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Abstract Ionospheric storms can have important effects on radio communications and navigation systems.

Storm time ionospheric predictions have the potential to form part of effective mitigation strategies to these

problems. Ionospheric storms are caused by strong forcing from the solar wind. Electron density enhancements

are driven by penetration electric fields, as well as by thermosphere-ionosphere behavior including Traveling

Atmospheric Disturbances and Traveling Ionospheric Disturbances and changes to the neutral composition.

This study assesses the effect on 1h predictions of specifying initial ionospheric and thermospheric conditions

using total electron content (TEC) observations under a fixed set of solar and high-latitude drivers. Prediction

performance is assessed against TEC observations, incoherent scatter radar, and in situ electron density

observations. Corotated TEC data provide a benchmark of forecast accuracy. The primary case study is the

storm of 10 September 2005, while the anomalous storm of 21 January 2005 provides a secondary comparison.

The study uses an ensemble Kalman filter constructed with the Data Assimilation Research Testbed and the

Thermosphere Ionosphere Electrodynamics General Circulation Model. Maps of preprocessed, verticalized

GPS TEC are assimilated, while high-latitude specifications from the Assimilative Mapping of Ionospheric

Electrodynamics and solar flux observations from the Solar Extreme Ultraviolet Experiment are used to drive the

model. The filter adjusts ionospheric and thermospheric parameters, making use of time-evolving covariance

estimates. The approach is effective in correcting model biases but does not capture all the behavior of the

storms. In particular, a ridge-like enhancement over the continental USA is not predicted, indicating the

importance of predicting storm time electric field behavior to the problem of ionospheric forecasting.

1. Introduction

Ionospheric forecasting is challenging because the variability of the geophysical system is largely dependent

on influences from the thermosphere (itself forced by the lower atmosphere), the magnetosphere, and EUV

sunlight. These drivers of ionospheric behavior are especially difficult to predict during storms, so we cannot

rely on having accurate knowledge of them in advance. Empirical ionospheric forecasts have been published

by Tulunay et al. [2006], Habarulema et al. [2011], Jakowski et al. [2011], and others. Utah State University’s

Global Assimilation of Ionospheric Measurements (GAIM) has an ionospheric forecasting capability that uses

a global, physics-based ionospheric model with specified thermospheric parameters [McNamara et al., 2007],

the results of which are available through NASA’s Community Coordinated Modeling Center. Cander [2015]

shows that neural networks can predict quiet time ionospheric behavior accurately at ionosonde stations,

but that they falter somewhat during extreme solar events. This study presents storm time ionospheric

predictions from a global, physics-based, coupled thermosphere-ionosphere ensemble data assimilation

scheme that ingests TEC observations, adjusts thermospheric and ionospheric parameters, and facilitates

forecasting of TEC. Comparisons are performed in the continental USA, where many observations are

available and the model and observations are likely to be more reliable.

1.1. Ionospheric Storms

Buonsanto [1999] provides a comprehensive review of ionospheric storms. The ionospheric electron density is a

function of solar flux, neutral composition, and dynamical effects due to neutral winds and electric fields. During

geomagnetic storms, intense electric fields aremapped from themagnetosphere along geomagnetic field lines
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to the high-latitude ionosphere. These electric fields cause rapid convection at high latitudes and sometimes

penetrate to low latitudes. The high-latitude plasma convection drives neutral winds and heating through

ion-neutral collisions. Both positive and negative effects can be seen in the ionospheric electron density at

midlatitudes during storms. In the main phase of storms, increased electron densities are caused primarily by

equatorward neutral winds blowing plasma upward along geomagnetic field lines, where recombination is

slower. In the recovery phase, decreased electron densities are caused by atomic oxygen depletions and

molecular nitrogen enhancements that result in reduced production rates. The recent work of Borries et al.

[2015] quantifies the storm time TEC response to interplanetary magnetic field (IMF), season, and local time

and highlights the important role of winds and composition in translating these drivers into TEC variations.

1.2. Forecasting

Data assimilation techniques combine model forecasts with observations to improve the estimate of the state

of a geophysical system. In meteorology, the fundamental limitation to forecast accuracy is related to the

sensitivity of model dynamics to initial conditions, so it is possible to produce good forecasts by combining

an accurate specification of the initial state of the dynamical system with a sophisticated numerical model

[Kalnay, 2003]. The ionosphere is not self-contained to the degree that the lower atmosphere is, so the effect

of ionospheric data assimilation on forecast accuracy is often inherently limited by the variability of external

drivers. As Chartier et al. [2013] indicated in a simulation study, knowledge of the initial ionospheric state can

only improve storm time forecasts for periods of a few hours in situations where the solar, magnetospheric

and thermospheric drivers are not known accurately. However, the ionospheric electron density is compara-

tively easier to observe than these drivers thanks to advances in remote sensing techniques. If it is possible

to infer knowledge of thermospheric, magnetospheric, and solar behavior from ionospheric observations,

then that is likely to substantially improve forecast accuracy using ionospheric data assimilation. Several authors

[e.g., Pi et al., 2003; Codrescu et al., 2004; Matsuo et al., 2013] have explored the possibility of forcing parameter

estimation from ionospheric observations. In this study, we estimate several thermospheric and ionospheric

parameters from ionospheric observations.

