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Abstract

Details of an open-source planar perovskite solar cell simulator, which includes ion vacancy migration within the perovskite 

layer coupled to charge carrier transport throughout the perovskite and adjoining transport layers in one dimension, are pre-

sented. The model equations are discretised in space using a finite element scheme, and temporal integration of the resulting 

system of differential algebraic equations is carried out in MATLAB. The user is free to modify device parameters, as well 

as the incident illumination and applied voltage. Time-varying voltage and/or illumination protocols can be specified, e.g. 

to simulate current–voltage sweeps, or to track the open-circuit conditions as the illumination is varied. Typical simulations, 

e.g. current–voltage sweeps, only require computation times of seconds to minutes on a modern personal computer. An 

example set of hysteretic current–voltage curves is presented.

Keywords Perovskite solar cell · Drift–diffusion · Device simulation · Ion vacancy migration

1 Introduction

Perovskite solar cells (PSCs) are a promising thin-film 

technology that, due to their rapid rise in power conver-

sion efficiency to 22.7% [15], are attracting a lot of interest 

and research effort in the photovoltaic community. How-

ever, PSCs display unusual transient behaviour (exempli-

fied by current–voltage hysteresis) in the order of seconds 

to days which affects the power output of the device [24]. 

The consensus in the literature is that this slow (compared 

to the timescale of electronic motion) behaviour is due to the 

motion of mobile ion vacancies within the perovskite layer. 

The species of ion vacancy deemed most likely to be respon-

sible for the behaviour observed in the order of seconds to 

minutes is that of the halide (e.g. iodide, I 
−

 ) ion vacancy due 

to its high mean density and high diffusion coefficient (com-

pared to the other ionic species) predicted by DFT calcula-

tions [8, 26]. Visual evidence of iodide ion migration within 

a perovskite film has also been obtained experimentally [7]. 

Recent reviews of the outstanding challenges in the field of 

perovskite solar cells have been given by Snaith [23], Egger 

et al. [9] and Phung and Abate [17].

Due to the existence of mobile ion vacancies, the perovskite 

layer must be treated as a mixed ionic–electronic conductor for 

the purpose of device simulation. The first works [2, 11, 25] 

to apply numerical methods to PSC modelling reported that 

their simulations suffered from prohibitively long calculation 

times and inaccuracies in solution for realistic values of the 

parameters. A combined analytic/numerical method was used 

by Richardson et al. [5, 18] to reveal how iodide ion vacancies 

accumulate/deplete in very narrow layers (called Debye layers) 

adjacent to the perovskite boundaries. The associated rapid 

change in solution across these Debye layers is a significant 

source of spatial stiffness, while the disparity in timescales 

between the motion of electronic and ionic charges is a source 

of temporal stiffness [6], rendering the task of finding solutions 

to realistic models of PSCs very challenging.

Courtier et al. [6] developed a finite element scheme, 

implemented in MATLAB [14], that is able to cope with 

the spatial and temporal stiffness of the problem and obtain 
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accurate solutions to a coupled model for ion migration 

and charge carrier transport within the perovskite layer 

of a PSC. Since then, alternative numerical methods have 

also appeared in [13, 27]. Walter et al. [27] have developed 

a solver that includes the motion of both cations and ani-

ons. Their scheme is based on the freely available software 

Quokka3 [10], originally designed for the solution of models 

of silicon-based photovoltaic devices. While this provides a 

thoroughly tested and validated framework for their results, 

the model being solved only explicitly models the perovs-

kite absorber and there is strong evidence suggesting that 

the adjacent transport layers play a key role in determining 

device behaviour [4]. Meanwhile, Jacobs et al. [13] use the 

proprietary COMSOL package via a MATLAB interface to 

simulate three layers of a PSC over a range of timescales. 

However, the details of the modelling and solutions tech-

niques are not given in full, making their results difficult to 

reproduce and compare with alternatives.

In this work, we present the extension of the finite ele-

ment code presented in [6] for a single-layer model of a 

PSC to a model that explicitly describes the three core lay-

ers of a PSC: the electron transport layer (ETL), perovskite 

absorber layer and hole transport layer (HTL). Full details 

of the charge transport model equations and the implemen-

tation of the code are given. The code is freely available 

on GitHub at https ://githu b.com/Perov skite SCMod ellin g/

IonMo nger (under an AGPL-3.0 copyleft license) and can 

be used to simulate a variety of different experimental pro-

tocols. Current density–voltage ( J–V  ) curves are the typical 

measurement that is performed to assess solar cell perfor-

mance including, for perovskite solar cells, the extent of J

–V  hysteresis displayed at a particular scan rate. In addition 

to J–V  curves, the code can be used to simulate photocur-

rent transients (during which the applied voltage and/or the 

illumination intensity is varied over time) and photovoltage 

transients (during which the cell is held at open circuit and 

the illumination intensity is varied) that occur on timescales 

of microseconds to minutes. Uncovering the links between 

model parameters and the results of such simulations will 

help to improve understanding of the underlying physics of 

PSCs and hence guide further improvements in their design. 

One such investigation, into how the extent of observable 

hysteresis depends on material properties of the two trans-

port layers, has been conducted by Courtier et al. [4]. The 

investigation is based upon simulations of the same1 three-

layer model as that considered in this work.

In Sect. 2, we show an example set of simulation results 

obtained using the code. In Sect. 3, we present and discuss 

the governing equations in each of the three layers as well 

as the boundary and interface conditions through which 

the equations couple together. A non-dimensionalisation is 

also presented which is geared to study the behaviour of 

the cell on the timescales associated with anion vacancy 

motion and aids in obtaining uniformly well-resolved solu-

tions by ensuring that the numerical tolerances are applied 

equally to each of the model variables. In Sect. 4, we detail 

the finite element discretisation of the system and highlight 

the differences between how open-circuit and applied volt-

age protocols are imposed at the discrete level. The focus of 

Sect. 5 is a discussion of the how the time-stepping is carried 

out and how the output current density is calculated from 

the numerical solution. In Sect. 6, we validate the results of 

the numerical scheme upon which IonMonger is based. 

Finally, in Sect. 7, we draw our conclusions.

2  Application example

The main purpose of this paper is to provide the perovskite 

solar cell community with a high-quality, free and useful 

tool with which to better understand PSC behaviour, and 

not to provide a detailed analysis or interpretation of the 

device physics. The power of the solver in advancing our 

physical understanding of PSCs is demonstrated in Courtier 

et al. [4], in which an investigation of the effects of mate-

rial properties of the transport layers on cell performance 

is detailed. There it is found that two material properties in 

particular, namely the permittivity and the effective doping 

density of the transport layers, have a significant role to play 

in determining the extent of J–V  hysteresis exhibited by a 

PSC. In addition, characteristics of simulations that can be 

used to identify the dominant recombination mechanism in a 

PSC are discussed. Results from two other simulations, also 

computed using the capabilities offered by IonMonger, 

have been presented by Idígoras et al. [12] in a study of the 

role of surface (also often termed interfacial or interface) 

recombination, which occurs on the interfaces between the 

perovskite layer and the adjacent transport layers, on PSC 

performance. However, further work in this area is vital for 

the future development and optimisation of PSCs. Here, we 

show how IonMonger can be used to both simulate the 

most common measurement protocol for assessing the per-

formance of a solar cell, namely a J–V curve, and reveal how 

each type of recombination included in the model contrib-

utes to the observed behaviour.

