2.24)

the binary can resonate with the cloud and we expect that transitions between the two states

will be enhanced [16]. Indeed, as the companion slowly moves through the resonance, the cloud

is forced to transfer its population from one state to the other [31].
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This process is the analog of the Landau–Zener transition in quantum mechanics [29, 30]. The

fraction of the cloud that is transferred from the initial state |b〉 to the final state |a〉 is controlled

by the dimensionless Landau–Zener parameter zab ≡ η2
ab/γ. Long after the transition, the total

fraction of the cloud populating the state |a〉 is

|〈a|ψ(∞)〉|2 = 1− e−2πzab . (2.25)

There are two limiting behaviors of these transitions. For zab � 1, the transition is adiabatic

and the cloud is transferred almost entirely from |b〉 to |a〉. On the other hand, for zab � 1, the

transition is non-adiabatic, in which case the system is driven too quickly for it to respond and

almost none of the cloud is transferred from |b〉 to |a〉.
During these resonant transitions, the cloud’s angular momentum changes macroscopically,

which must be compensated for by the binary’s orbital angular momentum, i.e. the cloud back-

reacts significantly on the orbital dynamics. If the orbit gains angular momentum during this

process, it can almost completely balance the angular momentum lost due to GW emission and

cause the companion to float, temporarily slowing down the inspiral until the transition is com-

pleted. On the other hand, if the orbit loses angular momentum, then the orbit will sink, speeding

up the inspiral temporarily. Both types of transitions impart a characteristic signature on the

GW signal coming from the inspiral that can be used to detect the presence of a cloud.

In [31], it was shown that multiple of these transitions occur during the inspiral, leading to a

characteristic fingerprint for the cloud that can be used to unambiguously determine the mass and

spin of the ultralight boson. This tree of transitions ends when the orbital frequency Ω becomes

too large and the resonance condition (2.24) between bound states can no longer be satisfied.

However, the orbital frequency can then be high enough to ionize the cloud, unbinding it from

its parent black hole. Indeed, this process occurs throughout the inspiral and so we will need to

understand it, and its backreaction on the orbit, in order to fully characterize the phenomenology

of these cloud-binary systems. This ionization process is the subject of the next section.
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3 Ionization: Exciting Unbound States

We will now study transitions between bound and unbound states of the gravitational atom,

induced by the gravitational perturbation of the companion (see Figure 5).2 Since the analysis

is somewhat technical, we will start with a simple toy model involving a single bound state in-

teracting with the continuum. We ignore the interactions between the semi-infinite number of

continuum states and also neglect the angular momentum of the continuum states. This simpli-

fied model will capture the main dynamical features of the system without too many technical

distractions. After we have gained intuition from this toy model, we will extend it to the real

system of interest.

ϵb

ϵ(k) =
k2

2µ

η∗(k)eiφ∗(t)
η(k′)e−iφ∗(t)

Figure 5: Schematic illustration of the transitions between a bound state and the continuum.

3.1 A Toy Model

Consider a single bound state |b〉, with energy εb < 0, interacting with a semi-infinite continuum

of states |k〉. For simplicity, we will assume that the continuum states depend only on the

wavenumber k, with dispersion relation ε(k) = k2/2µ, and that they do not interact with one

another. We will also assume that the interaction between the bound state and the continuum

oscillates at a frequency ϕ̇∗(t) that grows slowly and linearly in time, ϕ̈∗(t) = γ. This is the

simplest generalization of the familiar two-state Landau–Zener system to include the coupling to

the continuum. Despite its simplicity, this toy model will illustrate many of the phenomena we

will encounter in the more realistic scenario.

The Hamiltonian of our toy model is3

H = εb |b〉〈b|+
1

2π

∫ ∞
0

dk
[
η(k)e−iϕ∗(t)|k〉〈b|+ η∗(k)eiϕ∗(t)|b〉〈k|+ ε(k)|k〉〈k|

]
. (3.1)

As in Section 2, the continuum states are normalized such that 〈k|k′〉 = 2πδ(k − k′), while the

phase is ϕ∗(t) = ϕ0 + Ω0t+ γt2/2. A general state in the Hilbert space can be written as

|ψ〉 = cb(t)e
−iεbt|b〉+

1

2π

∫ ∞
0

dk ck(t)e
−iε(k)t|k〉 , (3.2)

2In principle, the companion can also mediate transitions from one continuum state to another. In this paper,

we will ignore these, as we will only be concerned with the leading-order evolution of the cloud that remains bound

to the parent black hole. We will justify this approximation in Section A.2.
3This is an extension of the Demkov–Osherov model [34] to a single bound state interacting with a semi-infinite

continuum. A similar model was studied in [35], but with a different focus and using different techniques.
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where we have peeled off the standard oscillatory behavior caused by the non-zero energies of

each state—this will help us isolate the effect of the interactions η(k). The Schrödinger equation

associated to the Hamiltonian (3.1) leads to the equations of motion

i
dcb
dt

=
1

2π

∫ ∞
0

dk η∗(k)eiϕ∗(t)+i(εb−ε(k))tck(t) , (3.3)

i
dck
dt

= η(k)e−iϕ∗(t)+i(ε(k)−εb)tcb(t) . (3.4)

Our goal is to “integrate out” the continuum to find an approximate description of the system

entirely in terms of the bound state’s dynamics. We do so using the so-called Weisskopf–Wigner

method; see e.g. [36–38].

Assuming that the system begins its life in the bound state, ck(t) → 0 as t → −∞, for all k,

we can solve (3.4) exactly,

ck(t) = −i
∫ t

−∞
dt′ η(k)ei(ε(k)−εb)t′−iϕ∗(t′)cb(t

′) . (3.5)

Substituting this into (3.3), we find an (integro-differential) equation for the dynamics of the

entire system purely in terms of the bound state amplitude,

i
dcb
dt

=

∫ t

−∞
dt′Σb(t, t

′)cb(t
′) , (3.6)

where we have defined the self-energy

Σb(t, t
′) ≡ 1

2πi

∫ ∞
0

dk |η(k)|2 ei(ϕ∗(t)−ϕ∗(t′))−i(ε(k)−εb)(t−t′) . (3.7)

This equation of motion is still quite complicated, but we can make significant progress via the

Markov approximation [38], wherein we integrate by parts and drop the remainder term. The

bound state Schrödinger equation then simplifies to

i
dcb
dt

= Eb(t)cb(t) , (3.8)

where we have introduced the induced energy

Eb(t) =

∫ t

−∞
dt′Σb(t, t

′) =
1

2πi

∫ t

−∞
dt′
∫ ∞

0
dk |η(k)|2 ei(ϕ∗(t)−ϕ∗(t′))−i(ε(k)−εb)(t−t′) . (3.9)

As we discuss in Appendix B, this approximation consists of dropping terms that are higher order

in Eb(t) and its time integrals. The imaginary part of the induced energy completely determines

the behavior of the bound state occupation probability, which may be approximated as

d log |cb(t)|2
dt

= 2 Im Eb(t) ≈ −
µ|η(k∗(t))|2

k∗(t)
Θ
(
k2
∗(t)

)
, (3.10)

where k∗(t) =
√

2µ (ϕ̇∗(t) + εb) and Θ(x) is the Heaviside function, with Θ
(
k2
∗(t)

)
= Θ(ϕ̇∗(t)+εb).

We will devote the rest of this section to understanding the time dependence of Im Eb(t) and

qualitatively justifying the approximation in (3.10).
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Figure 6: The imaginary part of the induced energy Eb(t) (top) and the log occupation of the bound

state log |cb(t)|2 (bottom) as functions of dimensionless time
√
γt, using both the exact expression (3.9)

[blue] and our approximation (3.10) [orange]. Here, we assume that the bound-to-continuum couplings

take the form |η(k)|2 = (k/µ)/[1 + k4/(81µ2γ)].

As we might expect, the bound state only starts to significantly interact with the continuum

when the frequency of the perturbation ϕ̇∗(t) is high enough to compensate for the bound state’s

binding energy, −εb. This is when the bound state starts to “resonate” with the continuum and we

can choose our time coordinate so that this resonance occurs at t = 0. This is not a resonance in

the classic sense, but we find it useful to continue using this language. As illustrated in Figure 6,

the system (3.8) evolves on a time scale set by γ−1/2 and its behavior can be divided into three

distinct stages.

Far before the resonance, in the left shaded region, where
√
γt� −1, the perturbation cannot

provide enough energy for the bound and continuum states to interact and so the population

of the bound state is, to good approximation, completely unaffected by the presence of the

continuum. This changes when |√γt| . 1, in the unshaded transient region, where the system

goes on resonance and develops a relatively complicated time dependence. We do not need to

fully understand this complicated stage, other than to note that this region serves to smoothly

interpolate between the
√
γt� −1 stage and the final

√
γt� 1 stage.

In the right shaded region, where
√
γt� 1, the system approaches a type of steady state where

the imaginary part of the induced energy Eb(t) is well-approximated by two distinct behaviors.

The first is a remaining transient oscillation whose amplitude decays in time and whose properties

depend only on the behavior of the coupling |η(k)|2 as k → 0. As described in Appendix A, when

|η(k)|2 goes to zero linearly in k at the edge of the continuum, these oscillations decay as (
√
γt)−1,

and thus their effect on the solution log |cb(t)|2 decays as (
√
γt)−2. As illustrated in Figure 6,

these oscillations provide a subleading correction to the dominant behavior, which is a steady

and smooth deoccupation of the cloud, whose instantaneous rate depends only on the properties

13



of the continuum state that the system is currently “resonating” with, i.e. the continuum state

whose energy is 1
2µk

2
∗(t) = ϕ̇∗(t) + εb. This dominant contribution (3.10) is the only one we will

consider in the text.4

We will mostly be interested in the total energy that has been ionized by the perturbation, as

a function of time. Assuming that the system only occupies the bound state in the far past, this

ionized energy can be defined as the total energy contained within the continuum,

Eion(t) ≡ 1

2π

Mc

µ

∫ ∞
0

dk (ε(k)− εb)|ck(t)|2 . (3.11)

As we describe in Appendix C, the rate at which energy is ionized dEion/dt, which we will call

the ionization power Pion, can be expressed in a particularly simple form by again working in the

Markov approximation and ignoring subleading transient contributions,

Pion(t) ≈ Mc

µ

[
ϕ̇∗(t)

µ
∣∣η(k∗(t))

∣∣2
k∗(t)

]
Θ
(
k2
∗(t)

)
|cb(t)|2 . (3.12)

This is clearly evocative of (3.10) and enjoys a simple interpretation: how quickly the ionized

energy grows is equal to the rate at which the bound state “resonates” into the state at k∗(t),
namely µ|η(k∗(t))|2/k∗(t), weighted both by the energy difference ε(k∗(t)) − εb = ϕ̇∗(t) between

these states and by how much is still left in the bound state at that time, (Mc/µ)|cb(t)|2.

Perhaps the most striking phenomenon we will encounter is the appearance of seemingly dis-

continuous jumps in the ionization power. We will find that these jumps occur when the pertur-

bation begins to resonate with the continuum—that is, when the perturbation’s frequency is just

enough to excite the bound state into the very edge of the continuum. These discontinuities are

apparent in our approximation of the time evolution (3.10), shown in Figure 6, and are ultimately

due to the behavior of the continuum wavefunctions as k → 0. As we explain in Appendix D,

the long-range nature of the r−1 potential localizes this zero mode to a Bohr radius-sized region

around r = 0 and, by a matching argument, this implies that the wavefunction’s normalization

scales like
√
k as k → 0, as do all matrix elements between the bound and continuum states. The

combination µ|η(k∗(t))|2/k∗(t) thus approaches a finite limit for k∗(t)→ 0, when the bound state

begins to resonate with the continuum, leading to an apparent discontinuity in our approximation

(3.10). Said differently, the coupling per unit energy |η(ε)|2 = dk(ε)/dε
∣∣η(k(ε)

)∣∣2 is finite in the

zero-energy limit because the zero-energy modes are still localized about the origin. Of course,

this approximation does not capture the transient region shown in Figure 6, which smooths out

these apparent discontinuities on a timescale γ−1/2.

It is instructive to compare the timescale of the transition, γ−1/2, to the characteristic timescale

of the inspiral, Ω0/γ, which measures how long it takes for the separation between the two black

holes to change by a O(1) fraction. Using the definition of γ in (2.20), the ratio of the two

4As we explain in Appendix A, we can also derive the deoccupation rate (3.10) using stationary perturbation

theory, γ = 0, and assuming that the obtained answer holds for γ 6= 0, if the frequency evolves slow enough.
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timescales is5

γ−1/2

Ω0/γ
=

√
96

5

q1/2

(1 + q)1/6

(
αΩ0

µ

)5/6

∝
√
qα3 , (3.13)

where we used that the transitions occur for Ω0 ∼ µα2 to get the scaling in the final equality.

For small q and α, the transitions therefore are very fast on the timescale of the inspiral.

3.2 The Realistic Case

Conceptually, extending our analysis to the realistic case of the gravitational atom requires very

little extra work beyond what we have already done, the main complication being that there are

simply many more states to keep track of. Our goal is again to integrate out the continuum states

and encode their effects on the bound states in terms of a set of induced energies and couplings,

analogous to (3.9). These effective interactions will be relatively complicated functions of time,

but will contain a simple “steady-state” behavior similar to (3.10).

We can write the Hamiltonian of the gravitational atom as

H =
∑
b

εb(t)|b〉〈b|+
∑
a6=b

ηab(t)|a〉〈b|+
∑
K

εK(t)|K〉〈K|+
∑
K,b

[
ηKb(t)|K〉〈b|+ h.c.