1.3. Thermospheric and Ionospheric Models

Given that the state of the ionosphere is largely determined by external influences, especially during storms,

accurate knowledge of the temporal evolution of those external influences from themagnetosphere and Sun

is essential to producing good ionospheric forecasts. Ideally, the entire geophysical system, from the Earth to

the Sun, would be represented in a single coupled model, but technical and computational limitations mean

that this is not currently feasible. Instead, it is necessary to draw boundaries around the areas that exhibit

strong mutual coupling. From a modeling perspective, the most common approach has been to couple

the thermosphere with the ionosphere [Roble et al., 1988; Fuller-Rowell et al., 1996; Ridley et al., 2006],

although there have been more recent developments in whole atmosphere [Fuller-Rowell et al., 2010; Liu

et al., 2010; Jin et al., 2012] and coupled magnetosphere-ionosphere [Raeder et al., 2001; W. Wang et al.,

2004] modeling. In this paper, we treat the thermosphere-ionosphere as one unified geophysical system,

and the term “external” refers to anything outside the thermosphere-ionosphere system. Solar and magneto-

spheric drivers, as well as waves propagating upward from themesosphere, must then be specified externally

to the thermosphere-ionosphere forecasting process.

1.4. Observations

Ground-based dual-frequency Global Positioning System (GPS) receivers currently provide the largest source

of ionospheric measurements in the form of integrated electron density along the path from the ground

station to the satellite. This is referred to as slant total electron content (TEC). These slant measurements

could be directly ingested into the data assimilation scheme used here, but their use would require intensive

data preprocessing (bias correction and cycle slip detection) and the development of an experimental

three-dimensional covariance localization function that does not currently exist in the Data Assimilation

Research Testbed (DART). Such a development would require an understanding of the accuracy of modeled

covariances between electron densities at all altitudes and the integrated slant TEC, including the depen-

dence on satellite elevation angle. Therefore, it is more straightforward for us to use vertical TEC values

provided by the Massachusetts Institute of Technology (MIT) Haystack observatory. The MIT processing

approach, named MAPGPS, was developed by Coster et al. [2003] and is explained in detail in Rideout and
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Coster [2006]. The algorithm detects and corrects cycle slips, applies phase smoothing to the pseudorange

observations, and corrects for satellite and receiver biases using a multimethod approach. Slant TEC

estimates produced by these steps are converted to vertical TEC values using an adjusted cosine mapping

function (adjustment factor = 0.95) and a pierce-point of 450 km. Data are binned into 1° and 5min averages.

In the absence of a published error estimate for this technique, we base our observation error estimate (5 total

electron content unit (TECU; 1 TECU= 1016 elm�2)) on the work of Hernández-Pajares et al. [2009], who report

standard deviations of 4.42–6.84 TECU for five different vertical GPS TEC algorithms against TOPEX and

Jason-1 vertical TEC observations. Those standard deviations include the error due tomapping the TEC recon-

struction grid to the locations of TOPEX/Jason-1 data as well as the slant-to-vertical conversion, whereas

Mannucci et al. [2005] report a slant TEC figure of ~1–3 TECU for data that do not include the mapping and

slant-to-vertical errors.

Validation of the assimilation results is performed using two independent data sets—electron density profiles

from MIT Haystack and Arecibo Incoherent Scatter Radars (ISRs) and point electron densities from the

Langmuir probe on the Challenging Minisatellite Payload (CHAMP) [Reigber et al., 2000]. Millstone Hill is at

42.6°N, 71.5°W, and Arecibo is at 18.4°N, 66.6°W. CHAMP had a polar orbit at approximately 370 km and

360 km altitude in January and September 2005, respectively.

1.5. Data Assimilation

There are a number of approaches to the problemof combining observations withmodel forecasts (also known

as the background) to produce analyses of the current state of a geophysical system that are referred to as data

assimilation techniques. The most common data assimilation techniques are known as 3D-Var, 4D-Var, and

ensemble Kalman filters (EnKF) [Daley, 1993]. An EnKF is used in this study, and Evensen [2003] provides a

comprehensive reference for this class of techniques. The EnKF is able to represent temporal variations in the

forecast error covariance. The level of confidence in the model forecast is adjusted according to the ensemble

spread. Time-dependent spatial and cross-variable correlations of the model forecast errors are also estimated

from the model ensemble. For example, if model errors become de-correlated over a given region during a

storm then the observations of that regionwill have less or no impact on the analysis of the surrounding region.

EnKFs allow for the incorporation of nonlinear forward operators and inherently produce an ensemble of

forecasts that can be used to estimate forecast uncertainty. The primary theoretical limitation of EnKFs, as well

as 3D-Var and 4D-Var, is that all errors are assumed to be Gaussian. A number of studies document the relative

capabilities of ensemble Kalman filters and variational methodologies [Lorenc, 2003; Kalnay et al., 2007; Buehner

et al., 2010]. In the EnKF used here, a joint-space localization function is used to reject spurious long-distance

covariances, which arise from limited ensemble size and model deficiencies. The covariance is calculated from

the difference between each ensemble member and the ensemble mean, then tapered off away from the

spatial location of each observation according to the localization function.