Figure 1a shows the J–V  output for an example simu-

lation of a typical J–V  measurement protocol performed 

on a planar, standard-architecture PSC (see Fig. 2 for the 

cell geometry). The cell is initially preconditioned for 5 s 

1 The simulations in [4] are based on the same mathematical model 

as described in this work; however, the definitions of the constants 

of proportionality k
E
 and k

H
 and the built-in voltage V

bi
 vary between 

the two works; the definitions in this work are compatible with Boltz-

mann statistics for non-degenerate semiconductors, see (13)–(17).

https://github.com/PerovskiteSCModelling/IonMonger
https://github.com/PerovskiteSCModelling/IonMonger
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before the applied voltage is scanned from 1.2 V to short 

circuit (0 V) and back to 1.2 V at a scan rate of 100 mV/s. In 

addition, Fig.  1a displays the corresponding current losses 

due to the two types of interface recombination included in 

the model. Note that bulk recombination occurring within 

the perovskite layer is also included in the model but is not 

shown. By comparing the shape of the current-loss curves to 

the J–V  curve, it is clear that, for this example, the observed 

behaviour is controlled primarily by the rate of recombina-

tion at the ETL/perovskite interface (the blue line), while the 

rate of recombination at the perovskite/HTL interface (the 

red line) has little effect on the performance of the cell. The 

parameter values used in the simulation are equal to those 

given in Tables 1 and 2(b) of [4] except that here the effec-

tive doping densities d
E
= d

H
= 10

24
m

−3 and the effective 

densities of state gE
c
= gH

v
= 5 × 1024 m−3 . The input file for 

this simulation, along with a GUIDE and documentation to 

aid in using the code, is provided in the main folder of the 

IonMonger GitHub repository so that users can utilise 

these as a starting point for investigations of their own.

In Fig. 1b, the example J–V curve from panel (a) is shown 

alongside the corresponding results for two other simula-

tions. The only difference in the input parameters between 

the three simulations is the rate at which the applied volt-

age is scanned back and forth to measure the J–V  curve. 

The three scan rates are 50, 100 and 200 mV/s. Harvest-

ing the full set of results in Fig. 1b required a total of 34 

s of computation time on a standard desktop machine, i.e. 

approximately 11 s per simulation including the calculation 

of appropriate initial conditions and the preconditioning 

step. See Sect. 6 for figures showing how the accuracy of 

the solution and the computation time vary with respect to 

the number of grid points on which the solution is com-

puted. Next, the equations that underlie these simulations 

are detailed.

3  The charge transport model

In this section, the charge transport model for a planar 

lead halide perovskite solar cell consisting of a perovskite 

absorber layer sandwiched between an electron transport 

layer (ETL) and a hole transport layer (HTL) is presented. 

Tables of the model variables and parameters along with 

their definitions are given in the SI. The structure of the cell 

is shown in Fig. 2. The non-dimensionalisation used by the 

code is also given.

(a) (b)

Fig. 1  Example simulation results: a A J–V  curve measured at 

100  mV/s from 1.2  V to short-circuit and back, after a 5-s pre-

conditioning step. The simulation uses the parameters given in 

Tables  1 and 2(b) of [4] except that here the effective doping den-

sities d
E
= d

H
= 10

24
m

−3 and the effective densities of state 

gE
c
= gH

v
= 5 × 1024 m−3 . The purple lines show the current-density 

output, while the blue and red lines show the current losses due to 

interface recombination at the ETL/perovskite and perovskite/HTL 

interfaces, respectively. Losses due to bulk recombination are not 

shown. The direction of scan is indicated by both the arrows and the 

style of each line: solid for the reverse scan and dashed for the subse-

quent forward scan. b A set of three J–V  curves. Here, the example 

in panel (a) is plotted alongside two other J–V  curves measured at 

scan rates of 50 mV/s and 200 mV/s, but for otherwise identical input 

parameters. These results demonstrate the ability of the model to 

reproduce the scan rate-dependent J–V  hysteresis commonly exhib-

ited by PSCs due to the migration of ion vacancies within the perovs-

kite layer (Color figure online)

Perovskite HTLETL

−bE 0 b b + bH

x

metalφE φH

nE

P φ

n p pH contact
metal
contact

Fig. 2  A schematic of the three-layer geometry of the PSC model 

detailed in Sect.  3. The symbols in each layer indicate which vari-

ables are explicitly modelled in that region. The markers along the 

x-axis represent the non-uniform grid spacing used by IonMonger 
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3.1  Model equations

Perovskite absorber layer (0 < x < b ) A model for the per-

ovskite layer consists of equations for the conservation of 

conduction (free) electrons, holes and halide ion vacan-

cies coupled with the Poisson equation for the electric 

potential, �(x, t) . We denote the halide ion vacancy density 

by P(x, t), its flux by FP(x, t) and define N̂
0
 as the mean 

ion vacancy density. It is assumed that an equal, uniform 

density N̂
0
 of immobile cation vacancies also exists within 

the perovskite layer. The electron and hole concentrations 

are denoted by n and p with current densities jn and jp , 

respectively. The functions G(x, t) and R(n, p) denote the 

charge carrier photogeneration and bulk recombination 

rates, respectively. In the perovskite layer, we thus have

with Poisson’s equation,

Here, D
I
 denotes the diffusion coefficient of the iodide 

ion vacancies and �
A

 is the permittivity of the perovskite 

absorber layer. These differential equations are supple-

mented by continuity conditions at the interfaces with the 

transport layers (given at the end of this section).

Electron transport layer  (−b
E
< x < 0 ) The majority carri-

ers through the ETL are free electrons. The model for the 

electrical behaviour of this layer thus consists only of a con-

servation equation for the free electrons which couples to 

Poisson’s equation. Here, D
E
 denotes the electron diffusion 

coefficient, �
E
 the permittivity and d

E
 the intrinsic free elec-

tron density (due to the doping) in the ETL.

(1)

�p

�t
+

1

q

�jp

�x
= G(x, t) − R(n, p),

jp = −qDp

(

�p

�x
+

p

VT

��

�x

)

,

(2)

�n

�t
−

1

q

�jn

�x
= G(x, t) − R(n, p),

jn = qDn

(

�n

�x
−

n

VT

��

�x

)

,

(3)

�P

�t
+

�F
P

�x
= 0,

F
P
= −DI

(

�P

�x
+

P

VT

��

�x

)

,

(4)
𝜕2𝜙

𝜕x2
=

q

𝜀
A

(N̂
0
− P + n − p).

(5)
�n

�t
−

1

q

�jn

�x
= 0, jn = qDE

(

�n

�x
−

n

VT

��

�x

)

,

These equations couple to the perovskite equations via 

four continuity conditions at the interface (given at the end 

of this section). On the external boundary with the metal 

contact, we impose Ohmic boundary conditions. These read

where V(t) is the applied voltage and V
bi

 denotes the cell’s 

built-in voltage, which is defined in (17).