]
, (3.14)

where we use a, b, . . . as a bound state multi-index,6 |a〉 ≡ |na`ama〉 and |b〉 = |nb`bmb〉, while

K,L, . . . is a continuum state multi-index, |K〉 ≡ |k; `m〉. We take εb(t), εK(t), ηab(t) and

ηKb(t) as shorthands for the energies and couplings εnb`bmb(t), ε`m(k; t), ηna`ama|nb`bmb(t) and

ηk;`m|nb`bmb(t), respectively. Sums over multi-indices should be understood to include a sum over

all states of a given type. For instance, the analog of (3.2) for a generic state is7

|ψ〉 =
∑
b

cb(t)e
−iεbt|b〉+

∑
K

cK(t)e−iεKt|K〉

=
∑
n,`,m

cn`m(t)e−iEn`mt|n`m〉+
1

2π

∑
`,m

∫ ∞
0

dk ck;`m(t)e−iε(k)t|k; `m〉 ,
(3.15)

where En`m and ε(k) are defined in (2.8) and (2.14), respectively.

In this abbreviated notation, the coefficients obey the following equations of motion

i
dcb
dt

=
∑
a6=b

ηba(t)ca(t)e
i(εb−εa)t +

∑
K

ηbK(t)cK(t)ei(εb−εK)t , (3.16)

i
dcK
dt

=
∑
a

ηKa(t)ca(t)e
i(εK−εa)t . (3.17)

5Here, we have ignored the backreaction of ionization on the binary’s dynamics, which can increase the effective

chirp rate ϕ̈∗(t) ≈ γ by a factor of O(100). This changes the estimate (3.13), which scales as γ1/2, by an O(10)

factor. However, for the values of q and α we consider, this does not change the fact that these transitions are fast.
6In the previous subsection, we used the subscript b to denote “bound state” whereas now we use it as a bound

state index, slightly abusing notation.
7Since the energies εb(t) and εK(t) depend on time, the appropriate “integrating factor” in this ansatz should

be exp
(
−i
∫

dt′εb(t
′)
)

instead of exp(−iεbt), etc. However, the time dependence of these energies is extremely

suppressed, ε̇b ∼ O
(
γ(qα)2

)
, since it only arises from the radial dynamics of the companion. Such time-dependent

terms are not critical to the resonant effects we discuss in this section, and only provide very small corrections to

details like the time at which the resonance begins. We will thus ignore them.
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Assuming that the continuum states are completely deoccupied in the far past, t→ −∞, we can

solve (3.17) exactly,

cK(t) = −i
∫ t

−∞
dt′
[∑

a

ηKa(t
′)ca(t′)ei(εK−εa)t′

]
. (3.18)

Substituting this into (3.16) yields an integro-differential equation purely in terms of the bound

states

i
dcb
dt

=
∑
a6=b

ηba(t)ca(t)e
i(εb−εa)t +

∑
a

∫ t

−∞
dt′Σba(t, t

′)ca(t′) , (3.19)

where we have defined the self-energies

Σba(t, t
′) = −i

∑
K

ηbK(t)ηKa(t
′)ei(εb−εK)t+i(εK−εa)t′ , (3.20)

which generalize (3.6) to include multiple bound states. The main complication, compared to

the toy model presented in Section 3.1, is that the continuum can mediate transitions between

different bound states, and will thus induce off-diagonal couplings.

Again working in the Markov approximation, we can rewrite (3.19) as an effective Schrödinger

equation for the bound states

i
dcb
dt

= Eb(t)cb(t) +
∑
a6=b

[
ηba(t)e

i(εb−εa)t + Eba(t)
]
ca(t) , (3.21)

where we have defined both the induced couplings

Eba(t) = −i
∫ t

−∞
dt′
∑
K

ηbK(t)ηKa(t
′)ei(εb−εK)t+i(εK−εa)t′ (3.22)

and the induced energies Eb(t) = Ebb(t), the realistic analog of (3.9). As before, we have reduced

the complicated problem of bound states interacting with a continuum to the analysis of a set of

(complicated) time-dependent functions Eba(t).
These induced couplings take a much simpler form when we remember that both the bound and

continuum states have definite azimuthal angular momentum, which we will denote as m for the

continuum state K and ma or mb for the bound states |a〉 or |b〉, respectively. Since the couplings

between the bound and continuum states ηKa(t) reduce to a single Floquet component (2.23),

we can write the induced couplings appearing in (3.21) as8

Eba(t) = −i
∫ t

−∞
dt′
∑
K

η
∗(m−mb)

Kb (t)η
(m−ma)

Ka (t)

× ei(m−mb)ϕ∗(t)−i(m−ma)ϕ∗(t′)+i(εb−εK)t+i(εK−εa)t′ .

(3.23)

8The Floquet components η
(m−ma)
Ka inherit their time dependence purely from the radial motion of the companion.

Though this slow radial motion is extremely important when it forces the frequency of the perturbation to slowly

increase in time and cannot be ignored there, taking the adiabatic approximation η
(m−ma)
Ka (t′) ≈ η

(m−mb)
Ka (t) only

requires dropping subleading terms of O(γ), and so we will use this approximation throughout.
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As we argue in Appendix A, the off-diagonal terms oscillate as Eba(t) ∝ ei(εb−εa)t−i(mb−ma)ϕ∗(t),

just like the directly mediated transitions between the bound states

ηba(t)e
i(εb−εa)t = η

(mb−ma)

ba (t)ei(εb−εa)t−i(mb−ma)ϕ∗(t) . (3.24)

The total coupling between the bound states |a〉 and |b〉, ηba(t)ei(εb−εa)t + Eba(t), thus oscillates

extremely rapidly unless the argument of this exponential becomes stationary, which occurs when

(mb −ma)ϕ̇∗(t) = εb − εa . (3.25)

This is exactly the resonance condition (2.24) and so, even including the effects of the continuum,

we can ignore transitions between bound states as long the system is not actively in resonance,

cf. [31]. That is, away from resonances the coupling between |a〉 and |b〉 oscillates rapidly enough

so as to effectively average out to zero. Ignoring these resonances, we can thus dramatically

simplify the effective Schrödinger equation (3.21) to

i
dcb
dt

= Eb(t)cb(t) , (3.26)

where the induced energies,

Eb(t) = −i
∑
K

∫ t

−∞
dt′
∣∣η(m−mb)

Kb (t)
∣∣2 ei(m−mb)(ϕ∗(t)−ϕ∗(t′))−i(εK−εb)(t−t′) , (3.27)

are simply the generalization of (3.9) to include continuum states with different angular momenta.

The dynamics of this effective Schrödinger equation are very similar to those of the toy model.

Assuming that the system occupies a single bound state and ignoring the transient oscillations

as we discussed in Section 3.1, we may write the analog of (3.10) as

d log |cb(t)|2
dt

= 2 Im Eb(t) ≈ −
∑
`,g

[
µ
∣∣η(g)

K∗b
(t)
∣∣2

k
(g)
∗ (t)

Θ
(
k

(g)
∗ (t)2

)]
, (3.28)

with K∗ = {k(g)
∗ (t), `,m = g + mb} and k

(g)
∗ (t) =

√
2µ(gϕ̇∗(t) + εb), where the sum ranges

from ` = 0, 1, . . . ,∞ and over all g such that |g + mb| ≤ `. As before, the instantaneous rate of

deoccupation only relies on the properties of the state that the system currently “resonates” with.

However, in contrast to our toy model, there are two main complications. First, the perturbation

oscillates at every overtone g ∈ Z of the base frequency ϕ̇∗(t). Second, the continuum state with

energy 1
2µk

2
∗(t) = gϕ̇∗ + εb is infinitely degenerate. The selection rule (2.23) kills the sum over

overtones, but we still need to account for this infinite degeneracy, leading to the sum over total

and azimuthal orbital angular momentum.

The same simplifications apply to the ionization power, which we may write as

Pion ≡
dEion

dt
≈
∑
`,g

Mc

µ

[
gϕ̇∗(t)

µ
∣∣η(g)

K∗b
(t)
∣∣2

k
(g)
∗ (t)

]
Θ
(
k

(g)
∗ (t)2

)
|cb(t)|2 , (3.29)

assuming that the system initially only occupies one bound state |b〉, where the sum is again over

all states that can participate in the resonance. If the system occupies multiple bound states, we

can approximate the ionization power by summing (3.29) over each occupied state.
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Figure 7: The ionization power (3.29) as a function of the binary separation R∗, for α = 0.2, q = 10−3,

Mc = 0.01M , and a cloud in the |211〉 state. We ignore both cloud depletion and the backreaction on the

orbital dynamics (see Section 5). In the top panel, we normalize both curves by the peak ionization power

of the counter-rotating orbit; so-called arbitrary units. In the bottom panel, we have normalized each

curve by Pgw, the energy lost due to GW emission (2.19). We see that the energy lost due to ionization,

whose overall amplitude is controlled by the mass of the cloud Mc|cb(t)|2, can dominate over GW emission.

We plot this ionization power as a function of the binary separation R∗ in Figure 7. We show

this ionization power normalized arbitrarily (top) and by the energy lost due to gravitational wave

emission Pgw ≡ dEgw/dt (bottom), ignoring cloud depletion |cb(t)|2 = 1, for both co- and counter-

rotating orbits. As we explained in the previous subsection, the discontinuous jumps that appear

in both panels are due to the bound state beginning to resonate with the continuum and the

fact that all couplings |ηKb|2 are ∝ k as k → 0. The fact that the perturbation now has multiple

overtones means that this resonance can occur at multiple points in the orbit. Specifically, for a

cloud whose initial state is |nb`bmb〉, these discontinuities will appear at the orbital separations

R
(g)
∗
M

= α−2
[
4g2(1 + q)n4

b

]1/3
, g = 1, 2, . . . , (3.30)

though they become progressively weaker for higher overtones g. From the bottom panel, we

also see that ionization is a large effect compared to the energy loss due to GW emission; for

Mc = 0.01M , Pion can be two orders of magnitude larger than Pgw. To understand this more

intuitively, we note that the cloud’s binding energy per unit mass, α2/(2n2), is comparable to

the same quantity for the binary, M/(2R∗), when R∗ ∼ rc. If ionization reduces the cloud’s mass

by an amount of order the companion’s mass M∗, this will therefore cause a large backreaction
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on the orbit. We confirm this intuitive expectation numerically in Section 5.

It is worth noting that, for small q, the curves shown in Figure 7 exhibit a universal scaling

behavior. The radial wavefunctions Rn`(r) and Rk;`(r), given in (2.5) and (2.12), only depend

on the dimensionless variables r/rc = α2r/M and kr, respectively. The wavelength k∗ appearing

in (3.28) and (3.29) is also a function of r/rc that scales as α2 and is independent of q, when

q � 1. Because the matrix elements
∣∣η(g)

K∗b
(t)
∣∣2 are evaluated at k∗, every radial variable in the

overlap integrals will therefore appear in the combination α2r/M . The overlaps themselves thus

also inherit a homogeneous α-scaling, which can be found by power counting. For the ionization

power and the deoccupation rate, this leads to

Pion = α5q2Mc

M
P(α2R∗/M) , (3.31)

d log |cb(t)|2
dt

=
α3q2

M
R(α2R∗/M) , (3.32)

where P and R are universal functions for each bound state |nb`bmb〉 that have to be found

numerically. These relations are particularly useful when results are needed for many points in

parameter space, as we now only need to compute the relatively complicated functions P and R
once for a fiducial set of parameters.

4 Accretion: Absorbing the Cloud

So far, we have treated the perturbing object as pointlike and studied only its gravitational

influence on the cloud. In this section, we will take the finite size of the companion into account

and compute its absorption of the cloud (see Figure 8).9 If the secondary object is a black hole of

mass M∗ and spin a∗, then this absorption will play an important role in the binary’s dynamics.

Figure 8: Cartoon illustrating the accretion of the boson cloud by the companion black hole. As explained

in the text, the cloud will respond rapidly and replenish the local density behind the companion.

9The absorption cross section of a scalar field by a black hole has been studied extensively: in the massless case

for rotating black holes in [39–42], in the massive case for Schwarzschild black holes in [43], and more recently, in

the massive case for charged and/or rotating black holes in [44, 45]. Our analysis will be similar to that in [43, 45].
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4.1 Motion in a Uniform Medium

We start by solving the problem in the idealized case of a black hole moving with a constant

velocity in a medium with a uniform density ρ. If the medium were made of small particles at

rest at infinity, the problem would be relatively straightforward to solve via geodesic motion in

the rest frame of the black hole. In the Schwarzschild case, the energy flux takes the form [43]

dM∗
dt

=
πρM2

∗
2v3

(
4v2 +

√
8v2 + 1− 1

)3(√
8v2 + 1− 1

)2 ∼ 4πρ (2M∗)2

v
, v → 0 , (4.1)

where v is the asymptotic value of the relative velocity between the particles and the black hole.

The divergence at v → 0 signals the non-existence of a stationary configuration with v = 0 where

the density of the medium approaches a finite non-zero value at infinity.

In the case of interest, the Compton wavelength of the medium is much larger than the

gravitational radius, rg,∗ = M∗, and therefore (4.1) does not hold. We expect the true answer to

be smaller because the quantum pressure of the field suppresses small-scale overdensities. Because

of the relative motion, the black hole will see the scalar field as having a wavenumber k ∼ µv.

Besides the (reduced) Compton wavelength, λc = µ−1, the other relevant scale in the problem

is then the (reduced) de Broglie wavelength, λdB = k−1. It will also be useful to define the

dimensionless ratios rg,∗/λc = µM∗ and λc/λdB = k/µ. We are interested in the limit where

both of these ratios are small,

µM∗ � 1 (“fuzzy”) ,

k/µ� 1 (“non-relativistic”) .
(4.2)

We will see, in Section 4.2, why these are the relevant limits in the realistic setting.