Upper atmospheric ensemble data assimilation approaches have been employed by Codrescu et al. [2004],

Matsuo and Araujo-Pradere [2011], Lee et al. [2012], Morozov et al. [2013], and Hsu et al. [2014], while

Scherliess et al. [2009] have applied the ensemble approach to ionospheric data assimilation. Several existing

ionospheric data assimilation efforts estimate neutral parameters (e.g., Global Assimilative Ionospheric Model

(GAIM) by C.Wang et al. [2004], the Global Assimilation of Ionospheric Measurements (GAIM) by Schunk et al.

[2004], and the Estimating Model Parameters from Ionospheric Reanalysis approach by Datta-Barua et al.

[2009]), but these approaches do not treat the thermosphere-ionosphere as a self-consistent, coupled

system. It has not been demonstrated that unobserved parameter estimation can improve ionospheric TEC

forecasts during storms.

1.6. External Drivers

In order to produce an ensemble of model simulations for a strongly forced and dissipative dynamical system

such as the upper atmosphere, it is usually necessary to vary the external driver conditions. Richmond et al.’s

[1992] Thermosphere Ionosphere Electrodynamics General Circulation Model (TIEGCM), the model used in this

study, by default takes in scalar indices (e.g., Kp and F10.7) to define drivers such as solar flux, the high-latitude

electric field and auroral precipitation. It is possible to produce an ensemble by driving TIEGCMwith a range of

different values of these indices [e.g., Lee et al., 2012] to produce different model realizations. However, the

indices cannot fully characterize disturbed solar and geomagnetic conditions. Lu et al. [2008a, 2008b]
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incorporated far more detailed specifi-

cations of these drivers into TIEGCM

to simulate the geomagnetic storm

that occurred on 10 September 2005.

Their model setup, which is used in

this study, was in good agreement with

measurements of ionospheric electron

densities, temperatures, and vertical

drifts from Arecibo and Millstone Hill.

In their study, the solar flux spectrum

observed by the Solar EUV Experiment

(SEE) on board the Thermosphere

Ionosphere Mesosphere Energetics

and Dynamics (TIMED) satellite is used,

while high-latitude mean energy,

energy flux, cusp latitude, and electric

potential are determined by the

Assimilative Mapping of Ionospheric

Electrodynamics (AMIE) procedure [Richmond, 1992]. The inputs to AMIE include ion drift and particle data from

Defense Meteorological Satellite Program F13, 15, and 16; particle data from National Oceanographic and

Atmospheric Administration satellites 15, 16, and 17; the Super Dual Auroral Network radar data (ten in the

northern hemisphere and two in the southern hemisphere); and from 178 ground magnetometers. The AMIE

technique is an assimilative mapping of these observations onto the convection model of Heelis et al. [1982]

and the conductance model of Fuller-Rowell and Evans [1987]. Convection potentials and auroral mean energy

and energy flux in both hemispheres from AMIE are saved at 5min cadence, and then temporally interpolated

to drive TIEGCM, which is run at a 2min time step.

The goal of this study is to determine the effect of TEC assimilation on the accuracy of short-term storm time

TEC predictions at midlatitudes. TEC observations are assimilated into a thermosphere-ionosphere model

ensemble. One-hour predictions are assessed against observed TEC, electron density profiles from ISRs,

and point electron densities from CHAMP. Performance is compared with co-rotated persistence forecasts,

and the effects of different assimilation settings are assessed.

1.7. Storm Characteristics

For this investigation, the moderate storm of 10 September 2005 is selected to serve as the primary case study.

A second, anomalous storm period (on 22 January 2005) is chosen to test the validity of our conclusions, in

which we perform a separate assimilation experiment. We first discuss the context of the September event,

followed by the January event. None of the indices shown in Figures 1 and 2 are used in the creation of the

ionospheric predictions shown later, although the AMIE values are summaries of the inputs used. Instead, we

use multidimensional specifications of solar flux from the Thermosphere Ionosphere Mesosphere Energetics

and Dynamics (TIMED) satellite’s Solar EUV Experiment (SEE) and two-dimensional high-latitude inputs

from AMIE.

The geomagnetic disturbance index, Kp, solar wind plasma speed and IMF conditions for the September

storm are shown in Figure 1. We define a “local time” (UT—06:00) for the continental USA that is used for

consistency with results presented later, and the timing reported by other authors is likewise converted.

Figure 1 shows that solar wind plasma speed increased and the IMF components became more variable in

the period after 06:00 LT USA on 9 September. A geomagnetic disturbance of Kp=6� occurred in the

06:00–09:00 LT window on 10 September, and the index increased further to 8� between 21:00–24:00 LT

on 10 September. Goncharenko et al. [2007] report that an associated ionospheric storm occurred on

10 September 2005, with strong positive phase effects (e.g., enhanced TEC) beginning after 07:00 LT in

North America. The authors found that a combination of effects were responsible for the increased ionization.

At subauroral and middle latitudes, penetration electric fields acted to increase the plasma density, while a

traveling atmospheric/ionospheric disturbance (TAD/TID) and possibly an increased O/N2 ratio contributed

at middle and lower latitudes.

Figure 1. Geomagnetic index (Kp), AMIE polar cap potential, disturbance

storm time index (Dst), Advanced Composition Explorer plasma speed

and IMF strength, AMIE hemispheric power from 9 to 12 September 2005.