Hole transport layer (b < x < b + b
H

) The majority carriers 

in the HTL are holes, and analogously to the case in the 

ETL, we need specify only two equations, specifically

Here, D
H

 is the hole diffusion coefficient, �
H

 is the per-

mittivity and d
H
 is the intrinsic hole density (due to the dop-

ing) in the HTL. These equations couple to the equations in 

the perovskite via four continuity conditions at the interface 

(given at the end of this section) and satisfy the following 

Ohmic contact conditions on the metal contact.

Continuity conditions on the interfaces (x = 0 and x = b) At 

the interface between the perovskite and the ETL, (1) the 

electron flux (and its associated current density) is con-

served, (2) the hole flux (and its associated current density) 

is conserved, (3) there is no flux of halide ion vacancies, 

(4) and (5) both the electrostatic potential and electric dis-

placement field are continuous, and (6) the majority carrier 

density (in this case the electrons) at the edge of the ETL is 

related to the neighbouring carrier density in the perovskite 

by a factor, k
E
 , which depends upon the relevant band offset 

and change in effective density of states [11]. Therefore, at 

the interface between the ETL and the perovskite, the fol-

lowing conditions are applied

(6)
�2�

�x2
=

q

�
E

(n − d
E
).

(7)n = dE, � =
Vbi − V(t)

2
on x = −bE,

(8)
�p

�t
+

1

q

�jp

�x
= 0, jp = −qDH

(

�p

�x
+

p

VT

��

�x

)

,

(9)
�2�

�x2
=

q

�
H

(d
H
− p).

(10)p = dH, � = −
Vbi − V(t)

2
on x = b + bH.

(11)

jn�x=0−
= jn�x=0+

− R̄
l

jp = −qR̄
l

FP
= 0

𝜙�x=0−
= 𝜙�x=0+

𝜀E
𝜕𝜙

𝜕x

���x=0−
= 𝜀

A

𝜕𝜙

𝜕x

���x=0+

k
E
n�x=0−

= n�x=0+

⎫
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎭

on x = 0.
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Analogous conditions are applied at the interface between 

the perovskite and the HTL (where the holes are the majority 

carrier). These read

Here, the superscripts of ± denote quantities evaluated at 

either the left- or right-hand side of the perovskite/transport 

layer interfaces, respectively; R̄
l
 and R̄

r
 are the recombina-

tion fluxes at the left (ETL/perovskite) and right (perovskite/

HTL) interface, respectively; and k
E
 and k

H
 are constants of 

proportionality between the charge carrier concentrations on 

each side of the interfaces according to Boltzmann statistics, 

given by

In these expressions, g
c,v

 denote the effective conduction/

valence band density of states; E
c,v

 are the energies of the 

conduction/valence band edges; and the superscripts E or 

H indicate to which transport layer a quantity relates. The 

validity of each of these expressions relies on the validity of 

using the Boltzmann approximation to describe the distribu-

tion of electrons in a non-degenerate semiconductor. Con-

sequently, users should choose an effective doping density 

which is less than 20 times smaller than the effective density 

of states in each transport layer in order to ensure that the 

equilibrium Fermi level is more than a few thermal voltages 

away from the band edges, see (15)–(16).

Built‑in voltage The cell’s built-in voltage is equal to the 

difference between the workfunctions of the two metal con-

tacts. Assuming that the contacts form ideal Ohmic contacts 

with the adjacent transport layer, this difference is equal to 

the difference between the equilibrium Fermi levels of the 

two transport layers which are approximated, using Boltz-

mann statistics, by

(12)

jp�x=b− − R̄
r
= jp�x=b+

jn = −qR̄
r

FP
= 0

𝜙�x=b− = 𝜙�x=b+

𝜀
A

𝜕𝜙

𝜕x

���x=b−
= 𝜀

H

𝜕𝜙

𝜕x

���x=b+

p�x=b− = k
H

p�x=b+

⎫
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎭

on x = b.

(13)kE =

gc

gE
c

exp

(

−

Ec − EE
c

kBT

)

,

(14)kH =

gv

gH
v

exp

(

Ev − EH
v

kBT

)

.

(15)EE
f
= EE

c
− kBT log

(

gE
c

dE

)

,

Hence, the built-in voltage is given by

3.2  Carrier generation and recombination rates

For the rate of charge carrier generation within the per-

ovskite layer, we use a simplified Beer–Lambert model of 

light absorption [16] in which it is assumed that absorption 

can be characterised by a single absorption coefficient ( � ) 

and photon flux that are independent of the wavelength of 

light. Taking into account the possibility of choosing either 

a standard or inverted architecture (i.e. applying the light to 

either the ETL- or HTL-side of the cell, respectively), this 

rate can be written as

in which Fph denotes the flux of photons incident on the 

light-facing perovskite surface (after accounting for reflec-

tion) under the equivalent of 1 Sun illumination; the function 

I
s
(t) is the intensity of the illumination in Sun equivalents; 

and the parameter l can be set equal to either +1 for light 

from the left (through the ETL) or −1 for light from the right 

(through the HTL) by making use of the Inverted option 

in the parameter input file.

We allow bulk recombination to be described by a combi-

nation of bimolecular and trap-assisted Shockley–Read–Hall 

(SRH) recombination mechanisms from, for example, Nel-

son [16] §4.5.5. Hence, the volumetric bulk recombination 

rate is

in which � is the bimolecular rate constant, n
i
 is the intrin-

sic carrier concentration, �
n
 and �

p
 are the charge carrier 

lifetimes and we assume that the trap state energy level lies 

close to the intrinsic potential energy of the perovskite such 

that we can apply the approximation that pt = nt = ni.

Similarly, the interfacial recombination fluxes ( R̄
l
 and R̄

r
 ) 

can be chosen as a combination of bimolecular and SRH 

recombination as follows, noting the use of recombination 

velocities rather than carrier lifetimes in the SRH recombi-

nation rates (see Nelson [16, Sect. 4.5.6]),

(16)EH
f
= EH

v
+ kBT log

(

gH
v

dH

)

.

(17)Vbi = EE
c
− EH

v
− kBT log

(

gE
c
gH

v

dEdH

)

.

(18)G(x, t) = Is(t)Fph� exp
(

−�

[

b

2
+ l

(

x −
b

2

)])

,

(19)R(n, p) = �
(

np − n2

i

)

+
np − n2

i

�n(p + pt) + �p(n + nt)
,
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in which the superscripts of ± denote quantities evaluated at 

either the left- or right-hand side of the perovskite/transport 

layer interfaces, respectively; �E,H are the bimolecular rate 

constants; and �E,H

n
 and �E,H

p
 are the electron and hole recom-

bination velocities, respectively. In order to satisfy the prin-

ciple of detailed balance, we assume that the intrinsic carrier 

density in the ETL nE

i
=

n
i

k
E

 and the intrinsic carrier density 

in the HTL nH

i
=

n
i

k
H

 for consistency with the continuity con-

ditions in (11f) and (12f). Then, in order to keep the number 

of input parameters to a minimum, we approximate 

pt = nt = ni in analogy with the approximation made to the 

bulk recombination rate above. Therefore, the interface 

recombination rates used by the code are equivalent to

3.3  Calculation of the total current density

In order to calculate the total current density from a 

numerical solution of the drift–diffusion model, we derive 

an expression that can be evaluated at any point in the 

domain. The code automatically calculates the current 

density at the midpoint of the perovskite layer, where 

the grid spacing is larger and the solution varies more 

smoothly than in the Debye layers, to minimise numerical 

error. By subtracting Eq. (2a) from Eq. (1a), we get

Then, by substituting the difference in the carrier con-

centrations ( p − n ) using Poisson’s equation for the per-

ovskite layer, given in (4), and multiplying by q, we get

(20)