Our goal is to compute the radial energy flux at the outer horizon r = r+,

dM∗
dt

=

∫
dθ dφ

√
gθθgφφ T

r
0(r+) , (4.3)

where the energy-momentum tensor Tµν is that of the field profile Φ(t, r). Expanding this profile

in modes with definite frequency ω2 = µ2 + k2, we have (cf. Appendix E)

Φ(t, r) =
∑
`∗,m∗

Rk;`∗m∗(r)S`∗m∗(ka∗; cos θ)e−iωt+im∗φ , (4.4)

where S`∗m∗(c; cos θ) are spheroidal harmonics with spheroidicity c, we can write the radial energy

flux associated to this profile as

T r0 =
2ω(r − r+)(r − r−)

r2 + a2 cos2 θ

∑
`∗,m∗

Im(∂rR
∗
`∗m∗R`∗m∗)|S`∗m∗ |2 + · · · , (4.5)

where the ellipses represent terms that mix different angular momenta and will vanish when

integrated in (4.3) to compute the radial energy flux. We denote the angular momentum quantum

numbers measured with respect to the companion’s position as `∗ and m∗, to distinguish them

from those measured with respect to the parent black hole.
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Figure 9: Schematic illustration of the near-field and far-field expansions, where r± are the inner and outer

horizons of the black hole. The two asymptotic solutions are matched in the overlap region, M∗ � r � 1/k.

The presence of the black hole deforms the field profile and determines its shape at the horizon,

and thus the flux, as function of the boundary conditions at large distances. We work in the rest

frame of the black hole and consider an incident monochromatic plane wave from infinity with

wavevector k. In Minkowski spacetime, the asymptotic field profile would be

Φ(t, r) ∼
√

ρ

2ω2
eik·re−iωt =

√
ρ

2ω2

∞∑
`∗=0

(2`∗ + 1)i`∗j`∗(kr)P`∗(k̂ · r̂) e−iωt , r/M∗ →∞ , (4.6)

where ω =
√
µ2 + k2, with k = µv/

√
1− v2. In this expression, j`∗(kr) is the spherical Bessel

function, P`∗(k̂ · r̂) is the Legendre polynomial and the normalization has been chosen so that

ρ ≈ T00 = 2ω2Φ∗Φ. The long-range nature of the gravitational field, however, deforms the field;

in a spherically symmetric spacetime, we have [44]

Φ(t, r) ∼
√

ρ

2ω2

∞∑
`∗=0

(2`∗ + 1)i`∗j`∗
(
kr + δ(r)

)
P`∗(k̂ · r̂) e−iωt , r/M∗ →∞ , (4.7)

where δ(r) = kM∗(1 + ω2/k2) log(2kr) + δ`∗ , and δ`∗ is a constant phase shift. Although our

case is not quite spherically symmetric, deviations from (4.7) are controlled by the spheroidicity

parameter, which is ka∗ � 1 in the non-relativistic limit we are considering.

To compute the energy flux at the horizon, we must understand the dependence of the near-

field solution on the boundary condition (4.7). This will be achieved by a matched asymptotic

expansion: the far-field and near-field solutions will be studied separately and matched in the

overlap region, where both expansions hold. The boundary condition will then fix the overall

amplitude of the solution. This procedure is schematically illustrated in Figure 9.

Near-field solution—With the ansatz (4.4), the Klein–Gordon equation is separable. The

exact solution of the equation for Rk;`∗m∗(r) can be expressed in terms of the confluent Heun

function (see Appendix E and [46]). We expect the contributions from modes with `∗ ≥ 1 to be

suppressed at radii smaller than about `2∗/(µ
2M∗) (due to the angular momentum barrier), so

that the `∗ = m∗ = 0 mode dominates near the horizon. Expanding the confluent Heun function

around r = r+, one can show that

Rk(r) = Cke
−iω(r̃−r)−im∗φ̃(1 +O(µM∗, kM∗)

)
, for r+ ≤ r < rmax , (4.8)

where we use Rk(r) = Rk;00(r) as a shorthand, the coefficient Ck = Ck;00 defines the near-horizon

amplitude of the `∗ = m∗ = 0 mode, r̃ and φ̃ are the radial and angular tortoise coordinates
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(defined in Appendix E), and the breakdown of the expansion is at

rmax

M∗
∼ min

{
1

(µM∗)2
,

1

kM∗

}
� 1 . (4.9)

Using the explicit expressions of the tortoise coordinates, and plugging (4.8) into (4.3), we get

dM∗
dt

= 4M∗ r+ω2|Ck|2 . (4.10)

We will now determine Ck by matching (4.8) to the far-field solution.

Far-field solution—Far from the companion, r �M∗, the equation for Rk(r) becomes

d2Rk
dr2

+

(
2

r
+ · · ·

)
dRk
dr

+

(
k2 +

2M∗(ω2 + k2)

r
+ · · ·

)
Rk = 0 . (4.11)

This equation is solved by a linear combination of confluent hypergeometric functions,

eikrRk = CF 1F1

(
1 + ikM∗

(
1 + ω2/k2

)
; 2; 2ikr

)
+ CUU

(
1 + ikM∗

(
1 + ω2/k2

)
; 2; 2ikr

)
. (4.12)

For kr � 1, this solution overlaps with the near-field solution (4.8). Expanding (4.12) in this

limit and matching to (4.8) then gives CF = Ck and CU ≤ O
(
(µM∗)2

)
. To determine the overall

amplitude of the solution, we then expand (4.12) for kr � 1, where it reduces to a spherical

Bessel function, Rk(r) ∝ j0(kr + δ(r)), and compare it to the `∗ = 0 mode of the boundary

condition (4.7). This gives

CF = Ck =

√
2πρ

ω

∣∣∣Γ(1 + ikM∗
(
1 + ω2/k2

))
e

1
2
πkM∗(1+ω2/k2)

∣∣∣ . (4.13)

Plugging this back into (4.10), we get

dM∗
dt

= A∗ρ
∣∣∣Γ(1 + ikM∗

(
1 + ω2/k2

))∣∣∣2 eπkM∗(1+ω2/k2) , (4.14)

where A∗ ≡ 8πM∗r+,∗ is the area of the outer horizon of the Kerr black hole. This is our final

answer for the mass accretion rate.

The result is shown in Figure 10 for 2µM∗ = 10−4. As anticipated, the flux is smaller than for

particles, but still divergent for v → 0. For non-relativistic momenta, k < µ, we can identify two

different regimes

dM∗
dt

= A∗ρ


1 for k � 2πµ2M∗ ,

2πµ2M∗
k

for k � 2πµ2M∗ .
(4.15)

It is worth noting that, at the cross-over point k = 2πµ2M∗, the de Broglie wavelength of the

scalar field equals the Bohr radius of the gravitational atom, 2π/k = rc.
10 For k � 2πµ2M∗, the

energy flux diverges as 1/v, just like in the particle case, but with a smaller normalization. For

10To give an interpretation of this result, recall that a particle with impact parameter b and velocity v is scattered

by an angle ∼ M/(v2b) by the Coulomb interaction. Taking b ∼ λdB, we get an order-one deflection angle for

λdB ∼ rc. Scattering of waves with more (less) energy will be less (more) effective.
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Figure 10: Mass accretion rate of a Schwarzschild black hole computed analytically—from (4.14)—and

numerically for a scalar field with 2µM∗ = 10−4. Shown for comparison is also the accretion rate for

particles given by (4.1).

k � 2πµ2M∗, instead, the energy flux is independent of v and takes the very natural form A∗ρc,
if we restore a factor of c. This indeed matches the result for the low-energy cross section for a

massless field [39–42]. The regime holds until relativistic corrections kick in at k ∼ µ, and our

derivation breaks down.

Numerical solution—Figure 10 also shows the result of a numerical approach to the problem.

In the Schwarzschild case, we numerically integrated the confluent Heun function for different

values of k and `∗, with the main goal of confirming that the `∗ = m∗ = 0 mode indeed dominates

in the fuzzy limit. This allowed us to determine the near-horizon amplitudes Ck;`∗m∗ of modes

with `∗ ≥ 1 as a function of the asymptotic density ρ by comparing the asymptotic limit of the

confluent Heun function with the partial wave expansion of the boundary conditions (4.7). The

results are in remarkable agreement with the analytical estimate for all µM∗ � 1 and k � µ,

and explicitly show the suppression of Ck;`∗m∗ for `∗ ≥ 1.

4.2 Application to the Realistic Case

So far, we have studied an idealized model of a black hole moving through a uniform scalar field

mass density. However, we would like to apply these results to the case we are actually interested

in: a companion black hole of mass M∗ = qM moving through a non-uniform cloud that is bound

to its parent black hole. This more realistic scenario has a few major complications over its

idealized counterpart and in this section we confront them.

First and foremost, the scalar field mass density can have nontrivial azimuthal structure and

so the companion can experience different densities along a single orbit. For instance, if the cloud

is composed of a real scalar field occupying the |211〉 state, its mass density (2.10) behaves as

ρ(r) ∝ cos2 φ. In contrast, if it is a complex scalar field occupying the same state (or any other

23



pure eigenstate), its mass density does not vary along the orbit, ρ(r) = ρ(r, θ). When the mass

density has nontrivial φ-dependence, we will assume that we can replace it with its azimuthal

average, ρ(r, θ) = 1
2π

∫ 2π
0 dφ ρ(r, θ, φ). In this case, both real and complex scalar fields are treated

equally and give identical predictions. We do not expect this to be a bad approximation, as it

is roughly akin to only tracking quantities that have been averaged over an orbit, like those we

work with in Section 5.

Even assuming that we can azimuthally average the scalar field density, it is still non-uniform

in the radial direction and the relative asymptotic velocity between the companion and scalar

field is ill-defined. We will assume that accretion occurs dynamically in a region that is much

smaller than the size of the cloud, so that we can define this velocity “locally.” We will later

justify this assumption. This dynamical region is mesoscopic, in the sense that the dynamics is

only sensitive to the local properties of the cloud (like its density and velocity), but the region is

still much larger than the size of the companion object. In place of the asymptotic fluid density,

we can then use the local density ρ(R∗) of the cloud at the position of the companion. Similarly,

we define the local velocity to be the ratio of the probability current to the probability density,

vc(R∗) =
i

2µ|ψ|2
(
ψ∇ψ∗ − ψ∗∇ψ

)
=

m

µR⊥∗
φ̂ , (4.16)

where m is the azimuthal angular momentum of the cloud and R⊥∗ is the length of the projection

of R∗ on the equatorial plane, so that the difference between (4.16) and the orbital velocity of

the companion, v∗ ∼ ±
√
M/R∗φ̂, is the relative fluid-black hole velocity. For equatorial circular

orbits, with R⊥∗ = R∗, this relative velocity is

v =

∣∣∣∣√M

R∗
∓ m

µR∗

∣∣∣∣ =
α√
R∗/rc

∣∣∣∣∣1∓ m√
R∗/rc

∣∣∣∣∣ , (4.17)

where the − (+) sign refers to co-rotating (counter-rotating) orbits and rc = (µα)−1 is the typical

radius of the cloud. We stress that the quantities ρ(R∗) and vc(R∗) are computed without taking

the backreaction of the companion into account. For small q, this is a good approximation.

Under these assumptions, and for the systems we study, the mass accretion flux is approxi-

mately independent of velocity,
dM∗
dt
≈ A∗ ρ(R∗) , (4.18)

where A∗ ≈ 4π(2qM)2 is the area of the companion’s horizon. From the discussion of the previous

section (see the “plateau” in Figure 10), this approximation is valid as long as the relative fluid

velocity is neither too slow nor too fast,

2πqα� v � 1 . (4.19)

From (4.17), we see that this condition can be violated when either the orbital separation is

very small, R∗ ∼ α2rc, in which case the fluid is moving too quickly, v ∼ 1, or when the orbital

separation is very large, R∗ ∼ rc/q
2, in which case the fluid is moving too slowly, v � 2παq2.

Both of these cases occur during a typical inspiral. However, for small q and α, the cloud is
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extremely dilute whenever (4.19) is violated, because the companion is either too close11 or too

far away from the parent black hole to see an appreciable density, and so accretion is negligible

whenever (4.18) does not apply.12

Finally, let us now check that the accretion process actually happens in a mesoscopic region

where we can assume that the companion sees a uniform medium. The mass absorption formula

(4.18) can be written as
dM∗
dt

=
(
πb2max

)
vρ , (4.20)

where bmax ≡ 4qM/
√
v is the radius of the absorption cross section, or the maximum impact

parameter for absorption in a particle analogy. To apply the idealized derivation, we need to

satisfy two conditions: (1) the density and velocity of the cloud are approximately constant over

a region of size bmax and (2) the region of size bmax is gravitationally dominated by the companion,

i.e. it is smaller than the radius of the Hill sphere rHill = R∗(q/3)1/3. These two conditions then

require that

(1) bmax � rc =⇒ R∗
M
�
(
4qα2

)−4
, (4.21)

(2) bmax � rHill =⇒ R∗
M
�
(
8q/
√

3
)8/9

. (4.22)

Both of these conditions are easily satisfied for the typical values of α, q and R∗ that we are

interested in.