Journal of Geophysical Research: Space Physics 10.1002/2014JA020799

CHARTIER ET AL. IONOSPHERIC FORECASTING DURING STORMS 767



Lu et al. [2008a] show that a storm-

enhanced density region formed over

North America between 12:00–13:00 LT

on 10 September. The positive storm

phase in North America can be defined

to occur between 09:00–18:00 LT. The

most disturbed period shown here

(19:00 to 23:00 LT on 10 September) coin-

cides with a positive storm phase in the

Pacific sector, where there are relatively

few ionospheric observations available.

Du et al. [2008] report the occurrence of

a major anomalous geomagnetic storm

on 21–22 January 2005. The storm is

considered highly anomalous because

its positive phase coincided with a per-

iod of northward IMF conditions. An

unusually strongmagnetic shock arrived

at Earth at about 11:00 LT on 21 January. The same indices shown in Figure 1 are shown for the January event

in Figure 2.

Du et al. [2008] define the positive phase of this storm as beginning at 13:46 LT on 21 January, and note that

the IMF remains predominantly northward until 19:24 LT. Sahai et al. [2011] studied the ionospheric NmF2,

hmF2, and TEC response to the storm in the Latin American sector. The authors noted a strong TEC enhance-

ment near the equator, with relatively weak enhancements at southern midlatitudes. They observed that the

main phase ended at about 18:00 LT on 22 January, with NmF2 dropping below quiet time levels after that. It is

worth noting that their analysis of the storm phases is based in a different geographical region (South and

Central America) than our study (continental USA). The anomalous nature of this storm makes it an ideal

candidate for testing the robustness of the assimilative predictions presented here.

2. Method

2.1. Driver Perturbations

In order to represent model and external driver uncertainties in the ensemble, we apply random Gaussian

perturbations to the SEE and AMIE specifications. These specifications are given in terms of two-dimensional,

time-varying fields, so their space-time coherence needs to be taken into account. The variability introduced

to the driver specifications is largely heuristic and is described below. Following the approach of Lee et al.

[2012], 90 randomized versions of the drivers are produced to create the 90 members of the TIEGCM

ensemble. Each member is run for 24 h with the randomized drivers to create a set of initial conditions for

the assimilation. After that point, observations are assimilated hourly.

Solar flux uncertainties are represented by an ensemble of solar flux time series. Each of these is derived from

the SEE observations, which are taken about 15 times daily (once per orbit). Eachmember is calculated bymulti-

plying the observed time series by a single random number sampled from a zero-mean normal distribution

with a standard deviation of 10%. The deviations here are completely correlated across wavelengths and in

time. This choice could be seen as representing potential long-term, systematic biases in the instrumentation

or in the modeled interpretation of solar flux. One possible alternative would be to introduce time-varying

randomizations, but we currently have no reason to believe solar flux-related biases vary temporally.

Four AMIE parameters are required to drive TIEGCM: cusp latitude, mean energy, energy flux, and electric poten-

tial. Normal, zero-mean random errors with a standard deviation of 10% are applied to the mean energy and

energy flux fields, while random perturbations with a three-degree standard deviation are applied to the cusp

latitude parameter. The perturbations applied to these fields and parameters are 100% spatially and temporally

correlated, as is the case for the solar flux. The random numbers used are the same for each group of fields, but

different across the two hemispheres. The electric potential presents a special set of problems, because the

Figure 2. Geomagnetic index (Kp), AMIE polar cap potential, disturbance

storm time index (Dst), Advanced Composition Explorer plasma speed,

and IMF strength, AMIE hemispheric power from 20 to 23 January 2005.
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electric field (the gradient of the potential) is the quantity of importance to the model. If an independent

spatiotemporal random noise distribution is applied to the potential, the total electric field strength will be

increased. The aim here is to create an ensemble distributed around the AMIE estimate, evolving spatially and

temporally to account for uncertainties due to varying coverage. A heuristic choice is made to vary the gradient

of the potential at two spatiotemporal scales: one and two thirds degrees and 5min, and also 10° and 30min.

The AMIE electric field is calculated, randomized at the two spatiotemporal scales, and then translated back

to an ensemble of electric potential maps. Each of these variations is sampled from a zero-mean normal

distribution with a standard deviation of 30% of the AMIE electric field. Figure 3 shows an example AMIE electric

potential perturbation. Drift velocities flow along lines of constant potential, in this case antisunward across the

polar cap and returning sunward at lower latitudes.

The solar and geomagnetic drivers are not adjusted by the data assimilation process.

2.2. Specifics of the EnKF Experiments

An ensemble adjustment scheme proposed by Anderson [2001] and implemented in the Data Assimilation

Research Testbed (DART) [Anderson et al., 2009] is used in this experiment. The configuration used here

involves the following steps:

1. An ensemble of TIEGCM initial conditions is produced.

2. Localization of the model error covariance is applied to limit the spatial impact of the observations. A

covariance function (a quasi-Gaussian form) proposed by Gaspari and Cohn [1999] is used for horizontal

localization (on geographic coordinates) around each observation. The localization value is defined as

the half-width of that function. No vertical localization is applied.