R̄l,r(n
−, p+) = 𝛽E,H

(

n−p+ − n−

i
n+

i

)

+
n−p+ − n−

i
n+

i

1

𝜈
E,H
n

(p+ + p+
t ) +

1

𝜈
E,H
p

(n− + n−
t )

,

(21)

R̄l

(

n

kE

, p

)

=
𝛽E

kE

(

np − n2

i

)

+
np − n2

i

kE

𝜈E
n

(p + ni) +
1

𝜈E
p

(n + ni)
on x = 0+,

(22)

R̄r

(

n,
p

kH

)

=
𝛽H

kH

(

np − n2

i

)

+
np − n2

i

1

𝜈H
n

(p + ni) +
kH

𝜈H
p

(n + ni)
on x = b−

.

(23)
�

�t
(p − n) +

1

q

�

�x
(jp + jn) = 0.

(24)
𝜕

𝜕x
(jp + jn) −

𝜕

𝜕t

(

𝜀
A

𝜕2𝜙

𝜕x2
− q(N̂

0
− P)

)

= 0.

Applying the time derivative to the last term in the 

brackets allows us to eliminate N̂
0
 (the constant and uni-

form cation vacancy density) and to use the ion vacancy 

conservation equation in (3) to make a substitution for the 

time derivative of P, which gives

Similarly, for the transport layers, we have

After swapping the order of spatial and temporal differen-

tiation, it is possible to integrate these three equations with 

respect to the spatial variable x. By integrating and applying 

the continuity conditions and the Ohmic boundary condi-

tions at either metal contact, we get an expression for the 

total current density which is independent of x and given by

The term involving a time derivative in each equation is 

the displacement current density. It should be noted that the 

magnitude of the displacement current density is usually 

even smaller than the magnitude of the expected numerical 

error in the solution, see Sect. 6.

3.4  Boundary conditions for open‑circuit conditions

It is possible to simulate open-circuit conditions, rather than 

a fixed voltage protocol, by changing just two of the model 

equations. The two conditions that describe the application 

of a fixed potential difference are (7b) and (10b). The model 

for simulation of a device at open circuit instead includes 

boundary conditions to ensure that there is zero flux of elec-

trons across the metal/ETL boundary (and hence no photo-

current) and that the values of the electric potential at each 

contact are equal and opposite. This amounts to imposing, 

in place of (7b) and (10b),

(25)
�

�x
(jp + jn) −

�

�t

(

�
A

�2�

�x2

)

+ q
�FP

�x
= 0.

(26)
�jn

�x
−

�

�t

(

�E

�2�

�x2

)

= 0,

(27)
�jp

�x
−

�

�t

(

�
H

�2�

�x2

)

= 0.

(28)

J(t) =

⎧
⎪⎪⎨⎪⎪⎩

jn + jp −
𝜕

𝜕t

�
𝜀A

𝜕𝜙

𝜕x

�
+ qFP, for 0 < x < b,

jn −
𝜕

𝜕t

�
𝜀E

𝜕𝜙

𝜕x

�
, for − bE < x < 0,

jp −
𝜕

𝜕t

�
𝜀H

𝜕𝜙

𝜕x

�
, for b < x < b + bH.

(29)jn|x=−bE
− = 0, �|x=−bE

= −�|x=b+bH
.
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3.5  Non‑dimensionalisation

The code is programmed to solve a non-dimensional form of 

the model equations. Note, however, that all input parameter 

values are non-dimensionalised automatically and the output 

is re-dimensionalised prior to output. Details of the non-

dimensionalisation are given here to allow the possibility 

that users can adapt the equations that underlie the model 

described here. The non-dimensionalisation is given by:

where G
0
 is a typical value of G (the rate of photogeneration 

of charge pairs per unit volume) and �
ion

 is the characteristic 

timescale for ion motion into the Debye layers, given by

The perovskite (ionic) Debye length is defined as

The other input functions and constants are rescaled as 

follows:

The star notation is dropped in the following sections.

4  Discretisation

The numerical method upon which our code is based 

was developed by Courtier et al. [6] to solve a simplified 

model description of a perovskite solar cell in which it was 

assumed that the transport layers were so highly doped that 

the potential within them was uniform, thereby reducing the 

(30)

x = bx∗, t = 𝜏iont∗, 𝜙 = VT𝜙
∗,

p = dHp∗, n = dEn∗, P = N̂0P∗,

jp = qG0bjp∗, jn = qG0bjn∗, FP
=

DIN̂0

b
FP∗,

(31)G0 =
Fph

b
(1 − e−𝛼b), 𝜏ion =

b

DI

√

VT𝜀A

qN̂0

.

(32)L
D
=

√

V
T
𝜀

A

qN̂
0

.

(33)

V = VT𝛷, Vbi = VT𝛷bi, G = G0G∗,

R = G0R∗, R̄l = bG0R̄l

∗

, R̄r = bG0R̄r

∗

,

𝜎 =
dE

G0𝜏ion

, 𝜒 =
dH

dE

, 𝜅p =

DpdH

G0b2
,

𝜅n =
DndE

G0b2
, 𝜅E =

DE𝜅n

Dn

, 𝜅H =

DH𝜅p

Dp

,

wE =
bE

b
, wH =

bH

b
, rE =

𝜀E

𝜀A

,

rH =
𝜀H

𝜀A

, 𝛿 =
dE

N̂0

, 𝜆 =
LD

b
,

𝜆E =

√

𝜀EN̂0

𝜀AdE

𝜆, 𝜆H =

√

𝜀HN̂0

𝜀AdH

𝜆.

model to equations in the perovskite absorber layer only. In 

that work, the speed and accuracy of the method are com-

pared against those of two previously used alternatives. It 

is shown that the method we adopt here is superior to both 

of these methods for both metrics of performance. Here, we 

adapt the finite element-based scheme to solve the dimen-

sionless three-layer model set out in the previous section. 

We do not use the Scharfetter–Gummel scheme [19], com-

monly used for the solution of drift–diffusion equations, 

because it is tailored to deal with issues related to charge 

carrier transport rather than accurately resolving solutions 

in narrow Debye layers, which is the main difficulty in the 

present work.

4.1  Spatial grid

The discretisation is formulated on a computational grid 

comprised of N + N
E
+ N

H
+ 1 non-uniformly positioned 

grid points which partition the (non-dimensional) domain 

x ∈ [−wE, 1 + wH] into N + N
E
+ N

H
 subintervals. The 

perovskite layer (including interfaces) contains N + 1 grid 

points denoted by x = x
i
 for i = 0,… , N  with subinterval 

widths denoted by �
i+1∕2

= x
i+1

− x
i
 . The transport layer 

domains (excluding interfaces) contain N
E
 and N

H
 grid 

points, respectively, with grid points denoted by x = x
E

i
 for 

i = 0,… , NE − 1 and x = x
H

i
 for i = 1,… , NH , respectively, 

with corresponding subinterval notation.