There are two ways the companion can fail to see such a uniform medium. The first is simply if

the azimuthally-averaged density ρ(R∗) vanishes, or changes dramatically, at a particular orbital

separation. This can occur when the cloud occupies a state |n`m〉, with ` 6= n − 1, for which

the radial wavefunction has zeros away from the origin. In this case, we can think of the density

that the companion sees as simply being the averaged density within a Hill sphere about the

companion. Similarly, as illustrated in Figure 8, the companion itself changes the local density—it

vacuums up the scalar field as it passes through the cloud and leaves an empty “tube” of diameter

O(M∗). However, the cloud will respond and replenish this local density on a relatively short

timescale. This perturbation excites modes with typical wavelength of O(M∗), whose frequencies

ω2 = µ2 + k2 scale as O
(
µ/(αq)

)
. These modes respond extremely quickly, and we expect that

this empty “tube” is rapidly filled in before companion can complete an orbit and encounter

this locally depleted region again. So, the companion should see a relatively uniform medium

throughout the inspiral, and we will thus use the approximation (4.18) throughout Section 5 to

capture the effect accretion has on the binary’s dynamics.

11We have assumed that the cloud has nontrivial angular momentum, which pushes the density of the cloud away

from the parent black hole. This is a fair assumption, as these are the types of states prepared by superradiance.

Moreover, we do not expect accretion to be significant for ` = 0 states anyway, since the time spent by the

companion in the region R∗ . α2rc is very short.
12This reasoning can fail when the relative velocity (4.17) vanishes and the companion orbits the parent black

hole at the same local speed as the cloud, which occurs for co-rotating orbits at R∗ = m2rc. In an orbital band of

width ∆R∗ ∼ πqm3rc around this special orbit, the constraint 2πqα� v is violated and (4.18) cannot be applied.

Rather, the low-velocity limit of (4.15) must be used instead and accretion is enhanced.
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5 Backreaction on the Orbit

We will now study the effect that both ionization and accretion have on a binary inspiral. We

are mostly interested in intermediate or extreme mass ratio inspirals, where the light companion

moves inside the cloud of the much heavier parent black hole. In Section 5.1, we describe the

system and its evolution equations, while in Section 5.2 we show numerical solutions to these

equations for a few representative examples.

5.1 Evolution Equations

Chronologically, the first resonant transitions in the inspiral are those with the lowest frequency.

These typically happen before the separation becomes comparable to rc. During those resonances,

the state of the cloud can be transformed to decaying states. For example, for an initial |211〉
state, the first resonances mediated by the quadrupolar perturbation (`∗ = 2) connect it to the

|21 −1〉 and |31 −1〉 states in the co- and counter-rotating cases, respectively. It is nontrivial to

understand whether or not the cloud survives after these transitions, though it has recently been

shown that it can [23] in some cases.

Our main goal in this section is to understand the physics of the subsequent inspiral, away

from resonances, and under the hypothesis that the cloud is still present when ionization and

accretion kick in. Our results should thus not be read as a fully realistic solution of the dynamics

of the system, as that would require including the resonances (and their impact on the evolution

of the cloud). Rather, we present an example of the impact of ionization and accretion only, and

their interplay. We will restrict to quasi-circular, equatorial orbits, and study separately orbits

that are co- and counter-rotating with respect to the cloud. The gravitational field of the cloud

will also be neglected, as it gives a correction of order Mc/M to the orbital quantities, which,

as we will see, is subdominant with respect to the impact of ionization and accretion. We will

numerically solve the time evolution of three quantities: the companion’s mass M∗, the cloud’s

mass Mc, and the separation R∗.

The evolution of M∗ and Mc is determined by mass conservation. As we discussed in Section 4,

the mass of the companion increases by accretion, while the mass of the cloud decreases by the

corresponding amount. In addition, the cloud loses mass through ionization. We therefore have

dM∗
dt

= 4π(2M∗)2 ρ(R∗) , (5.1)

dMc

dt
= −dM∗

dt
−Mc

∑
`,g

[
µ
∣∣η(g)

K∗b
(t)
∣∣2

k
(g)
∗ (t)

Θ
(
k

(g)
∗ (t)2

)]
, (5.2)

where ρ(R∗) = Mc

∣∣Rn`(R∗)Y`m(θ∗, φ∗)
∣∣2 is the local density of the cloud at the position of the

companion.13 The accretion formula (5.1) holds for a non-rotating black hole, while for a rotating

13Here, we have ignored the possibility that accretion is enhanced, as it is for co-rotating orbits at R∗ = m2rc.

This enhancement occurs in a region that is too narrow to be resolved for the values of q we consider. We also

assumed that either the scalar field is complex, or that we have azimuthally averaged the mass density of the real

scalar field. Both provide the same result.
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black hole it has to be rescaled to account for the reduced area of the horizon. The last term of

(5.2) is the ionization rate, defined in (3.28).

To determine the backreaction on the inspiral, we use the conservation of angular momentum.

The system carries angular momentum in the form of the orbital angular momentum of the binary

and the spin of the cloud, which are given by

L ≡ M∗ΩR2
∗

1 + q
and Sc ≡

mMc

µ
, (5.3)

where Ω2R3
∗ = (1 + q)M for quasi-circular Keplerian orbits. Gravitational waves carry angular

momentum to infinity at a rate dLgw/ dt = Pgw/Ω, where Pgw is given in (2.19). In the vacuum

solution, these gravitational waves are the reason for the shrinking orbit. Ionization leads to an

additional loss of angular momentum through the emission of scalar waves. These waves carry

angular momentum to infinity at a rate given by an expression analogous to (3.29),

dLout

dt
=
∑
`,g

[
(m+ g)

µ
∣∣η(g)

K∗b
(t)
∣∣2

k
(g)
∗ (t)

]
Θ
(
k

(g)
∗ (t)2

)
|cb(t)|2 . (5.4)

The conservation of the total angular momentum then implies

dL

dt
+

dSc

dt
= −

(
Pgw

Ω
+

dLout

dt

)
. (5.5)

Using (5.2) for the evolution of Mc in dSc/ dt, we can express the difference between its last term

and dLout/ dt in terms of the ionization power, Pion, defined in (3.29). This leads to an equation

for the evolution of the binary’s separation,14

qM2

2R2∗

dR∗
dt

= −Pgw − Pion −
[

2 + q

2(1 + q)3/2

√
MR∗ ∓

mM

α

]
M |Ω|dq

dt
, (5.6)

where the minus (plus) sign refers to co-rotating (counter-rotating) orbits. We see that the inspiral

dynamics is determined by three different “forces.” The first two have the obvious interpretation

of the drag induced by the energy lost in gravitational waves and scalar waves, respectively. The

third term, instead, is the accretion of momentum that comes along with the accretion of mass.

The sign of this force depends on whether the cloud is locally rotating faster or slower than the

companion. Not surprisingly, the two behaviors are separated by R∗ = m2rc (in the small-q

limit), corresponding to the special co-rotating orbit identified in Section 4.2 where the relative

velocity vanishes.

As a final note, we observe that the backreaction of the gravitational interaction between an

object and the medium it is moving through is known in the literature as “dynamical friction.”

14Note that this expression neglects the transient oscillations associated with the discontinuities. As we showed

in Section 3, these oscillations decay over a very narrow region of R∗ in the small backreaction limit. This region

remains small even in the cases studied here, as even though the backreaction is strong and the instantaneous chirp

rate ϕ̈∗(t), c.f. Appendix A.5, is enhanced roughly by a factor of Pion/Pgw ∼ O(100), this narrow region scales as

γ1/2 and, especially for the parameters we are interested in, this region is still small enough to ignore the effect

that the transient oscillations and varying chirp rate ϕ̈∗(t) can have on (5.6).
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Figure 11: Evolution of the separation R∗, forM = 104M� and α = 0.2, with initial values of R∗ = 400M ,

q = 10−3 and Mc/M = 0.01 in a |211〉 state. Shown are the results for both co-rotating (+) and counter-

rotating (−) orbits. The vacuum system, where no cloud is present, is shown for comparison. We see that

accretion and ionization significantly reduce the merger time.

For uniform density media, the interpretation of the effect is simple: the wake of the overdensity

behind the moving object exerts a gravitational pull on it, creating a drag force. The effect has

been computed for a light field in [47], and there have been some recent attempts to apply it to the

case of the gravitational atom in [17, 48]. The length of the wake and the intensity of the drag force

depend on the history of the system, with divergent results found for stationary configurations

in asymptotically uniform media. The gravitational atom, however, is special in two ways: first,

it is localized in space, providing a natural regulation for the divergence mentioned previously;

second, its spectrum is composed of bound and unbound states, but only the latter can carry

(angular) momentum to infinity [49]. Despite these complications, the physical origin of the drag

force is the same. It is therefore a question of semantics whether one calls the drag induced by

the backreaction of ionization “dynamical friction.” In any case, because bound and unbound

states together form a complete set, the description of the evolution of their occupations, and

the associated backreaction, either in the form of resonances or drag, provides a full description

of the interaction between the cloud and the moving object.

5.2 Numerical Results

The system of equations (5.1), (5.2) and (5.6) determines the evolution of M∗, Mc and R∗. In

this section, we solve these equations numerically for some benchmark parameters.

It is first useful to comment on our choice of fiducial parameters and their astrophysical

plausibility. To make a strong observational case, we choose parameters for which ionization

and accretion occur mostly in-band for a future space-based detector like LISA. At the same

time, we must require that q � 1 in order for our perturbative treatment to be applicable (see
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Appendix B). We thus consider intermediate mass ratio inspirals, with M = 104M� and q = 10−3,

as we want the companion to be a reasonably-sized black hole. In order for the discontinuities

in the ionization power Pion to appear in the LISA band, we take α = 0.2. This allows very

fast superradiant growth of the cloud, but also makes it decay relatively rapidly to gravitational

waves when the scalar field is real. The exact depletion rate depends on the initial mass of the

cloud, but for these parameters Mc/M is expected to fall to 0.01 after 105 years and to 0.001

after 106 years, with an extremely strong dependence on α. It is thus not unreasonable to take

Mc/M = 0.01 as a reference point for its initial value when ionization and accretion kick in;

however, we will also show that even for Mc/M = 0.001 the impact of the cloud is still very large.

It is possible to adjust the values of M , q and α. For example, we could reduce the value of

α to make the cloud longer-lived. If we want the ionization features of the signal to stay in the

LISA band, then we would have to simultaneously reduce the value of M (which would increase

q if we keep M∗ fixed). However, in this work we only want to illustrate that ionization has

a large and sharp effect on the inspiral, and we therefore do not attempt to find the region of

parameter space with the most observational relevance. In the same vein, we fix the initial state

of the cloud to |211〉 for simplicity. As previously mentioned, there is an uncertainty in the initial

bound state due to the previous history of the system, both from past resonant transitions and the

superradiant growth of other modes like the |322〉 state which becomes relevant for larger values

of α. More concretely, for counter-rotating orbits, the state |211〉 cannot undergo any hyperfine

transitions and the first Bohr transition (to the state |31−1〉) occurs around R∗/M ∼ 200, when

ionization is already a large effect (see Fig. 7). For co-rotating orbits, the hyperfine transition

to the state |21−1〉 can be significant and would have to be included in the analysis. We do not

expect that choosing a different initial state would qualitatively affect our conclusions, but leave

a more detailed analysis for future work.

Let us now describe the numerical results. To understand the magnitude of the different effects,

we show in Figure 11 the evolution of the parameters separately under the effects of ionization

and accretion and then both combined, starting from a separation of R∗ = 400M . In all cases,

we observe a very significant shortening of the time to merger, with the orbits suddenly sinking

as soon as the ionization energy losses overcome those in gravitational radiation. The dynamical

evolution of the system is thus driven, and not just perturbed, by the interaction of the binary

with the cloud. The binary merges faster for counter-rotating orbits, since the ionization power

is larger at large R∗ and the accretion force is opposite to the motion, c.f. Figure 7 and (5.6).

In the top panel of Figure 12, we show the fractional change of the mass of the companion M∗
as function of the separation R∗, for co-rotating orbits and three different initial values of Mc.

We observe that accretion takes place throughout the entire inspiral, without a clear hierarchy

between the timescales of accretion and merger. Not surprisingly, we see that the accreted mass

is very sensitive to Mc/M , with the total ∆M∗/M∗ being roughly proportional to it, at least in

the early stages of the inspiral. In fact, in the case with only accretion, the final value of ∆M∗/M∗
can be predicted from a simple order-of-magnitude estimate: multiplying the average accretion

flux, (4.18), by the time-to-merger in vacuum, we get ∆M∗/M∗ ∼ (Mc/M)(rc/M), which is in

good agreement with the numerical results shown in Figure 12. What is maybe more surprising

is that the inclusion of ionization strongly limits the accretion of mass. This phenomenon can be
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Figure 12: Fractional changes of the mass of the companion M∗ and the mass of the cloud Mc, for

M = 104M� and α = 0.2, with initial values of R∗ = 400M , M∗ = 10−3M . Shown are the results for

three different initial values of Mc. All curves refer to co-rotating orbits and a |211〉 bound state.

explained by noting that ionization does not have a big effect on the accretion rate (5.1), which

only depends on ρ and q, but significantly reduces the time spent inside the cloud, and therefore

the total accreted mass.

In the bottom panel of Figure 12, we show the fractional change of the mass of the cloud Mc.

We see that the cloud is partially depleted during the inspiral, due to both ionization and accre-

tion. The hierarchy between the two effects depends on the initial value of Mc. For more massive

clouds, the primary mechanism of mass loss is accretion, which is limited by the inclusion of

ionization due to the reduced time spent inside the cloud. Instead, for lighter clouds, ionization

is the primary mechanism of mass loss. We see that the total mass loss does not seem to depend

sensitively on the initial value of Mc, so that the fractional mass loss is larger for smaller clouds.

In our example, with Mc/M = 0.1, only about 1% of the initial mass is lost at the end of the

inspiral; instead, more than 50% would be depleted for an initial Mc/M = 10−3.