3. All ensemble forecast members are updated to form an ensemble of analyses according to the ensemble

adjustment algorithm [Anderson, 2001], and each observation is assimilated sequentially [Anderson, 2003].

Note that the forecast (or “background”) error covariance is calculated from the differences of the ensemble

members to the ensemble mean.

4. Outlier observations are rejected if they fall further than three combined model-observation standard

deviations from the prior ensemble mean prediction.

Figure 3. Electric potential at 12:00 LT (18:00 UT) on 10 September 2005 in the Arctic (midday is on the left). Original AMIE

map in black and five example perturbations in color.
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5. The assimilation window is 1 h.

Observations within 5min of each

time are assimilated. After the

ensemble members are updated,

they are run forward for 1 h using

the predefined external driver con-

ditions specific to each member.

2.3. The EnKF State Vector

Ideally, all the model state variables

(winds, temperatures, composition,

etc.) would be included in the EnKF

state vector so that they could be

modified according to the correlations

between the different state variables

and each observation. In practice,

the modeled covariance exhibits spur-

iously strong correlations between

variables and at large distances. The reasons for this are that the model typically produces overly smooth

representations of reality, the input driver ensemble is flawed, and there are a limited number of samples

in the ensemble. If left unaccounted for, these spurious correlations lead to unjustified modifications of the

model state variables. Spatial localization removes spurious long-distance correlations, but does not affect

spurious local correlations between different variables. These local correlations are dealt with by including

only those variables we believe to be strongly correlated with the observations into the EnKF state vector.

Since we are using vertical TEC observations, it is logical to include electron density and O+ density in the

EnKF state vector. As for the thermospheric state variables, the winds and the O/N2 ratio are included because

of their well-known effects on ionospheric density (e.g., Rishbeth et al. [2000] for composition effects on

F2-layer density, Immel et al. [2001] for O/N2 enhancements during storms, and Lu et al. [2008b] for positive

storm driving by neutral winds). Using TIEGCM, the O/N2 ratio is adjusted by modifying the mixing fraction of

O, because the mixing fraction of N2, referred to here as [N2], is stored implicitly as follows:

N2½ � ¼ 1 – O½ � þ O2½ �ð Þ (1)

where [O] and [O2] are the mass mixing fractions of atomic and molecular oxygen. [O2] is not adjusted in our

scheme. It is clearly desirable to specify thermospheric variables as accurately as possible, but it is not obvious

that we can infer all of them from TEC observations. Experiments are performed with and without thermo-

spheric variables in the EnKF state vector to elucidate any errors introduced by this process.

2.4. Observations

The observations assimilated here are vertical TEC values preprocessed from ground-based GPS slant TEC by

the MIT Haystack Observatory using the method described by Rideout and Coster [2006]. Around 4000 glob-

ally distributed observations are ingested each hour. ISR and CHAMP electron density observations are also

used for model validation. The locations of these observations on 10 September 2005 are shown in Figure 4.

GPS measures TEC from the ground to the altitude of the satellites (around 20,000 km), whereas the top of

TIEGCM extends only to about 600 km, depending on solar irradiance. There is a significant contribution to

GPS TEC from plasma above 600 km, so a forward operator is used that extrapolates the modeled electron

density up five scale heights to around 2500 km, using the assumption of vertical diffusive equilibrium at

the top of the model with a constant plasma temperature. There are several problems with this approach.

The plasma is not always in diffusive equilibrium, the temperature is not constant, the scale height increases

when H+ becomes the dominant ion, and therefore, there is some plasma above our extrapolation. However,

our extrapolation is an improvement over the assumption that there is no plasma above the top of themodel.

The extrapolation process is shown in Figure 5. In the example shown, the extrapolation accounts for 12% of

the total TEC. The extrapolation is moderately sensitive to the plasma temperature at themodel top: doubling

that temperature adds a further 13% to the total TEC.

Figure 4. The locations of data used in this study. Five-minute, 1° averages of

vertical TEC from ground-based GPS at 13:00 LT (19:00 UT) on 10 September

2005. Relevant segments of CHAMPorbit passes shown in red/pink (northward/

southward) with the mean LT of each segment labeled. Millstone Hill and

Arecibo observatory are shown as black and green diamonds.
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The standard deviation of the slant-to-vertical GPS TEC

observations is set to 5 TECU. This includes errors due to

mapping between model and observations. Observations

are rejected when the distance between the observation

and themodel forecast is more than three times the square

root of the sum of the observation andmodel forecast error

variances. In practice, around 1.5% of observations are

rejected. These “bad” observations are not assimilated but

are included in tests of forecast accuracy.

2.5. Experiment Specifics

Assimilative predictions are produced for the January and

September storm periods identified in the introduction. The

continental USA region (defined as 25°–55°N, 75°–130°W) is

chosen for these experiments because it is well covered by

observations (see Figure 4) and because Goncharenko et al.

[2007] identified the importance of plasma density and

winds (as TADs/TIDs) and possibly O/N2 in driving the posi-

tive storm phase in this region. These variables are adjusted by the EnKF, whereas the important high-latitude

driver (penetration electric fields) is not.