It is known that the largest gradients in the solution 

appear in narrow Debye layers adjacent to the material inter-

faces [5]. This motivates the use of a grid in which points 

are concentrated near the domain boundaries and at internal 

interfaces so that computational resolution is focused there 

and not wasted where it is not required. One such grid can be 

created by extending the tanh grid used in [6] to the three-

layer cell geometry displayed in Fig. 2. Specifically, we set

(34)
x

i
=

1

2

⎛
⎜⎜⎜⎝

tanh

�
s

�
2i

N
− 1

��

tanh(s)
+ 1

⎞
⎟⎟⎟⎠
,

for i = 0,… , N,

(35)
x

E

i
=

wE

2

⎛
⎜⎜⎜⎝

tanh

�
s

�
2i

NE

− 1

��

tanh(s)
− 1

⎞
⎟⎟⎟⎠
,

for i = 0,… , NE − 1,
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Our numerical experiments indicate that a good rule of 

thumb for deciding on a judicious choice for the value for s 

can be to calculate a value which leads to 20% of the grid 

points falling within one Debye length of each interface 

within the perovskite layer (i.e. the intervals x ∈ [0, �] and 

x ∈ [1 − �, 1] ), via numerical solution of

The code is set up so that the numbers of grid points N
E
 and 

N
H
 are chosen based on the input parameter N to give approxi-

mately equal spacing immediately either side of the interface.

4.2  Finite element scheme

As in [6], we employ a common finite element approach, in 

which each of the dependent variables is approximated as a 

linear combination of piecewise linear basis functions with 

compact support. For a generic dependent variable, u , defined 

within the perovskite, i.e. for x ∈ (0, 1) , we write

where 

in which �
i
(x) are referred to as the basis functions. Each 

of the governing equations of interest can be manipulated 

into the form

in which A and B are constants and the function 

S(x, t, u, v1, v2, v3) is a source term which depends upon the 

spatial variable x, the temporal variable t, the generic vari-

able u and a series of other generic dependent variables v
i
 

for i = 1, 2, 3 . The electron, hole and halide ion vacancy 

conservation equations, (1), (2) and (3), are rewritten in this 

(36)
x

H

i
= 1 +

wH

2

⎛
⎜⎜⎜⎝

tanh

�
s

�
2i

NH

− 1

��

tanh(s)
+ 1

⎞
⎟⎟⎟⎠
,

for i = 1,… , NH.

(37)� =
1

2

(

tanh (0.6)

tanh(s)
+ 1

)

.

(38)u(x, t) =

i=N
∑

i=0

u
i
(t)�

i
(x)

(39)�
i
(x) =

⎧
⎪
⎨
⎪
⎩

x−x
i−1

x
i
−x

i−1

if x ∈ (x
i−1, x

i
)

x
i+1−x

x
i+1−x

i

if x ∈ (x
i
, x

i+1)

0 if x ∉ (x
i−1, x

i+1)

(40)A
�u

�t
= B

�

�x

(

�u

�x
± u

��

�x

)

+ S(x, t, u, v1, v2, v3),

form by eliminating the attendant electron or hole current 

densities, or the halide ion vacancy flux, respectively. Pois-

son’s equation in the perovskite, (4), is already in this form.

The spatially discretised equations in the perovskite are 

derived by multiplying (40) through each of the test functions 

�j(x) (for j = 0,… , N ), integrating over the domain x ∈ (0, 1) 

(using integration by parts where appropriate) and substituting 

form (38) for each of the dependent variables. On doing so, 

we arrive at

Each of the integrals containing expressions that depend 

solely on the basis functions and/or their derivatives can 

be computed exactly. Likewise, terms containing quanti-

ties evaluated on the boundaries x = 0, 1 can be computed 

exactly using the continuity conditions (11)–(12), else the 

relevant equation is replaced by the corresponding Dirichlet 

condition. The one remaining term that is not so readily 

computed is the final integral in (41) that depends on the 

source terms S. For the anion vacancy conservation, S ≡ 0 

and so this term is zero. For Poisson’s equation, this term 

is a linear combination of dependent variables and so can 

be computed exactly. However, for the electron and hole 

conservation equations, (2) and (1), the source term com-

prises both the generation and bulk recombination rates, 

G(x) and R(n, p), which are highly nonlinear, see Sect. 3.2. 

In order that the integral contained in the final term of 

(41) can be integrated (at least approximately) regardless of 

the functional form of the source term, we make a further 

approximation, that is, to replace the dependent variables 

in the integrand by functions that are piecewise constant 

over each subinterval, x ∈ (x
i
, x

i+1) , and have a value equal 

to that of the full series (38) at the midpoint of that interval. 

In short, we make the additional approximation

(41)

A

i=N∑

i=0

dui

dt ∫
1

0

�i�j dx

= B

(
�u

�x
± u

��

�x

)

�j
|||

x=1

x=0

− B

{
i=N∑

i=0

ui ∫
1

0

��

i
��

j
dx

±

i=N∑

i=0

k=N∑

k=0

ui�k ∫
1

0

�i�
�

j
��

k
dx

}

+ ∫
1

0

S(x, t, u, v1, v2, v3)�j dx.
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The additional error incurred as a result of this approxi-

mation is comparable to the error associated with the 

original piecewise linear approximation for the dependent 

variables. Thus, even though some additional error is intro-

duced, the scheme retains its second-order local accuracy, 

as demonstrated in Sect. 6. We note that this approach to 

deal with the nonlinear source terms is a special case of the 

method used in the work of Skeel and Berzins [22], but we 

emphasise that in contrast to their method, we only use this 

additional approximation for treatment of the source terms 

while the rest of the terms are integrated exactly.

An analogous methodology is used to derive the discrete 

equations in the transport layers. The only difference is that 

the basis and test functions are piecewise linear functions 

with compact support defined within the ETL and HTL, 

respectively.

For notational convenience, we introduce three discrete 

operators: a difference operator, �
i
 ; an interpolation operator, 

ℑ
i
 ; and, a linear operator �

i
 . For a generic dependent vari-

able u , these three operators are defined as follows, in which 

the midpoint x = x
i+1∕2

= x
i
∕2 + x

i+1
∕2 is halfway between 

x = x
i
 and x = x

i+1
.

These discrete operators can be used to obtain discretised 

versions of the ion flux and carrier current densities in the 

(42)

∫
1

0

(G − R(n, p))�j dx ≈

⎧
⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

�
j−

1
2

2

�
G�x=x

j−
1
2

− R

�
n�x=x

j−
1
2

, p�x=x
j−

1
2

��

+
�

j+
1
2

2

�
G�x=x

j+
1
2

− R

�
n�x=x

j+
1
2

, p�x=x
j+

1
2

��
,

if j = 1,… , N − 1,
� 1

2

2

�
G�x=x 1

2

− R

�
n�x=x 1

2

, p�x=x 1
2

��
,

if j = 0,
�

N−
1
2

2

�
G�x=x

N−
1
2

− R

�
n�x=x

N−
1
2

, p�x=x
N−

1
2

��
,

if j = N.