It is natural to wonder how degenerate the observables are with the expected signal from

a binary in vacuum with different parameters. Although we postpone a systematic study of

this issue to future work, it is useful to compare the evolution of the GW frequency fgw as a

function of the time to merger. This is done in Figure 13 for the very conservative case of initial

Mc/M = 10−3, demonstrating that even a tiny cloud can have a strong impact on the inspiral.

In the plot, the scale of the frequency axis has been chosen such that the non-relativistic vacuum

evolution, fgw ∝ (tm− t)−3/8, where tm is the merger time, becomes a straight line. It is apparent

that the shape of fgw(t) deviates significantly from a straight line: a decisive role is played

by the “kinks” appearing at the frequencies where the ionization power Pion is discontinuous,

30



−20 −15 −10 −5 0

0.1

0.2

0.3

0.4

t− tm [yrs]

(f
g
w
/
m
H
z)

−
8
/
3

Vacuum
Counter-rotating
Co-rotating

R(2)
∗

R(3)
∗

R(4)
∗

Figure 13: Evolution of the GW frequency as a function of the remaining time to merger, t − tm, for

M = 104M� and α = 0.2, with initial values of R∗ = 400M , q = 10−3 and Mc/M = 10−3 in a |211〉 state.

The central region of the range shown on the y axis corresponds to a few millihertz, falling inside the

LISA sensitivity band. The “kinks” at separations R
(g)
∗ correspond to the discontinuities in the ionization

power, see Figure 7.

cf. Figure 7. From (3.30), kinks appear at the frequencies
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(5.7)

where the overtone number g ranges over positive integers and nb is the principal number of the

cloud’s initial state. These kinks thus constitute a sharp observational signature of ionization

caught in the act. If only a region between two kinks is observed, then the evolution is likely to

be more degenerate with a signal from a vacuum system, whose parameters would however differ

from the true parameters of the binary.

5.3 Open Problems

We now address a number of unresolved questions regarding the phenomenology of the system,

discussing the limitations of our analysis and some future prospects.

Gravitational field of the cloud—By using the simple Keplerian relation Ω2R3
∗ = (1 + q)M ,

we have neglected the backreaction due to the gravitational field of the cloud. This backreaction

would manifest itself as O(Mc/M) corrections to the orbital dynamics. At the Newtonian level,

the effect of the cloud is two-fold: the enclosed mass “seen” by the companion varies with R∗,
due to the diffuse nature of the cloud, and the nontrivial angular structure of the cloud generates

higher mass multipoles. The first effect is only relevant when the companion orbits inside the

cloud, R∗ ∼ rc, while the second can also provide corrections at large distances.
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Angular structure of the cloud—Similarly, we have ignored the angular structure of the cloud

in our treatment of accretion, where we azimuthally averaged the mass density and assumed

that the accretion process was accurately captured by averaging over each orbit. This implicitly

assumes that the orbit remains quasi-circular even after we include accretion effects. However,

we expect that this assumption can break down at certain points during the inspiral, like when

the relative velocity between the cloud and companion vanishes for co-rotating orbits and the

companion has enough time to develop nontrivial eccentricity.

Inclination and eccentricity—For simplicity, we have only studied equatorial quasi-circular

orbits. The phenomenology of inclined orbits is potentially much richer, as the transfer of angular

momentum between the cloud and orbit can cause the orbital plane to precess. The companion

would also explore regions of the cloud with different densities, resulting in an uneven distribution

of the “forces” appearing in (5.6) over the course of an orbit, potentially causing the orbit to

become more eccentric. Taking into account eccentricity is necessary for a more complete analysis

even in the simple case of equatorial orbits, especially in situations where the forces in (5.6) have

a nontrivial R∗ dependence. For example, for co-rotating orbits the accretion force does not

always act as a drag, changing sign with R∗.

Resonances—We have not studied the interplay of the resonances between bound states with

the ionization and accretion processes. The effect of resonances on the dynamics is twofold.

First, they introduce periods of either accelerated (“sinking” orbits), or decelerated (“floating”

orbits) inspiral: these would appear as distinctive features in the evolution of the separation

and frequency. Second, the resonances can change the state of the cloud. Both of these effects

can interact nontrivially with ionization and accretion, as the total mass accreted or ionized

depends on the time spent at a given orbital separation, and on the state of the cloud. For

instance, the effects of both ionization and accretion will be enhanced during a floating orbit,

while a rapidly sinking orbit can break many the various approximations we have relied on in our

analysis. Furthermore, when the cloud transitions to an excited state it becomes easier to ionize,

so this dependence on the evolution of the state has to included in a self-consistent analysis of

the ionization. It would be interesting to study the state dependence of the ionization signal in

more detail.

Equal mass ratios—We have only studied the case of a large mass ratio q � 1, where the

gravitational influence of the companion could be treated perturbatively. The parameter q is one

of the main order parameters in our perturbative analysis and many of our approximations do

not hold when q ∼ 1. It would be interesting to develop a formalism that is able to treat the

case of equal mass ratios,15 where ionization can be efficient enough to completely evaporate the

cloud before the merger.

Transient oscillations—Our analysis relied on replacing the dynamics of the ionization process

with its “steady state” behavior (3.28). However, as we described in Section 3.1, there is interest-

ing transient behavior that occurs when a bound state just begins to resonate with a continuum

band. How are these transient oscillations modified when we include the cloud’s backreaction on

the orbit? Do these oscillations also affect the orbital dynamics, and can we observe them in the

15For a recent attempt to describe this regime see [50].
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resulting gravitational wave signal? These are interesting questions for the future that require a

different formalism to answer.

Relativistic corrections—Our treatment was non-relativistic, both in the derivation of the mass

accretion and ionization, and in the orbital evolution. Hence, our results do not apply in the final

phase of the inspiral—closer to the merger—when the velocity approaches the speed of light and

the post-Newtonian expansion breaks down. This period of the inspiral is notoriously difficult to

model even for vacuum systems, especially for large mass ratios. However, close to the merger,

we expect the effects of the cloud to fade in comparison to the increasingly strong nonlinearities

of the vacuum evolution (see Figures 7 and 13). The region where resonances, ionization and

accretion are most relevant is thus within the applicability of the non-relativistic approximation.

6 Conclusions

Gravitational waves provide an interesting new window into the weak-coupling frontier of particle

physics, giving us access to physics that is invisible to traditional collider experiments [31]. Such

weakly-coupled sectors arise in the string landscape as ultralight axions [6, 51–53] and are also

interesting dark matter candidates [47]. In this paper, we have studied the dynamical effects

of clouds of ultralight scalars around black holes when they are part of binary systems. We

have calculated two novel types of cloud-binary interactions: the ionization of the cloud due to

the gravitational perturbation from the binary companion and the accretion of mass onto the

secondary object, in the case it is a black hole.

When unbound states are excited by the gravitational perturbation due to the companion, the

cloud loses mass to outgoing scalar waves. This ionization induces a backreaction on the orbit

of the binary, which loses energy and angular momentum to the scalar field. These losses are

notable for two reasons: (1) they can significantly exceed the energy loss due to GW emission,

thus dominating the dynamics of the system, and (2) they contain sharp features (see Figure 7),

which carry detailed information about the microscopic structure of the cloud.

During the inspiral, the companion will move inside the scalar cloud. If the companion is

a black hole, then its event horizon will absorb parts of the cloud. Due to the high densities

reachable by superradiantly-generated clouds, the mass of the secondary object can significantly

increase during the inspiral, which impacts the dynamics of the system. The momentum accreted

by the object is also non-negligible.

Both ionization and accretion affect the orbital dynamics of the binary. We studied this

backreaction numerically, finding that the deviation from the expectations for a vacuum system

can be rather dramatic. The inspiral happens much faster than in the absence of the cloud,

and both the mass of the companion and of the cloud evolve significantly in time. Even with

conservative choices of parameters, the frequency evolution is quantitatively and qualitatively

modified, especially due to the discontinuities in the ionization power producing “kinks” in the

frequency evolution of the gravitational waves (see Figure 13). These features are a new and

distinctive signature of gravitational atoms in black hole binaries.

Our analysis made a number of simplifying assumptions. First, we restricted ourselves to

extreme mass ratio inspirals on quasi-circular orbits in the equatorial plane. We expect that
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qualitatively new behavior appears for equal mass ratios, and that both inclination and eccen-

tricity can lead to a rich phenomenology in the presence of the cloud. These are both interesting

directions for future work. Similarly, we did not explore the interplay between bound state

resonances and both ionization and accretion, nor did we account for the interesting transient

phenomena that occur when the ionization process begins. A more complete analysis should take

both of these into account.

A combined treatment of the resonances studied in [16, 31], together with the ionization and

accretion discussed in this work, is required to achieve a complete understanding of the phe-

nomenology of gravitational atoms in binaries. This in turn will serve as a starting point to

devise suitable strategies to discover and characterize these systems with upcoming gravitational

wave detectors. Current data analysis techniques mostly rely on matched filtering, where wave-

form templates are compared to observations. Waveforms based on vacuum systems may thus

produce a very low signal-to-noise ratio when applied to our case, because of the drastically dif-

ferent evolution of the observables. In a template-based approach, dedicated searches are thus

needed to not miss inspirals involving gravitational atoms and to distinguish them from other

kinds of environmental effects, like dark matter overdensities [54–57]. We postpone a systematic

study of these phenomenological issues to future work.
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A Integrating out the Continuum

As explained in the main text, the dynamics of the gravitational atom in a binary, including both

bound and continuum states, can be captured by integrating out the continuum and incorpo-

rating its effects in terms of a set of induced couplings and energies for the bound states alone.

This process yields an effective Schrödinger equation for the bound states that describes the

behavior of the entire system. In this appendix, we justify the approximations we used to derive

these continuum-induced couplings. First, we explain how our approximation for the fractional

deoccupation rate (3.10) in the toy model arises from the large time asymptotics of the induced

energy. This derivation relies on ignoring the transitions between continuum states, so we then

justify this assumption. Next, we discuss the complications that arise in the more realistic case,

which includes many more bound and continuum states. We then describe an alternative, albeit

uncontrolled, derivation of (3.10) using stationary perturbation theory. Finally, we conclude with

a discussion of the effects a nonlinearly ramping frequency ϕ̇∗(t) has on our approximations.

A.1 Saddle Point Approximation

We are interested in the asymptotic behavior of the induced energy

Eb(t) =

∫ t

−∞
dt′Σb(t, t

′) =
1

2πi

∫ t

−∞
dt′
∫ ∞

0
dk |η(k)|2 e−i(ε(k)−εb)(t−t′)+i(ϕ∗(t)−ϕ∗(t′)) , (A.1)

where ε(k) = k2/(2µ). Without loss of generality, we can absorb the bound state energy into our

reference frequency, ϕ∗(t) = −εbt+ γt2/2, and assume that γ > 0. The bound state then begins

to “resonate” with the continuum for t & 0, and we would like to determine the asymptotic

behavior of this function before and after this time, |√γt| � 1, as a way of approximating its

behavior away from the complicated transient region around t = 0.

There are two representations of this function that will be useful. We can either first perform

the integral over t′ to find

Eb(t) =
1√
8πγ

∫ ∞
0

dε |η(ε)|2 exp

[
i(ε− γt)2

2γ
− 3πi

4

]
erfc

[
e
iπ
4 (ε− γt)√

2γ

]
, (A.2)

or we can define z =
√
γ(t− t′) and write

Eb(t) =
1

2πi
√
γ

∫ ∞
0

dz eiτz K(z) , (A.3)

where we introduced the dimensionless time τ ≡ √γt and the kernel

K(z) ≡ e− 1
2
iz2
∫ ∞

0
dε e−iεz/

√
γ |η(ε)|2 . (A.4)

The former has the benefit of making the “resonance” behavior much clearer, while the latter is

useful for understanding the large time |τ | � 1 asymptotics since it has the form of a standard

Laplace-like integral. In both representations, we have transformed the integral over momenta k

into an integral over the energy ε and defined |η(ε)|2 = dk(ε)/dε
∣∣η(k(ε))

∣∣2 = µ|η(k)|2/k. In the
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Figure 14: The real [blue] and imaginary [orange] parts of the modulating function I(ε̃, τ), for several

values of the dimensionless time τ . For large negative values of τ , the integrand of (A.5) is highly suppressed

for ε̃ ∈ [0,∞). For large positive times τ � 1, the integrand oscillates rapidly when ε̃ ∈ [0, 1], slowing

down when ε̃ ∼ 1, and is then again highly suppressed for ε̃� 1.

cases of interest, |η(ε)|2 approaches a constant as ε → 0 and decays algebraically as ε → ∞, so

that the “total coupling” of the bound state to the continuum
∫∞

0 dε |η(ε)|2 is finite.

To get a sense for the behavior of this function, it is useful to first rescale the integral in (A.2)

by taking ε→ √γ|τ |ε̃ ,

Eb(τ) =
|τ |√
2π

∫ ∞
0

dε̃
∣∣η(
√
γ|τ |ε̃)

∣∣2 I(ε̃, τ) , (A.5)

where we defined the kernel

I(ε̃, τ) ≡ 1

2
e
iτ2

2
(ε̃−sgn τ)2− 3πi

4 erfc
[
|τ |√

2
e
iπ
4 (ε̃− sgn τ)

]
. (A.6)

We plot this kernel for several values of τ in Figure 14. We see that, for τ → −∞, the integrand

of (A.5) is strongly suppressed throughout the entire integration region, and so both the real and

imaginary parts of the induced energy will be small. In the opposite limit, τ → +∞, the integrand

oscillates rapidly in the interval ε̃ ∈ (0, 1), so we expect only the end point ε̃ = 0 and the region

around ε̃ = 1 to contribute to the integral. For ε̃ ∈ (1,∞), the integrand no longer oscillates, but

instead decays algebraically. The integrand—and especially the real part in [blue]—has a very

heavy tail which the saddle point approximation is not able to fully capture. Instead, we will

need to use the Laplace-like form (A.3) to compute these additional contributions.