The EnKF allows for unobserved variables to be inferred from observations of other variables, so long as

correlations exist between them. Chartier et al. [2013] and Hsu et al. [2014] showed using simulations that

accurate specification of thermospheric composition is particularly important for improving ionospheric

forecast accuracy, while the importance of neutral winds during storms is widely acknowledged [e.g.,

Buonsanto, 1999]. Hsu et al. [2014] inferred thermospheric parameters from radio occultation observations

of electron density in an observing system simulation experiment under geomagnetically quiet conditions.

Here assimilation experiments are performed to determine which model state variables can be adjusted to

improve ionospheric forecasting, using a real storm case and real observations. The model state variables

tested are plasma density, thermospheric composition, and thermospheric winds. The different configura-

tions are as follows:

1. Ionosphere (e�, O+)

2. Ionosphere and composition (e�, O+, O, N2)

3. Ionosphere, composition, and winds (e�, O+, O, N2, U, V)

4. Ionosphere and winds (e�, O+, U, V)

When observations are assimilated, localization is used to limit the spatial impact of the observations. In our

case, joint-space localization is used so as to restrict the covariance to an area defined around each observation

as it is assimilated. The localization radius should be set large enough to include realistic correlations, but small

enough to reject spurious long-distance correlations. Experiments are performed to determine the optimal

localization radius, testing 0.2, 0.5, and 1.0 radians (11.5, 28.6, and 57.3°).

A control run is performed, where no observations are ingested in the model. This run is included to show the

effects of the assimilation process. For comparison, 1 h persistence TEC forecasts are produced by rotating

the TEC observations on constant geomagnetic latitudes.

3. Results

3.1. Model Bias Against the Observations

Before assimilating observations, it is worth considering the accuracy of themodel compared with the observa-

tions. The errors of each ensemblemember from a dry run (or control run) without assimilation are compared to

the TEC observations are shown in Figure 6.

In the lead-up to the storm (up to 07:00 LT), the ensemble has a small positive bias. The positive bias and the

ensemble spread grow in the early part of the storm (07:00–12:00 LT) as TEC values increase. The positive bias

decreases between 12:00 and 15:00 LT, then recovers until 20:00 LT before subsiding as night falls, indicating
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Figure 5. Topside extrapolation of electron density

10 levels up from the top of TIEGCM. Extrapolation

accounts for plasmaspheric contribution to GPS TEC

observations. This profile is from 37.5°N, 100°E,

13:00 LT (19:00 UT) on 10 September 2005.

Journal of Geophysical Research: Space Physics 10.1002/2014JA020799

CHARTIER ET AL. IONOSPHERIC FORECASTING DURING STORMS 771



that the model has an overall positive

bias but does not fully represent the

positive storm phase. There is a clear

correlation between solar flux bias and

model TEC in the continental USA,

which shows that the solar flux rando-

mization is an important driver of

ensemble spread.

3.2. Validation Against TEC

One-hour ensemble mean predictions

are compared against TEC observations

in Figure 7. The state vector is in config-

uration (c) (ionosphere, winds, and com-

position) and a localization radius of 1.0

radians is used.

The prediction reproduces the general trends of the observations, including TEC enhancement of the positive

phase of the storm at 13:00 and 15:00 LT. However, the predicted TEC enhancement is less intense and does

not extend as far north as what is observed, resulting in an underestimation of up to 12 TECU in the northwes-

tern USA at 13:00 LT. The observed ridge-like enhancement

is not represented in the predictions. Given the similarity of

this ridge feature to the storm-enhanced density plume

observed by Foster et al. [2005] using the same GPS techni-

que, the discrepancymay be caused by the lack of a plasma-

sphere in our model.

3.3. Validation Against Other Observations

So far, we have examined the accuracy of assimilative predic-

tions with respect to verticalized GPS TEC observations. Two

other data sets are used here: in situ electron densities from

a Langmuir probe on CHAMP, which are available during

both periods, and ISR data, which are only available in the

September event. The accuracy of the predicted electron

density altitude profile is assessed against ISR observations

at Millstone Hill and Arecibo in Figure 8. A dry (or control)

run with no assimilation is included for comparison.

The results of Figure 8 show that the model reproduces the

major features seen at Millstone Hill and at Arecibo. The

altitude variations seen at both stations on 10 September

are reproduced accurately. The assimilation is effective in

reducing the positive bias of the dry run, but the F region

electron densities are then underestimated during the posi-

tive storm phase on 10 September, while the reverse is true

on 9 September. The indication is that the model has most

of the physics and accurate initial conditions necessary to

reproduce storm time and quiet time behavior at these

stations, but it is missing a source of plasma at the peak

of the positive phase of the storm. At 16:00 LT at Arecibo

the observed NmF2 is 2.13× 10
12e/m3, which is 49% higher

than the predicted value of 1.43× 1012e/m3. The height of

the peak density, hmF2, is predicted at 297 km versus the

observed 330 km, which may indicate that the model is

missing some of the plasma-lifting effects of penetration
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Figure 6. Biases of each dry run ensemble member compared with TEC

observations in the continental USA on 10 September 2005. Ensemble

mean is shown in black. The color scale shows what bias is applied to the

solar flux driving each member.