(43)
�u

�x

|
|
|x=x

i+1∕2

≈ �
i+1∕2(u) =

u
i+1 − u

i

�
i+1∕2

,

(44)u|
x=x

i+1∕2
≈ ℑ

i+1∕2(u) =
1

2
(u

i+1 + u
i
),

(45)

�
i
(u) =

1

6
�

i+1∕2
u

i+1
+

1

3

(

�
i+1∕2

+ �
i−1∕2

)

u
i

+
1

6
�

i−1∕2
u

i−1
.

perovskite layer, given in dimensional form in (3b), (2b) and 

(1b), as follows:

for i = 0,… , N − 1 . The electron current density in the 

ETL ( jn,E ) and hole current density in the HTL ( jp,H ) can 

be expressed in an equivalent way.

The carrier generation and bulk recombination terms are 

approximated to be linear on each interval, and to take the 

value at the midpoint, hence we define

Perovskite absorber layer The discretised equations govern-

ing the evolution of the halide ion vacancy density subject 

to no-flux boundary conditions, corresponding to (3), (11c) 

and (12c), are

The discretisation of Poisson’s equation, from (4), 

becomes

The conservation equations for the electrons and holes and 

the carrier current density boundary conditions, correspond-

ing to (1a), (2a), (11b) and (12b), become

(46)F
P

i+1∕2 = −
[

𝔇
i+1∕2(P) +ℑ

i+1∕2(P)𝔇i+1∕2(�)
]

,

(47)jni+1∕2 = �n

[

𝔇i+1∕2(n) −ℑi+1∕2(n)𝔇i+1∕2(�)
]

,

(48)jpi+1∕2
= −�p

[

𝔇i+1∕2
(p) +ℑi+1∕2

(p)𝔇i+1∕2
(�)

]

.

(49)G
i+1∕2 = G(ℑ

i+1∕2(x), t),

(50)Ri+1∕2 = R(ℑi+1∕2(n),ℑi+1∕2(p)).

(51)�1∕2

[

1

3

dP0

dt
+

1

6

dP1

dt

]

= −�F
P

1∕2,

(52)

�
i

(

dP

dt

)

= −�
[

F
P

i+1∕2 − F
P

i−1∕2

]

, for i = 1,… , N − 1,

(53)�
N−1∕2

[

1

6

dP
N−1

dt
+

1

3

dP
N

dt

]

= �F
P

N−1∕2
.

(54)

0 = �2
[

�i+1∕2(�) −�i−1∕2(�)
]

+ �i(P) −
1

2

[

�i+1∕2 + �i−1∕2

]

+ �
[

��i(p) − �i(n)
]

for i = 1,… , N − 1.

(55)

��i

(

dn

dt

)

= jni+1∕2 − jni−1∕2

+
�i+1∕2

2

[

Gi+1∕2 − Ri+1∕2

]

+
�i−1∕2

2

[

Gi−1∕2 − Ri−1∕2

]

,

for i = 1,… , N − 1,
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Electron transport layer The equations and Dirichlet bound-

ary conditions for the electric potential and the electron den-

sity in the ETL, from (5a), (6) and (7), become

Hole transport layer Similarly, for the electric potential and 

hole density in the HTL from (8a), (9) and (10),

(56)

𝜎𝛥N−1∕2

[

1

6

dnN−1

dt
+

1

3

dnN

dt

]

= −jnN−1∕2

+
𝛥N−1∕2

2

[

GN−1∕2 − RN−1∕2

]

− R̄r(nN , pH
0
),

(57)

𝜎𝜒𝛥1∕2

[

1

3

dp0

dt
+

1

6

dp1

dt

]

= −jp1∕2

+
𝛥1∕2

2

[

G1∕2 − R1∕2

]

− R̄l(n
E
NE

, p0),

(58)

���i

(

dp

dt

)

= −jpi+1∕2 + jpi−1∕2

+
�i+1∕2

2

[

Gi+1∕2 − Ri+1∕2

]

+
�i−1∕2

2

[

Gi−1∕2 − Ri−1∕2

]

,

for i = 1,… , N − 1.

(59)0 = �E

0
−

� −�bi

2
,

(60)

0 = �2

E

[

�
E

i+1∕2
(�E) −�

E

i−1∕2
(�E)

]

+
1

2

[

�E

i+1∕2
+ �E

i−1∕2

]

− �
E

i
(nE), for i = 1,… , NE − 1,

(61)0 = n
E

0
− 1,

(62)

��
E
i

(

dnE

dt

)

= jn
,E

i+1∕2
− jn

,E

i−1∕2
, for i = 1,… , NE − 1.

(63)

0 = �2

H

[

�
H
i+1∕2

(�H) −�
H
i−1∕2

(�H)
]

+ �
H
i
(pH)

−
1

2

[

�i+1∕2 + �i−1∕2

]

, for i = 1,… , NH − 1,

(64)0 = �H

NH

+

� −�bi

2
,

(65)

���
H
i

(

dpH

dt

)

= −
[

jp
,H

i+1∕2
− jp

,H

i−1∕2

]

, for i = 1,… , NH − 1,

Continuity conditions The carrier relations and continuity of 

the potential across the interfaces from (11d, f) and (12d, f) 

are applied directly as follows:

The continuity of the displacement field and that of the 

electric potential across the interfaces, from (11e) and (12e), 

are ensured via

Interface recombination is included in the equations for 

the continuity of carrier current densities, corresponding to 

(11a) and (12a), as follows:

(66)0 = pH
N

H

− 1.

(67)�E
NE

= �0, kEnE
NE

= n0, �N = �H
0

, pN = kHpH
0

.

(68)

0 = �1∕2(�) − rE�
E
NE−1∕2

(�E)

−
�1∕2

�2

(

1

2
−

P1

3
−

P2

6
+ �

[n1

3
+

n2

6
−

p1

3
−

p2

6

]

)

− rE

�E
NE−1∕2

�2

E

(

nE
NE−1

6
+

n0

3kE

−
1

2

)

,

(69)

0 = r
H
�

H
1∕2

(�H) −�N−1∕2
(�)

−
�N−1∕2

�2

(

1

2
−

PN−1

6
−

PN

3
+ �

[nN−1

6
+

nN

3
−

pN−1

6
−

pN

3

]

)

− r
H

�H
1∕2

�2

H

(

1

2
−

pN

3k
H

−
pH

1

6

)

.

(70)

𝜎

(

1

6
𝛥

E
NE−1∕2

dnE
NE−1

dt
+

1

3

(

𝛥
E
NE−1∕2

kE

+ 𝛥1∕2

)

dn0

dt
+

1

6
𝛥1∕2

dn1

dt

)

= −
[

jn
,E

NE−1∕2
− jn1∕2

]

+
𝛥1∕2

2

[

G1∕2 − R1∕2

]

− R̄l(n
E
NE

, p0),

(71)

𝜎𝜒

(

1

6
𝛥N−1∕2

dpN−1

dt
+

1

3

(

𝛥N−1∕2 +
𝛥H

1∕2

kH

)

dpN

dt
+

1

6
𝛥H

1∕2

dpH
1

dt

)

= jpN−1∕2 − jp
,H

1∕2

+
𝛥N−1∕2

2

[

GN−1∕2 − RN−1∕2

]

− R̄r(nN , pH
0
).
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4.3  Boundary conditions for modelling open‑circuit 
conditions

In order to simulate open-circuit conditions using the alter-

native boundary conditions given in (29), we simply replace 

(59) and (64) by

5  Implementation

In this section, we outline the steps performed by the code. 