Keeping in mind that the saddle point approximation does not capture the full behavior of

the induced energy as τ →∞, we will apply it anyway. As stated before, there are two relevant

contributions—from the endpoint at ε̃ = 0 and from the “saddle point” at ε̃ = 1. From Figure 14,

we expect that the contribution at ε̃ = 0 produces an oscillatory ringing that is left over from
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when the bound state first hits the edge of the continuum, and how quickly these oscillations

decay depends on how the bound state couples to the lowest energy continuum modes, i.e. how

|η(ε)|2 scales as ε→ 0. In contrast, the saddle point at ε̃ = 1 gives a non-oscillatory decay which

only depends on the coupling between the bound state and the particular continuum state it is

“resonating with,” |η(ε = γt)|2. Assuming that |η(ε)|2 approaches a constant |η|2 as ε → 0, we

find that

Eb(t) ∼ −
iµ
∣∣η(k∗(t))

∣∣2
2k∗(t)

− |η|
2e

1
2
iγt2− iπ

4

2
√

2πγt

[
1 + erf

(
e
iπ
4
√
γt√

2

)]
,
√
γt→ +∞ , (A.7)

where we have switched back to parameterizing the system in terms of the momentum and

introduced k∗(t) =
√

2µγt, the momentum of the state at the saddle point.

To find the dominant behavior of Re Eb(t) as τ → ±∞, we can use (A.3) and repeatedly

integrate by parts in z to generate an expansion in powers of τ−1. However, the aforementioned

heavy tail can hinder this iterative process. Each integration by parts generates higher derivatives

of the kernel evaluated at z = 0, but these derivatives are not necessarily finite. From (A.4),

we see that ∂kzK(z)|z=0 contains a term proportional to
∫∞

0 dε εk|η(ε)|2, and since |η(ε)|2 decays

only algebraically, sufficiently high derivatives will diverge. This signals that K(z) has terms of

the form zk logn z, which produce asymptotic behavior of the form logn τ/τk+1, i.e. logarithmic

behavior that is not captured in the standard saddle point approximation.

For our purposes, we will only concentrate on the leading order |τ | → ∞ behavior. This is

governed by the total coupling K(0) =
∫∞

0 dε |η(ε)|2 =
∫∞

0 dk |η(k)|2, and direct integration yields

Eb(t) ∼
1

2πγt

[∫ ∞
0

dk |η(k)|2
]

+ · · · . (A.8)

As τ → −∞, this is the dominant contribution and gives an accurate approximation—as the effec-

tive energy gap between the bound and continuum states shrinks, the coupling to the continuum

induces a correction to the bound state’s energy. There is, however, no appreciable deoccupation

of the bound state until after the transition at τ = 0. As τ → +∞, the integral picks up an

additional saddle point and the induced energy is well approximated by

Eb(t) ∼ −
iµ
∣∣η(k∗(t))

∣∣2
2k∗(t)

− |η|
2e

1
2
iγt2− iπ

4

2
√

2πγt

[
1 + erf

(
e
iπ
4
√
γt√

2

)]
+

1

2πγt

[∫ ∞
0

dk |η(k)|2
]

+ · · · . (A.9)

Since we are mainly concerned with the imaginary part of this expression, we use the first term

in (A.9) throughout the main text.
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A.2 Unbound-Unbound Transitions

It will be helpful to address our assumption that we can ignore the transitions between the

continuum states in our analysis of the ionization process. We will do so in the toy model studied

above and in Section 3.1. Numerical experiments show that the bound state’s dynamics are

relatively unaffected if we include these transitions and is still well-described by the first term

in (A.9). We can understand better why they may be ignored, and justify our assumption, by

including these couplings in the toy Hamiltonian (3.1) and arguing that they should, at least at

weak coupling, provide a subleading correction to the effective Schrödinger equation (3.8).

A nontrivial coupling between continuum states η(k, k′) = 〈k|H|k′〉, for k 6= k′, changes the

solution (3.5) for the continuum amplitudes to

ck(t) =− i
∫ t

−∞
dt′ η(k) e−iϕ∗(t

′)+i(ε(k)−εb)t′cb(t
′)

+
1

2πi

∫ t

−∞
dt′
∫ ∞

0
dk′ η(k, k′) ei(ε(k)−ε(k′))t′ck′(t

′) .

(A.10)

Importantly, both the bound-to-unbound couplings η(k) and unbound-to-unbound couplings

η(k, k′; t) are O(qα) and we work exclusively in the qα � 1 regime. By plugging this solu-

tion back into itself, we can generate a solution purely in terms of the bound state amplitude,

with the first correction to the η(k, k′)→ 0 limit of (A.10) being

ck(t) ⊃ −
1

2π

∫ t

−∞
dt1

∫ t1

−∞
dt2

∫ ∞
0

dk′ η(k, k′)η(k′) ei(ε(k)−ε(k′))t1−iϕ∗(t2)+i(ε(k′)−εb)t2cb(t2) , (A.11)

which is O(q2α2), while other corrections are higher order.

In the bound state Schrödinger equation (3.8), this correction contributes a term involving the

chain of matrix elements 〈b|H|k〉〈k|H|k′〉〈k′|H|b〉, while the leading-order solution only involves

the chain of elements 〈b|H|k〉〈k|H|b〉. Clearly, the leading-order contribution only accounts for the

system transitioning into the continuum and then back to the bound state, while higher-order

corrections involve the system going into the continuum and then bouncing around between

different continuum states before returning to the bound state. Each of these transitions is thus

penalized by an additional factor of qα and so we expect that they provide a subleading effect,

especially at weak coupling qα� 1.

We might worry that, over long times, a substantial enough continuum population can be

built up so that the second term in (A.10) can overcome its O
(
q2α2

)
-suppression and compete

with the first. However, this sort of coherent effect is extremely unlikely in light of the oscillatory

factors in (A.10), which serve to randomize the “direction” of this perturbation and suppress its

effects on long time scales. These arguments can be trivially extended to the more realistic case

discussed in the next section, so we will ignore continuum-to-continuum transitions throughout

our analysis and focus only on how the bound states interact with the continuum.
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A.3 Extension to the Realistic Case

The main complication in going to the more realistic case is that there are many more bound and

continuum states, and the continuum now mediates transitions between different bound states.

These effects appear in the form of off-diagonal induced couplings:

Eba(t) = −i
∑
K

η
∗(∆mb)

Kb (t)η
(∆ma)

Ka (t)

∫ t

−∞
dt′ ei∆mbϕ∗(t)−i∆maϕ∗(t

′)+i(εb−εK)t+i(εK−εa)t′ , (A.12)

where we have introduced the shorthand ∆ma ≡ m−ma and ∆mb ≡ m−mb. We would like to

understand the general behavior of these off-diagonal terms and argue that they can be ignored

whenever the resonance condition between the states |a〉 and |b〉 is not satisfied. On resonance,

they provide a small correction compared to the direct coupling between these states and so they

can be neglected.

Assuming that the frequency ϕ̇∗(t) is linear, we can again define the variable z ≡ t − t′ and

write (A.12) as

Eba(t) = ei(εb−εa)t−i(mb−ma)ϕ∗(t)

×
[
−i
∑
K

∫ ∞
0

dz e−
1
2
i∆maγz2+i(∆maϕ̇∗(t)−(εK−εa))zη

∗(∆mb)

Kb (t)η
(∆ma)

Ka (t)

]
.

(A.13)

The term in braces is of a similar form to the induced energy (A.3), whose behavior we have

already analyzed in (A.9). It contains both oscillating and smoothly decaying terms. Ignoring

these oscillating terms for now, we see that the induced couplings oscillate rapidly with phase

exp
[
i(εb − εa)t− i(mb −ma)ϕ∗(t)

]
. As we argue in Section 3.2, the direct couplings between |a〉

and |b〉 also oscillate with this phase, and if these oscillations are too rapid the contribution to

the bound state solution will quickly average out. Of course, this oscillation slows down when the

resonance condition (mb −ma)ϕ̇∗(t) = (εb − εa) is satisfied, but again these induced couplings,

which are O(q2α2), must compete with the O(qα) direct couplings ηba, and so even then they

have a small effect on the behavior of the resonance for qα� 1.

We might worry about the oscillations that arise in (A.9) as transients when the state |a〉
begins to resonate with the continuum might spoil this story, and that these induced couplings

might become relevant. Fortunately, this is not the case. These transient oscillations “start”

when the companion can excite |a〉 into the continuum, ∆maϕ̇∗(t) = −εa, and if they are present

they modify the overall exponential in (A.13) to

exp
[
−i(mb −ma)ϕ∗(t) + i(εb − εa)t+ i(∆maϕ̇∗(t) + εa)

2/(2∆maγ)
]
. (A.14)

This term can contribute appreciably when the argument of the exponential slows down, that is

when ∆mbϕ̇∗(t) = −εb. The two conditions ∆miϕ̇∗(t) = −εi, for i = a, b, can only simultaneously

satisfied when (mb −ma)ϕ̇∗(t) = εb − εa, i.e. exactly on resonance. So, the transient oscillatory

terms in (A.9) may “smear out” the resonance slightly, but again since they are O(q2α2) and

must compete with the O(qα) direct couplings ηba(t), we do not expect that they provide a

qualitative change in behavior in the dynamics, and away from resonance we can ignore the

induced couplings entirely.
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With this out of the way, we can focus entirely on the diagonal terms, Eb(t) ≡ Ebb(t), which

are much simpler:

Eb(t) = −i
∫ t

−∞
dt′
∑
K

∣∣η(∆mb)

Kb (t)
∣∣2ei∆mb(ϕ∗(t)−ϕ∗(t′))−i(εK−εb)(t−t′)

=
1

2πi

∑
`,m

∫ t

−∞
dt′
∫ ∞

0
dk
∣∣η(∆mb)

Kb (t)
∣∣2ei∆mb(ϕ∗(t)−ϕ∗(t′))−i(ε(k)−εb)(t−t′) . (A.15)

This is nothing more than a sum over integrals of the form we have already analyzed, and we

can use the same techniques as before to attack this. In particular, the integral over t′ yields

Eb(t) =
1

2π

∑
`,m

√
π

2∆mbγ

∫ ∞
0

dk
∣∣η(∆mb)

Kb (t)
∣∣2 exp

(
i(∆mbϕ̇∗(t)− (ε(k)− εb))2

2∆mbγ
− 3πi

4

)

×
[

sgn ∆mbγ + erf

(
e
iπ
4 (∆mbϕ̇∗(t)− (ε(k)− εb))√

2∆mbγ

)]
. (A.16)

As discussed previously, we can think of the imaginary part as getting a saddle point contribution

at k
(g)
∗ (t) =

√
2µ(gϕ̇∗(t) + εb), which again only contributes if k

(g)
∗ (t)2 > 0. For this to ever happen

(since εb < 0), we must have that ∆mbγ = (m−mb)γ > 0. Thus, ignoring the oscillatory terms

and other transients, we have

Eb(t) ≈ −
∑
`,g

[
iµ
∣∣η(g)

K∗b
(t)
∣∣2

2k
(g)
∗ (t)

Θ
(
k

(g)
∗ (t)2

)]
, (A.17)

with K∗ = {k(g)
∗ (t), `,m = g + mb} and k

(g)
∗ (t) =

√
2µ(gϕ̇∗(t) + εb), where the sum ranges from

` = 0, 1, . . . ,∞ and over all g such that |g + mb| ≤ `. This is the extension of the first term in

(A.9) to include other sectors of continuum states, with different angular momenta, connected to

the bound state by perturbations that oscillate at different frequencies.

A.4 Stationary Perturbation Theory

We can get a better sense for the origin of the first term in (A.9) by deriving it via stationary

perturbation theory. We start with the toy Hamiltonian (3.1), with ϕ∗(t) = Ω0t, so that

H = εb |b〉〈b|+
1

2π

∫ ∞
0

dk
[
η(k)e−iΩ0t|k〉〈b|+ η∗(k)eiΩ0t|b〉〈k|+ ε(k)|k〉〈k|

]
. (A.18)

The transition rate from the bound to the unbound states is then computed with Fermi’s Golden

Rule, which states that the transition probability per unit time per unit phase space volume is

dΓ = 2π|η(k)|2 δ
(
ε(k)− εb − Ω0

) dk

2π
. (A.19)

Using ε(k) = k2/(2µ), the fractional change in the bound state population is

d log |cb(t)|2
dt

= −
∫

dΓ = −µ|η(k∗)|2
k∗

Θ(k2
∗) , (A.20)

where k∗ =
√

2µ (Ω0 + εb) and the Θ function ensures that this is only non-zero when k∗ is real.

This is the same as (3.10), with γ = 0, and is equivalent to the quantum mechanical derivation

of the cross section in the photoelectric effect.
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We see that the first term in (A.9) has a simple interpretation—it represents the “steady

state” deoccupation of the bound state into the continuum that is captured by assuming the

perturbation’s frequency does not change in time. We can extend this to the case of interest by

adiabatically increasing the frequency ϕ̇∗(t) = Ω0 + γt in (A.20). It is not clear from Fermi’s

Golden Rule how slowly this frequency change needs to be in order for (A.20) to be valid, but

we see from (A.9) that this stationary picture accurately captures the most important aspect of

the true dynamics we use throughout the main text.