Figure 7. TEC observations, 1 h ensemble mean pre-

dictions from run (c) and the differences between the

two (prediction-observations) on 10 September 2005.
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electric fields and/or equatorward neutral winds, with the result that the plasma recombines too quickly. The

overestimated hmF2 earlier (13:00 LT: 482 km predicted, 367 km observed) may be an indication that one or

both plasma lifting processes acted too early in the model.

CHAMP in situ electron density data are available at 15 s (approximately 120 km) cadence during both periods

(21 January and 10 September 2005). These data were provided by the German Research Centre for Geosciences

(GFZ Potsdam). The model results are linearly interpolated to the times and locations of the CHAMP observa-

tions. Results are shown in Table 1.

The results of the CHAMP comparison show the assimilative prediction corrects most of the electron density

bias of the dry run (18.7% down from 55.4% on 22 January, 6.7% down from 26.7% on 10 September).

However, the assimilation does not correct the RMS error, indicating that the model is still unable to reproduce

the observed variability accurately.

3.4. Comparison With Corotated Predictions

The accuracy of 1 h ensemble mean TEC predictions and persistence forecasts is shown in Figure 9. The anom-

alous storm of January 2005 is included in this comparison. Persistence forecasts are made by corotating obser-

vations on constant geomagnetic latitudes an hour forward in time. The persistence forecasts are compared

against observations within 1° of their new locations. Configuration (c) is again used for the assimilation.

The January storm is more intense than the one in September, so it is logical that prediction errors are much

larger. The dry run is the least accurate in both cases and has large positive biases during the day. The analysis

is most accurate in both cases because it has access to the observations being compared against here. Analysis

RMS error growth in the main phases indicates the inherent weakness of a 5° resolution model in matching 1°

binned observations during disturbed times. The 1h prediction is far more accurate than the dry run, indicating

that TEC assimilation is effective in reducing model errors over short prediction periods, even during storms.

However, the prediction error is still much larger than the analysis, which indicates the need for improved

specification of the model’s magnetospheric and solar drivers.

The persistence forecast is useful as a performance benchmark, although it is possible that it shares a common

bias with the observations. Before the storms, the persistence matches the observations better than the assim-

ilative prediction. The persistence errors increase in the later part of the main phase and the recovery phase,

whereas the assimilative prediction has larger errors in the early part of the main phase and the buildup to

the January storm. In the 10 September recovery phase, the assimilative prediction bias remains above the

baseline, which is not the case in January. The 10 September recovery effect may be caused by the buildup

to the 11 September storm that occurs at about midnight LT.

Figure 8. Comparison of ISR observed electron densities from Arecibo and Millstone Hill with the ensemble mean of the

dry run and 1 h assimilative prediction (c) between 9 and 11 September 2005 (LT).

Table 1. Comparison of Model Runs Against CHAMP In Situ Electron Densities in Continental USA

21 January (Local Time) 10 September (Local Time)

Dry Run 1 h prediction Dry Run 1 h prediction

Bias (%) 55.4 18.7 26.7 6.7

RMS (%) 73.7 71.9 64.3 64.4
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3.5. Effect of State Variables

A state vector including multiple unobserved variables and a large localization radius was used in the previous

experiments. The effects of these choices are analyzed in this and the next section. Experiments are performed

with four combinations of state vector variables (a, b, c, and d as described above). The localization radius is set

to 0.5 radians (28.6°) for these experiments. Figure 10 shows the RMS errors of 1 h predictions from the four runs

against vertical TEC observations.

All state vector configurations have similar performance. The bias seen in the control run (in Figure 6) is seen

again here, indicating the important influence of external (solar and geomagnetic) drivers on the ionosphere

during storms. The ionospheric assimilation (a) is less effective in reducing the positive bias between 06:00

and 12:00 LT. However, the stronger bias corrections introduced by modifying the composition in runs (b)

and (c) have the effect of causing a larger negative bias between 13:00 and 15:00 LT. Run (b) is more similar

to run (c) than runs (a) and (d), indicating that including O/N2 in the state has a stronger effect on model evo-

lution than including the winds, as was reported by Chartier et al. [2013] and Hsu et al. [2014].

3.6. Localization

The localization radius should be set to

the distance within which the ensem-

ble can produce reliable estimates of

the error covariances between state

variables. A perfect ensemble would

function best with an infinite localiza-

tion radius because it would specify

covariances accurately at all distances,

but in practice the ensemble can pro-

duce spurious covariances at long dis-

tances from the observations. Figure

11 shows the effects of different locali-

zation radii on our results.

Before 12:00 LT, there is no appreciable

difference between the three runs,

Figure 9. RMS TEC errors and biases of a 1 h persistence forecast (red), 1 h ensemble mean assimilative prediction (green)

and analysis (dark blue) from configuration (c), and a dry run with no assimilation (light blue). The positive storm phases

shown are defined according to Sahai et al. [2011] for January, and Goncharenko et al. [2007] for September.

Figure 10. RMS TEC errors and biases of four 1 hour predictive assimilation

runs in the continental USA are shown for 10 September 2005. The effect

of including different variables in the state vectors is addressed here.
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perhaps indicating that long-distance cor-

relations are unimportant or unnecessary

in this period. Between 12:00–15:00 LT

the largest localization radius run (c) per-

forms best, but the situation is reversed

after that. This could be an indication that

the ensemble does not properly repre-

sent the variability in the later stages of

the storm.