We begin by describing the procedure that is used to inte-

grate forward in time. Next, we outline how the parameters, 

operating protocol and initial conditions are set. Finally, we 

outline how IonMonger post-processes the results so that 

quantities of interest, e.g. the dimensional current output, 

can be extracted and visualised.

5.1  Integration in time using MATLAB’s ode15s

The system of differential algebraic equations formulated 

in Sect. 4.2 is evolved forward in time using MATLAB’s 

ode15s [20, 21]. A prerequisite for leveraging this algorithm 

is assembling the state variables into a column vector, �(t) . 

A significant decrease in computational cost (proportional to 

the length of �(t) squared) is available if the size of �(t) can be 

reduced, and so we eliminate superfluous variables, namely 

F
P jn , jp and E between equations (46)–(73) before assem-

bling the 4N + 2N
E
+ 2N

H
+ 4 remaining unknown functions 

of time, into the column vector �(t) as follows:

where a superscript T denotes a transpose. In (75), � , � , 

� and � are column vectors of length N + 1 ; �E and �E are 

column vectors of length N
E
 ; and �H and �H are column 

(72)��
E
1∕2

[

1

3

dnE
0

dt
+

1

6

dnE
1

dt

]

= jn
,E

1∕2
,

(73)0 = �E

1
+ �H

N
H

.

(74)

�(t) =
[

P0,⋯ , PN ,�0,⋯ ,�N ,

n0,⋯ , nN , p0,⋯ , pN ,

�E
0
,⋯ ,�E

NE−1
, nE

0
,⋯ , nE

NE−1
,

�H
1

,⋯ ,�H
NH

, pH
1

,⋯ , pH
NH

]T

(75)
=
[

�(t)T �(t)T �(t)T �(t)T

�E
(t)T �E(t)T �H

(t)T �H(t)T
]T

,

vectors of length N
H
 . The problem to be solved can now be 

written in the form

in which � (�) is a nonlinear vector function of length 

4N + 2N
E
+ 2N

H
+ 4 whose entries are the right-hand sides 

of (51)–(71) and � is a singular diagonal mass matrix whose 

entries are the coefficients of the time derivative terms in the 

same equations.

Another useful strategy for speeding up computations, 

and one that we make use of in IonMonger, is to exploit 

ode15s’s jpattern option. This facilitates additional sav-

ings in computational cost by specifying entries in the Jacobian 

of the vector function � which are known to always equal zero a 

priori, thereby preventing the algorithm from having to numeri-

cally approximate their value as the integration in time proceeds. 

The function Jac creates a sparse matrix that indicates which 

entries of the Jacobian need to be numerically approximated at 

each time step and which are always equal to zero.

5.2  Parameter input and initial conditions

The necessary dimensional parameters, the illumination pro-

tocol G(x, t), voltage protocol V(t) and solver options are 

passed between functions in a MATLAB structure called 

params. A params structure can most easily be created 

using the script called parameters.m.

Finding initial conditions which satisfy the requisite bound-

ary conditions is non-trivial. In the code, we opt to supply 

initial conditions that correspond to a device which has been 

left to reach a quasi-equilibrium with the applied voltage held 

equal to either a fixed value or the open-circuit voltage such 

that there is no output current from the cell. In either case, the 

task of finding initial conditions amounts to finding a valid 

steady-state solution to the PSC model and we start by finding 

initial conditions corresponding to when the applied voltage 

is set equal to the built-in voltage, as defined in (17). This task 

is tackled by the function initial_conditions.m. In 

order to start the simulation protocol from a different value 

of the applied voltage or from open-circuit conditions, an 

additional call is then made to either precondition.m or 

find_Voc.m, respectively. All three of these routines find dis-

crete representations of the (dimensionless) initial conditions 

which can be written as

(76)�
d�

dt

= � (�) with �|
t=0 = �0,

(77)P|
t=0 = P̂(x), for 0 ≤ x ≤ 1,

(78)𝜙|
t=0 = 𝜙̂(x), for − wE ≤ x ≤ 1 + wH,

(79)n|
t=0 = n̂(x), for − wE ≤ x ≤ 1,

(80)p|t=0 = p̂(x), for 0 ≤ x ≤ 1 + wH,
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where the initial profiles P̂(x) , 𝜙̂(x) , n̂(x) and p̂(x) satisfy 

(up to numerical tolerances) the discrete counterpart of the 

steady-state PDEs. This is achieved by invoking MATLAB’s 

root-finding tools (i.e. fsolve) which act on the nonlinear 

system � (�) = � , defined in (76), with one minor alteration. 

An additional integral constraint, namely ∫ 1

0
P dx = 1 , is 

imposed to ensure that the overall number of anion vacan-

cies is maintained within the perovskite. In order to preserve 

the system as a square system, we therefore replace the last 

anion vacancy conservation equation (53) in the nonlinear 

system � (�) = � with the equation

We note that in the original PDE setting, the electric poten-

tial, � , satisfies an elliptic equation, namely Poisson’s equa-

tion, and therefore does not require an initial condition, since 

the initial potential is uniquely defined by the initial densities. 

After spatial discretisation, Poisson’s equation is translated 

into a set of algebraic equations, see (54), (60) and (63), and 

as such, one would not expect initial conditions on the elec-

tric potential to be required. However, it is a requirement of 

ode15s that initial conditions for all components of a DAE 

system are specified. It is this feature of the integrator that 

requires us to find and specify the initial potential profile 𝜙̂(x) ; 

this profile is chosen to satisfy the algebraic equations derived 

from the discretisation of Poisson’s equation, and its boundary 

conditions, into which the initial conditions for P, n and p have 

been substituted.

(81)

i=N−1
∑

i=0

ℑ
i+1∕2

(P)�
i+1∕2

= 1.

5.3  Calculation of current densities and output

In order to calculate the total (dimensionless) current density 

J(t) from the dimensionless solution generated by IonMon-

ger, from (28), we use

where k = ceil

(

N+1

2

)

 is the index of the grid point at (or 

nearest to) the midpoint of the perovskite layer and t̂ denotes 

the time since the previous time point. The quantities 

denoted by jnk+1∕2
 , jpk+1∕2

 and FP
k+1∕2

 are defined in (47), 

(48) and (46), respectively. Note that the contributions from 

the third and fourth terms are usually negligibly small in 

comparison with the sum of the first two terms.

In addition to the total current density, the (dimension-

less) current density losses due to interface recombination 

( J
l
 and J

r
 ) are calculated prior to re-dimensionalisation as 

follows:

The final steps of the solution procedure carried out by 

IonMonger are to re-dimensionalise (see Sect. 3.5) and 

(82)

J(t) = jnk+1∕2 + jpk+1∕2

−
𝜀AVT

t̂qG0b2𝜏ion

(
𝜙k+1 − 𝜙k

𝛥k+1∕2

|
|||t
−

𝜙k+1 − 𝜙k

𝛥k+1∕2

|
|||t−t̂

)

+
DIN̂0

G0b2
FP

k+1∕2,

(83)Jl(t) = −R̄l

(

n1

kE

, p1

)

,

(84)Jr(t) = −R̄r

(

nN ,
pN

kH

)

.