In the realistic case, the companion connects the states |b〉 and |K〉, each with definite az-

imuthal angular momentum mb and m, respectively, with a perturbation that oscillates with

definite frequency, ηKb ∝ exp[−i(m −mb)ϕ∗(t)]. It is trivial to extend the above discussion to

the case where there are many such decay channels for the bound state, in which case we sum

(A.20) over all of them. Once we adiabatically restore the frequency’s time dependence, we find

that this stationary perturbation theory approach recovers (A.17).

A.5 Nonlinear Chirp Frequency

Throughout this work, we have assumed that we can linearize the frequency and write the phase

as ϕ∗(t) = −εbt+ γt2/2. It will be useful to justify this approximation.

Let us return to (A.1) and try to understand the behavior of the t′ integral,∫ t

−∞
dt′ ei(ε−εb)t

′−iϕ∗(t′) , (A.21)

for a phase ϕ∗(t) with general time dependence. This integral has essentially two contributions.

One comes from the end point, which we can isolate through integration by parts,∫ t

−∞
dt′ ei(ε−εb)t

′−iϕ∗(t′) ⊃ iei(ε−εb)t−iϕ∗(t)

ϕ̇∗(t)− (ε− εb)
+ · · · , (A.22)

while another can arise if ϕ̇(t∗) = ε− εb for some t′ = t∗ in the integration interval. When such

a time exists, the integral receives an additional contribution∫ t

−∞
dt′ ei(ε−εb)t

′−iϕ∗(t′) ⊃
√

2π

ϕ̈∗(t∗)
ei(ε−εb)t∗−iϕ∗(t∗)−

iπ
4 , (A.23)

which we should divide in half when t = t∗. We obtain a rough approximation for the t′ integral,

∫ t

−∞
dt′ ei(ε−εb)t

′−iϕ∗(t′) ≈



iei(ε−εb)t−iϕ∗(t)

ϕ̇∗(t)− (ε− εb)
, t < t∗√

π

2ϕ̈∗(t∗)
ei(ε−εb)t∗−iϕ∗(t∗)−

iπ
4 , t = t∗

iei(ε−εb)t−iϕ∗(t)

ϕ̇∗(t)− (ε− εb)
+

√
2π

ϕ̈∗(t∗)
ei(ε−εb)t∗−iϕ∗(t∗)−

iπ
4 , t > t∗

, (A.24)

by adding these different contributions.
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If we use ϕ∗(t) = −εbt+ γt2/2 and consider the exact answer, we find that

√
π

2γ
e
iε2

2γ
− iπ

4 erfc

[
e
iπ
4 (ε− γt)√

2γ

]
≈



ie−
1
2
iγt2+iεt

γt
, t� t∗√

π

2γ
e
iε2

2γ
− iπ

4 , t = t∗

ie−
1
2
iγt2+iεt

γt
+

√
2π

γ
e
iε2

2γ
− iπ

4 , t� t∗

, (A.25)

where t∗ = ε(k)/γ. We see that (A.24) accurately captures the large |t| asymptotics of the

integral, and that the complicated error function is merely present to interpolate between these

three regimes. Furthermore, the relevant chirp rate for the induced energy (A.1) is just the

instantaneous chirp rate ϕ̈∗(t) which we can, to excellent approximation, replace with the chirp

rate defined in (2.20) associated to the frequency Ω0 = −εb of the energy gap between the bound

state and the continuum.

We see then that the linearization of ϕ̇∗(t) is not such a dramatic approximation. The inte-

grand in (A.2) will still have a similar form as to the one considered there, and we would still be

able to do a saddle point computation isolating the large |τ | asymptotics and get effectively the

same results we have found in the main text, up to corrections in the (small) nonlinearities we

have ignored.
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B Markov Approximation

In the main text, we studied how the cloud is ionized by first constructing an effective Schrödinger

equation (3.21) for the bound states, fully integrating out the dynamics of the continuum states

and incorporating their effects in the induced couplings (3.22). This was valid in the so-called

“Markov approximation,” which we justify in this appendix.

Let us review how the Markov approximation comes about for a single bound state interacting

with the continuum. We argued in Section 3.2 that we can ignore the continuum-induced inter-

actions between the bound states off-resonance, and so this truncation to a single bound state

still accurately captures the true dynamics of the system, especially when the orbital frequency

is too high for any resonance to occur. By solving (3.17) for the continuum state amplitudes and

plugging the result into (3.16), we arrive at a single equation for the bound state amplitude

i
dcb
dt

=

∫ t

−∞
dt′Σb(t, t

′)cb(t
′) , (B.1)

in terms of the self-energy

Σb(t, t
′) ≡ −i

∑
K

ηbK(t)ηKb(t
′)e−i(εK−εb)(t−t

′) . (B.2)

Assuming that the couplings between the continuum states vanish and ignoring the transitions

into other bound states, this equation of motion is exact. We then implement the Markov

approximation by first integrating by parts,

i
dcb
dt

= Eb(t)cb(t)−
∫ t

−∞
dt1 Eb(t, t1)

dcb(t1)

dt1
, (B.3)

and dropping the second term, which we will argue can be neglected. Here, we have defined

Eb(t, t′) =

∫ t′

−∞
dt1 Σb(t, t1) , (B.4)

and the induced energy Eb(t) ≡ Eb(t, t).
Our goal now is to estimate the effect of the second term in (B.3). To do this, we first strip

off the first-order behavior by defining c̃b(t) = eiϕb(t)cb(t) , where ϕb(t) =
∫ t
−∞dt1 Eb(t) is the

time-dependent phase induced at first order by the continuum. Plugging this into (B.3) yields

i
dc̃b(t)

dt
= i

∫ t

−∞
dt1 e

iϕb(t)−iϕb(t1)
[
Eb(t, t1)Eb(t1, t1)c̃b(t1) + iEb(t, t1) ˙̃cb(t1)

]
. (B.5)

Defining the second-order induced energy

E (2)

b (t, t′) = i

∫ t′

−∞
dt1 e

iϕb(t)−iϕb(t1)Eb(t, t1)Eb(t1, t1) , (B.6)

with E (2)

b (t) ≡ E (2)

b (t, t), integrating the first term in (B.5) by parts, and dropping terms that
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Figure 15: The dimensionless ratio
∣∣γ−1/2 Im Eb(R∗)

∣∣ as a function of the orbital separation R∗, using

our approximation (3.28) as an estimate, for an inspiral with q = 10−3 and α = 0.2, where γ is the

instantaneous chirp rate γ = ϕ̈∗(t), defined in (2.20) with Ω2
0R

3
∗ = (1 + q)M .

contain factors of dc̃b/dt, (B.5) reduces to

i
dc̃b
dt

= E (2)

b (t)c̃b(t) , (B.7)

As long as we can argue that this contribution is small compared to the first-order motion, this

step of dropping terms containing dc̃b/dt is consistent. In principle, we could also iterate this

process to find ever more accurate approximations to the true dynamics.

It will be helpful to write the second-order induced energy as

E (2)

b (t) = i

∫ t

−∞
dt1 e

− Im[ϕb(t)−ϕb(t1)]+iRe[ϕb(t)−ϕb(t1)] Eb(t, t1)Eb(t1, t1) . (B.8)

Of particular importance is the oscillating phase factor, which depends on the real part of the

induced phase difference Re [ϕb(t)− ϕb(t1)]. Contributions to this integral will cancel unless t1
is close to t. Since the relevant time scale of the transition is

γ−1/2 =

√
5

96

α

µ

q−
1
2

(1 + q)
3
4

(
µR∗
α

)11
4

, (B.9)

we can think of E (2)

b (t) as being on the same order as γ−1/2Eb(t, t)2. These second-order corrections

are thus small as long as
∣∣γ−1/2Eb(t)2

∣∣� |Eb(t)|. Since there is typically not a hierarchy between

the real and imaginary parts of Eb(t), we can instead write this condition as
∣∣γ−1/2 Im Eb(t)

∣∣� 1.

We plot this quantity in Figure 15 for the parameter values we consider in the main text and we

see that it is comfortably small, so the Markov approximation is justified.
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C Ionization Power

In this appendix, we justify our approximation of the ionization power Pion ≡ dEion/dt in the

toy model of Section 3.1. The extension to the realistic case is conceptually trivial.

The total ionized energy is defined as

Eion(t) =
1

2π

Mc

µ

∫ ∞
0

dk (ε(k)− εb)|ck(t)|2 , (C.1)

where Mc/µ represents the total occupation number of the cloud. We will set this to one and

restore it at the end of the calculation. By taking a single time derivative we can express the

ionization power as,

Pion =
1

2π

∫ ∞
0

dk (ε(k)− εb) [ċ∗k(t)ck(t) + c∗k(t)ċk(t)] . (C.2)

and inserting both the Schrödinger equation (3.4) and the solution (3.5), we can find an equation

of motion for the ionized energy purely in terms of the bound state

Pion =
1

2π

∫ ∞
0

dk

∫ t

−∞
dt′
[
(ε(k)− εb)|η(k)|2ei(ϕ∗(t)−ϕ∗(t′))−i(ε(k)−εb)(t−t′)c∗b(t)cb(t

′) + c.c.
]
. (C.3)

This has a very similar flavor to the effective bound state equation of motion (3.6), and we can

implement the Markov approximation by integrating by parts and dropping the remainder,

Pion = 2 Re

[
1

2π

∫ ∞
0

dk

∫ t

−∞
dt′ (ε(k)− εb) |η(k)|2ei(ϕ∗(t)−ϕ∗(t′))−i(ε(k)−εb)(t−t′)

]
|cb(t)|2 . (C.4)

This equation of motion is very similar to (3.10), though now the term analogous to the induced

energy Eb(t) is weighted with the energy difference ε(k)− εb.
This expression for the ionization power can be analyzed with the same techniques as used in

Appendix A—ignoring the transient region around ϕ̇∗(t) + εb = 0 and the subleading oscillatory

terms, we can approximate (C.4) with its steady-state growth

Pion ≈
Mc

µ

[
µϕ̇∗(t)|η(k∗(t))|2

k∗(t)

]
|cb(t)|2 Θ(k∗(t)) , (C.5)

where we have replaced ε(k∗(t))− εb = ϕ̇∗(t).

One of the main benefits of the derivation of the deoccupation rate using stationary pertur-

bation theory, presented in Section A.4, is that it makes inferring rates like the ionization power

trivial. For instance, the amount of energy it takes to ionize the bound state |b〉 into the con-

tinuum state |k; `m〉 is ε(k)− εb. However, this only can happen if the perturbation’s frequency

matches this difference, ε(k)− εb = gϕ̇∗ with g an integer. The rate at which energy is ionized is

then determined by the rate at which the bound state is ionized into the continuum state (A.20),

weighted by this energy difference and the total occupation of the bound state |cb(t)|2, and then

summed over all different decay channels. This is the content of the final expression (3.29).
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D Zero Mode

As we explained in the main text, the dramatic “discontinuous” behavior of the ionization

power Pion is due to the fact that the coupling function |η(k)|2 goes to zero linearly in k as

k → 0. We mentioned there that this is because the long-range Coulombic potential keeps the

zero mode relatively well-localized about the origin, as illustrated in Figure 16, such that the

couplings in energy |η(ε)|2 ≡ dk(ε)/dε |η(k(ε))|2 are finite as ε→ 0. In this appendix, we discuss

the zero mode of the hydrogen atom, its normalization, and the role the long-ranged 1/r potential

plays in its radial behavior.

In order to determine the overall normalization of the zero mode, we begin by writing the

normalized continuum radial wavefunctions (2.12) as

Rk;`(r) =
2ki`e

πµα
2k

∣∣Γ(`+ 1 + iµα
k

)∣∣
(−2ikr)

1
2 Γ
(
`+ 1 + iµα

k

) e−ikr
∫ ∞

0
dζ e−ζ+

iµα
k

log ζζ−
1
2J2`+1

(
2
√
−2ikrζ

)
, (D.1)

where we have used a standard integral representation of the confluent hypergeometric function

in terms of the Bessel function of the first kind Jν(z). As k → 0, the integral is localized around

its saddle point ζ = iµα/k and asymptotes to

Rk;`(r) ∼
√

4πk

r
J2`+1

(
2
√

2µαr
)
, k → 0 . (D.2)

It is then clear that any matrix element between a continuum state and a bound state will also

scale as
√
k for k → 0, so that |η(k)|2/k approaches a finite, non-zero limit as k → 0.

We can understand this scaling in a less opaque way by considering the Schrödinger equation

with a potential that asymptotes to a generic power law, V (r) ∼ 1/r∆ as r → ∞, with ∆ > 0.

0 10 20

0

0.5

1

r/rc

|R
(r
)|2

R21(r)

R41(r)

R61(r)

R0;1(r)

Figure 16: The radial zero mode density limk→0 |k−1/2Rk;1(r)|2 compared to several bound state densities,

all with orbital angular momentum ` = 1. Here, rc = (µα)−1 is the typical radius of the cloud, and we

have normalized each density so that it has unit maximum. Ignoring the overall normalization, the zero

mode wavefunction can also be thought of as the limit of the bound state wavefunctions as n→∞.
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Defining ρ = 1/r, the radial Schrödinger equation for a state with energy ε(k) = k2/2µ can then

be written as (
− d2

dρ2
+
`(`+ 1)

ρ2
− 2αµ2

ρ4

ρ∆

µ∆
− k2

ρ4

)
Rk;`(ρ) = 0 , (D.3)

where we have introduced additional factors of µ to keep α dimensionless. We will only be

concerned with the behavior of the solutions as ρ → 0 or, analogously, as r → ∞, so we have

replaced the potential with its dominant long-distance behavior. If ∆ > 2, then the potential

term is subleading to the centrifugal `(`+1)/r2 term and the asymptotics of Rk;`(ρ) are identical

to that of a free particle.