(a) (b)

Fig. 3  a A measure of the error in each of eight solution variables 

(listed in the legend) for five simulations versus the number of grid 

points in the domain on a logarithmic scale. Dotted lines show the 

expected rate of convergence aligned to the rightmost data point. b 

The computation time for each of the same five simulations versus 

the number of grid points on a logarithmic scale. Here, a dotted line 

is shown as a guide for the eye. For each of the five simulations per-

formed for both panels a and b, the input parameter N equals 100, 

200, 400, 800 and 1600, while the other parameters are identical 

to those used for Fig.  1a (for which N = 400 ). The number of grid 

points is equal to N + N
E
+ N

H
+ 1 where N

E
 and N

H
 are automati-

cally computed from N (see Sect. 4.1) (Color figure online)
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then save the solution variables ( � , � , � , � , �E , �E , �H 

and �H ), spatial vectors ( � , xE and xH), time (time), evo-

lution of the applied voltage (V) and evolution of the cur-

rent densities defined above ( � , �
l
 and �

r
 ). These data are 

saved into a .mat data file along with the input structure 

(params).

The saved data can be further analysed and plotted in 

MATLAB in any way chosen by the user. One example plot-

ting script is included in the IonMonger GitHub reposi-

tory, and instructions for its use are given in the GUIDE. 

This script can be used to plot the current density generated 

by a PSC during the reverse and forward scans of a J–V  

curve, alongside the current losses due to recombination at 

each of the perovskite/transport layer interfaces, as shown in 

Fig. 1a. Such a plot can enable the user to identify the limit-

ing recombination mechanism for a particular set of input 

parameters as described in Sect. 2.

6  Validation

For the purpose of verifying the results generated by 

IonMonger, in Fig. 3a, we plot a measure of the error 

in eight different solution variables against the number of 

grid points ( N + N
E
+ N

H
+ 1 ) on a logarithmic scale for 

five example simulations. The only input parameter that is 

varied between the five simulations is N, which takes val-

ues of 100, 200, 400, 800 and 1600, while all other input 

parameters are the same as those used for Fig. 1. Due to 

the lack of an exact solution, the errors are calculated with 

respect to another simulation performed on an even finer 

spatial grid consisting of 5613 points (for which the input 

parameter N is set equal to 3200). The chosen error meas-

ure is the sum (an l
1
 norm) of the differences between the 

value of the variable computed by the example simulation 

and that computed by the 5613-point simulation, averaged 

over all 300 time points of the simulation protocol after 

t = 0 . The same error measure was used in [6] to compare 

the same solution method applied to a single-layer ver-

sion of the model against two other methods on different 

spatial grids. Here, the eight solution variables for which 

the error is calculated are the (dimensionless) ion vacancy 

density, electric potential, electron concentration and hole 

concentration at the ETL/perovskite and perovskite/HTL 

interfaces located at x = 0 and x = 1 , respectively, as listed 

in the legend. The results demonstrate the expected second-

order pointwise convergence of the finite element scheme 

on which IonMonger is based [6]. The variation in the 

magnitude of the error between the eight solution variables 

is due to differences in the magnitude of the dimensionless 

variables themselves.

Figure 3b shows the computation times associated with 

each of the five simulations in panel (a), also plotted against 

the number of grid points on a logarithmic scale. Note that 

the computation time will also depend upon the length of the 

simulation protocol. The temporal tolerances for the integra-

tion in time performed by MATLAB’s ode15s were fixed 

for all simulations at values of 10
−6 for the relative tolerance 

and 10
−10 for the absolute tolerance.

A comprehensive verification of the single-layer finite 

element scheme, from which this code was developed, is 

provided in Sections 5 and 6 of [6]. This work includes plots 

of each solution variable across the perovskite layer against 

corresponding asymptotic results, which show very good 

agreement between the two approaches for realistic values 

of the input parameters.

6.1  Comparison to asymptotic results

Further validation of the numerical scheme, against results 

obtained using an alternative (although approximate) solu-

tion method, is given in Fig. 4. Here, we compare the simu-

lation results for the typical J–V  measurement displayed in 

Fig. 1 to the equivalent quantities computed using a com-

bined asymptotic/numerical method. This alternative method 

is described in detail for a single-layer model in [5] and has 

been used to explain trends in experimental observations 

in [4]. Excellent agreement is shown between the current 

densities computed using the two methods.

7  Conclusions

We have built a fast and robust numerical solver for coupled 

ionic–electronic charge transport in a realistic three-layer 

perovskite solar cell architecture. The scheme is able to sim-

ulate a variety of relevant device operating regimes, includ-

ing current–voltage sweeps and open-circuit transients, both 

Fig. 4  A comparison between the current density calculated using 

the IonMonger code (purple lines) and an alternative, combined 

asymptotic/numerical method from [4, 5] (green circles) for the same 

simulation of a J–V  measurement as shown in Fig.  1 (Color figure 

online)
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with the possibility of having time-dependent illumination. 

Simulations of this sort can be carried out in seconds to 

minutes of computation time on a standard modern personal 

computer. The only prerequisite for making use of this tool 

is access to MATLAB and its suite of routines for time inte-

gration of ordinary differential equations, specifically the 

ode15s routine.

This work therefore provides a tool that is capable of 

playing a major role in guiding the development of perovs-

kite solar cells. Our IonMonger code provides the pos-

sibility of independently varying each of the device param-

eters, so that their roles in determining cell performance can 

be discerned, something that is difficult, or even impossible, 

to achieve experimentally. One area of particular practical 

interest is understanding what can be done to mitigate the 

amount of parasitic recombination in PSCs, thereby further 

improving their performance. As demonstrated in [4], it is 

possible to suppress these losses via careful tuning of the 

cell’s constituent material properties, and we anticipate that 

further studies in the same spirit will be made possible using 

the computational tool provided here. A second area where 

such a simulation tool is surely needed is in understanding 

the long-term degradation processes that occur within PSCs 

on timescales of between hours and weeks. While the cur-

rent version of the code cannot simulate degradation, it can 

be used to predict the effects of different device parameters 

on some of the proposed causes of degradation. For exam-

ple, degradation due to chemical reactions at the perovskite/

transport layer interfaces [3] is likely to be exacerbated by 

iodide ion accumulation in the Debye layers, while degrada-

tion due to the penetration of extrinsic ions, e.g. oxygen, into 

the perovskite may be enhanced by an accumulation of ion 

vacancies [1]. The development of IonMonger to include 

additional physical processes that occur on longer timescales 

would allow researchers to investigate long-term behaviour 

and stability much more quickly than is possible via experi-

mentation, and hence it will be the subject of future work.

The authors are committed to maintaining and expanding 

the functionality of the code, and any updates will be hosted 

on the GitHub repository which can be accessed at https ://

githu b.com/Perov skite SCMod ellin g/IonMo nger. While we 

cannot promise a high level of technical support to all users, 

we are happy to receive any suggestions on ways in which 

the features of the code can be improved and/or expanded, 

and it is our intention that the code will grow as the research 

priorities of the perovskite community evolve. Contact details 

for current code developers can be found in the README file 

in the main folder of the IonMonger GitHub repository.
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