For long-ranged potentials, 0 < ∆ < 2, we can determine the overall normalization of the

continuum wavefunctions as k → 0 via a matching procedure. The basic idea is that the potential

singularity 2αµ2−∆/ρ4−∆ in (D.3) dominates over the energy singularity k2/ρ4 in the region

ρ & µ
[
(k/µ)2/α

]1/∆
. When ρ is smaller than this, the energy singularity dominates, so we can

construct asymptotic approximations to Rk;`(ρ) that are valid in these two different regions.

When k is very small, the region ρ & µ
[
(k/µ)2/α

]1/∆
comprises most of space, and so this is

the relevant solution in the k → 0 limit. However, the overall normalization of the continuum

wavefunctions is set for ρ . µ
[
(k/µ)2/α

]1/∆
, and so we must deduce the overall normalization

in the k → 0 limit by matching. Our goal then is to first determine the asymptotic behavior of

Rk;`(ρ) around each of these singularities and then match them.

Depending on the value of ∆, the asymptotic behavior of Rk;`(ρ) in the region near the energy

singularity can be relatively complicated,

Rk;`(ρ) ∼ Aρ sin

(
k

ρ
+

n∆≤1∑
n=1

(−1
2α)n(2n)!

(2n− 1)(n!)2

(k/µ)1−2n

n∆− 1

ρn∆−1

µn∆−1
+ δ

)
, ρ . µ

[
(k/µ)2

α

]1/∆

, (D.4)

where the sum is over all n such that n∆ ≤ 1, and a n∆ = 1 term should be understood to give a

logarithmic correction. Here, A and δ are the overall normalization and phase, respectively. For

example, the asymptotic behavior of wavefunctions for the Coulombic potential, with ∆ = 1, is

Rk;`(ρ) ∼ Aρ sin

(
k

ρ
+
µα

k
log

k

ρ
+ δ

)
, (D.5)

and demanding these wavefunctions are appropriately normalized, 〈k; `m|k′; `m〉 = 2πδ(k − k′),
sets the overall amplitude in this region to A = 2. In contrast, the asymptotic behavior of Rk;`(ρ)

in the region where the potential singularity dominates is relatively simple,

Rk;`(r) ∼ A′ρ1−∆/4 sin

(
2
√

2α(ρ/µ)∆−2

2−∆
+ δ′

)
, ρ & µ

[
(k/µ)2

α

]1/∆

, (D.6)

where again A′ and δ′ are an undetermined amplitude and phase.

In the limit k → 0, the region of (D.4)’s validity, ρ . µ
[
(k/µ)2/α

]1/∆
, shrinks to a point,

and the continuum wavefunctions are well approximated by (D.6) as ρ → 0. However, we do

not yet know its amplitude A′ or, specifically, the k-scaling of its amplitude. We can determine
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this scaling by matching the amplitudes of (D.4) and (D.6) in the region where both expansions

apply, ρ ∼ µ
[
(k/µ)2/α

]1/∆
. We find that the continuum wavefunctions then behave as

Rk;`(r) ∝
√
k

r
1
4

(4−∆)
sin

(
2
√

2α(µr)2−∆

2−∆
+ δ̃

)
,

k → 0
r →∞ , (D.7)

for arbitrary 0 < ∆ < 2, with δ̃ an undetermined phase. As long as the potential is sufficiently

long-ranged, ∆ < 2, the continuum wavefunctions therefore asymptote to a fixed radial function

multiplied by an overall factor of
√
k as k → 0. This implies that, for ∆ < 2, the potential is

sufficiently long-ranged enough to localize the zero mode. We can compare this general result

with the asymptotic expansion of (D.2), in which case ∆ = 1 and

Rk;`(r) ∼
2
√
k

(2µα)1/4r3/4
sin
(

2
√

2µαr − π`− π

4

)
,

k → 0
r →∞ , (D.8)

in agreement with our predicted scaling.

This scaling can be contrasted with that of a free particle. In this case, the effective potential

due to angular momentum `(` + 1)/ρ2 dominates the ρ → 0 limit, and, for k → 0, the radial

wavefunction behaves as

Rk;`(ρ) ∼ C1ρ
`+1 + C2ρ

−` , k → 0
ρ→ 0

. (D.9)

The appropriate k 6= 0 continuum wavefunctions are, instead, just the spherical Bessel functions,

Rk;`(ρ) = 2kj`(k/ρ) , (D.10)

which obey the asymptotic scaling

Rk;`(ρ) ∼ 2``! k(
`+ 1

2

)
(2`)!

(
k

ρ

)`
, k → 0 . (D.11)

Unlike for potentials with 0 < ∆ < 2, these continuum wavefunctions do not have a normalization

that scales as
√
k as k → 0, and indeed are not localized near the origin. We see that ∆ = 2

represents a qualitative dividing line in the behavior of the continuum modes in the k → 0 limit.

The matrix elements between a bound state and the zero mode of a potential with ∆ ≥ 2 obeys

|η(k)|2/k → 0, while this approaches a finite limit for potentials with 0 < ∆ < 2.
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E More on Scalars around Kerr

The aim of this appendix is to present self-contained overview of the exact solutions for the

definite frequency modes of a massive scalar field around a Kerr black hole.

E.1 Definite Frequency Solutions

The Kerr geometry has two relevant isometries: time translations and azimuthal rotations. This

suggests that we choose an ansatz for the scalar field profile, with a definite frequency, ω, and

azimuthal angular momentum, m ∈ Z:

Φ(t, r) = e−iωt+imφR(r)S(θ) . (E.1)

It is a special property of the Kerr background that this ansatz separates the Klein–Gordon

equation (2.1) into the angular spheroidal equation(
− 1

sin θ

d

dθ

(
sin θ

d

dθ

)
− k2a2 cos2 θ +

m2

sin2 θ

)
S(θ) = λS(θ) , (E.2)

and the radial equation

0 =
1

∆R

d

dr

(
∆

dR

dr

)
+ k2 +

P 2
+

(r − r+)2
+

P 2
−

(r − r−)2

− A+

(r+ − r−)(r − r+)
+

A−
(r+ − r−)(r − r−)

,

(E.3)

where we have introduced k2 = ω2 − µ2, the eigenvalue of the spheroidal equation λ, and the

parameter combinations

P± =
ma− 2Mωr±

r+ − r−
,

A± = P 2
+ + P 2

− + γ2
± + λ ,

(E.4)

with γ2
± = µ2r2

± − ω2(4M2 + 2Mr± + r2
±).

Requiring the solution to be regular at θ = 0 and π, forces the spheroidal eigenvalue λ = λ`m(c)

to take a set of discrete values, depending on the spheroidicity parameter c = ka and labeled

by ` = 0, 1, . . . and |m| ≤ `. The corresponding angular functions S(θ) = S`m(c; cos θ) are the

“spheroidal harmonics,” which reduce to the ordinary spherical harmonics for c = 0.

The radial equation (E.3) has three singularities: one at the outer horizon r = r+ controlled by

the parameter P 2
+, one at the inner horizon r = r− controlled by P 2

−, and an irregular singularity

at r =∞ controlled by k2, which can be understood as the confluence of two regular singularities.

This uniquely identifies the radial equation as a form of the “confluent Heun equation,” and we

expect the radial solutions R(r) to be proportional to the confluent Heun function, which we will

define now.16

16It is useful to compare this to the Schrödinger equation of the hydrogen atom, which has both a regular

singularity at r = 0 and an irregular singularity at r = ∞ that can also be understood as the confluence of two

regular singularities. Any linear differential equation with three regular singular points can be mapped to the

hypergeometric equation with singularities at z = 0, 1 and ∞. The solution to this equation that is regular about
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Our goal is to find solutions on r ∈ [r+,∞) that are purely ingoing at the outer horizon

r = r+, since no physical mode can escape from the black hole. Near the outer horizon, the

singularity forces solutions to behave as R(r) ∼ (r−r+)±iP+, where the plus sign in the exponent

corresponds to purely ingoing modes. Similarly, the singularity at r = ∞ forces the modes to

behave as R(r) ∼ e±ikr. It will be convenient to define z ≡ −(r − r+)/(r+ − r−) and peel these

asymptotic behaviors from the solution,

R(r) = e−ik(r−r+)ziP+(z − 1)−iP−H(z) . (E.5)

The function H(z) then satisfies the confluent Heun equation [58, 59]:

d2H

dz2
+

(
α+

1 + β

z
+

1 + γ

z − 1

)
dH

dz
+

(
µ

z
+

ν

z − 1

)
H = 0 , (E.6)

where

µ =
1

2
(α− β − γ + αβ − βγ)− η ,

ν =
1

2
(α+ β + γ + αγ + βγ) + δ + η ,

(E.7)

with α = 2ik(r+ − r−) , β = 2iP+ , γ = −2iP− , δ = A+ −A− , and η = −A+ . Equation (E.6) has

a solution that is regular at the origin, H(0) = 1, called the confluent Heun function, H(z) =

HeunC(α, β, γ, δ, η; z), and one which behaves as z−2iP− as z → 0. Since we impose purely ingoing

boundary conditions, we discard the latter and find that

Φ(t, r) = Rk;`m(r)S`m(ka; cos θ)e−iωt+imφ

= Ce−iωt−ik(r−r+)+imφziP+(z − 1)−iP− HeunC(α, β, γ, δ, η; z)S`m(ka; cos θ) ,
(E.8)

where C is a normalization constant.

Using the tortoise coordinates,

r̃ =
2M

r+ − r−

[
r+ log

(
r − r+
r+ − r−

)
− r− log

(
r − r−
r+ − r−

)]
+ r ,

φ̃ =
a

r+ − r−

[
log

(
r − r+
r+ − r−

)
− log

(
r − r+
r+ − r−

)]
,

(E.9)

the solution can be written as

Φ(t, r) = Ce−ik(r−r+)−iω(t+r̃−r)+im(φ+φ̃) HeunC(α, β, γ, δ, η; z)S`m(ka; cos θ) . (E.10)

Since the combination r̃− r increases as we move away from the outer horizon, this mode indeed

represents a purely ingoing wave.

z = 0 is the familiar hypergeometric function 2F1(a, b; c; z). Upon the confluence of the singularities at z = 1 and

z = ∞, this turns into the confluent hypergeometric equation, and the regular solution 2F1(a, b; c; z) turns into

the confluent hypergeometric function 1F1(a; c; z). An analogous story applies to the radial equation in the Kerr

background, except it has an additional regular singularity at the inner horizon r = r−. Any linear differential

equation with four regular singular points can be mapped to the Heun equation, and upon a confluence of two

singularities this reduced to the confluent Heun equation.
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There are two classes of solutions that we use throughout the main text. The first are the

quasi-bound states, which are purely ingoing at the outer horizon and exponentially decaying as

r → ∞. These two boundary conditions can only be satisfied for a discrete set of frequencies

ωn`m = En`m + iΓn`m, cf. (2.8), and so these mode only come in a discrete set. The second

are the unbound continuum states, which are purely ingoing at the outer horizon, but oscillate

as r → ∞. Since we impose only one boundary condition, these unbound modes comprise a

continuous set with frequencies ω2 = µ2 + k2.

E.2 Non-Relativistic Limit

The first four parameters of the confluent Heun function are either first order (α, β, γ) or second

order (δ) in the dimensionless combinations µM and kM . The fifth parameter, on the other

hand, is generally η = O(1), because

λ`m(c) = `(`+ 1)− 1

2

[
1− (2m− 1)(2m+ 1)

(2`− 1)(2`+ 3)

]
c2 +O

(
c4
)
. (E.11)

The only exception is when ` = 0, where η is second order in both µM and kM . Modes with

non-zero angular momentum see a centrifugal barrier which forces the field away from the black

hole, suppressing its amplitude at radii below ∼ `2/
(
µ2M

)
. This is not the case for the ` = 0

mode, whose amplitude is not suppressed near the horizon.

In the main text, we need the profile of the ` = 0 mode in the non-relativistic (kM � 1) and

fuzzy (µM � 1) limits. In this case, the confluent Heun function can be expanded to second

order in µM and kM , but at fixed z, as17,18

HeunC(α, β, γ, δ, η; z) = 1− 1

2
αz +

1

6
α2z2 − 1

24

(
α2 + 12δ

)
z +

1

4

(
αβ + αγ

)
z log(1− z)

− 1

2
(β + γ) log(1− z) +

1

4

(
γ2 − β2

)
dilog(1− z) +

1

4

(
βγ + γ2

)
log2(1− z)

− 1

24

(
α2 − 6β2 − 6γ2 + 24η + 12δ

)
log(1− z) + · · · .

(E.12)

In the first line, we have grouped terms that are dominant as z → −∞, while the next two

lines contain terms that are subdominant and can be ignored. Given that α ∼ O(kM) and

δ ∼ β2 ∼ γ2 ∼ O(µ2M2), we see that the confluent Heun function is approximately constant

HeunC(α, β, γ, δ, η; z) ∼ 1 +O
(
µM, kM

)
, r+ ≤ r < rmax , (E.13)

until the linear or quadratic terms in the first line of (E.12) become O(1). This occurs at the

radius
rmax

M
∼ min

{
1

(µM)2
,

1

kM

}
� 1 . (E.14)

We use this approximation to derive the accretion rate in Section 4.

17Here, dilog(1− z) = Li2(z) =
∑∞
n=1 z

n/n2.
18The procedure consists in finding a recurrence relation among the coefficients of the power series

HeunC(α, β, γ, δ, η; z) =
∑∞
n=0 anz

n, of the form Pnan = Qnan−1 + Rnan−2, see e.g. [58, 60]. After solving it

to second order in α, β, γ and first order in δ, η, the series can be resummed to give (E.12).
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