4. Discussion

Assimilation of TEC observations is

effective in reducing the RMS error and

bias of 1 hour TEC predictions in the

Continental USA during two storm peri-

ods. The related electron density bias is also reduced against CHAMP and ISR data, although the CHAMP

analysis does not show an improvement in RMS error (perhaps due to the limited model resolution).

Before the storms, and during part of the main phase, a persistence forecast is more accurate than the

assimilative prediction, whereas the assimilation is more accurate in the later part of the main phases and

the recovery phase. The improvement against the background shows that TEC assimilation can play an

important role in correcting biases in short-term predictions, but accurate initial conditions alone are not

sufficient to produce accurate predictions. The magnetospheric and solar drivers are important even on short

time scales, so a successful physics-based prediction approach must include either some capacity for predic-

tive estimation of forcing parameters, or use an integrated magnetosphere-ionosphere approach where the

full system can be specified accurately. The thermosphere-ionosphere system exhibits rapid variability during

storms, so it is possible that an assimilation cadence faster than 1 h will also provide some improvement. Such

an approach has to take into account the risk of destabilizing the model through rapid updates.

The results show the effects of including different variables in the state vector. As was shown theoretically by

Chartier et al. [2013] and in an observation system simulation experiment by Hsu et al. [2014], changes to the

thermospheric composition (O/N2 in this case) have more impact on the model prediction than changes to

the winds. This is not to say that neutral composition is more important than winds in driving positive storm

effects. Instead, the result indicates that the composition responds more slowly than the winds to forcing

from other parameters, so its effects are seen to last longer. Since both parameters are known to be important

components of storm time ionospheric behavior, it is clearly desirable to specify them accurately. For compo-

sition, this should be achievable through direct assimilation of observations. The situation is more complex

for winds, because they respond more quickly to external forcings such as high-latitude heating from

precipitation and convection. Morozov et al. [2013] and Matsuo et al. [2013] demonstrated that it is possible

to infer solar and geomagnetic drivers from thermospheric observations using an EnKF. Estimation of solar

and geomagnetic drivers using TEC observations will be addressed in future work.

The analysis RMS error growth seen during the positive phase of the storms indicates that the 5° model

resolution cannot fit the variability seen in 1°-binned observations at these times. The indication is that a

higher-resolution model is required in these periods. This may have serious consequences for ensemble

approaches, where the computing power required by large models can limit the number of ensemble

members used. Currently, the single-threaded TIEGCM configuration runs fast enough that the ensemble size

can be set as large as is deemed useful, given the state-of-the-art high-performance computing facilities

available. Of course, it is desirable to use more complex models that represent all the important regions at

high resolution, such as the magnetosphere and the lower atmosphere, but those models require far more

computing resources with the consequence that smaller ensembles must typically be used. One alternative

is to use single-threaded approaches such as 4D-Var, while another possibility is to pursue nested-grid

approaches in cases where only a regional analysis is required.

In order to generate ensemble predictions of an ionospheric storm, it is necessary to create an ensemble of

external drivers that reflects the real uncertainty in the driver specifications. We did not have access to forecasts

Figure 11. RMS TEC errors and biases of three 1 h predictive assimilation

runs in the continental USA are shown for 10 September 2005. The effect

of different localization radii is addressed here.
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of the drivers used in this study so we added uncertainties to the observed/assimilated values of multidimen-

sional fields such as high-latitude electric potential, particle precipitation and the solar flux spectrum. This

approach allows for small-scale variability to be introduced to otherwise overly smooth external driver specifi-

cations. An alternative would be to use forecasts of simple, one-dimensional indices such as Kp [e.g.,Wing et al.,

2005] and F10.7 [e.g., Henney et al., 2012]. That approach was not chosen for this study because models are

unable to reproduce storms accurately even with measured values of those indices, as was shown by the

Community Coordinated Modeling Center challenge studies [Shim et al., 2011; Emery et al., 2012].

Pre-processed, verticalized TEC observations are used in this experiment. This approach is suboptimal

because the slant-to-vertical translation introduces errors. A more rigorous approach would be to calculate

the modeled values of slant TEC by integrating through the modeled electron density field along a straight

path between satellite and receiver and to assimilate the slant TEC data directly. This approach will remove

much of the observational error, but instrumental biases are still present in GNSS slant TEC observations.

To remove these biases, it would be advantageous to use an algorithm that accommodates time-differenced

phase observations, as has been done by Mitchell and Spencer [2003].

5. Conclusions

Verticalized GPS TEC observations have been assimilated into a coupled thermosphere-ionosphere model.

Model accuracy is improved so that 1 h predictions are more accurate than a 1 h persistence forecast

between 11:00 and 18:00 LT on 10 September 2005 in the continental USA. However the persistence forecast

is more accurate outside the storm period. The results show the potential for ionosphere-thermosphere

assimilation to improve midlatitude storm time TEC forecasting efforts, but also highlight the need for better

models and more accurate forecasts of the external drivers.

This study shows that assimilation of TEC observations can be used to improve storm time predictions of iono-

spheric TEC. The ensemble approach provides both a forecast of the ionosphere and an estimate of forecast

uncertainty. Following the approach ofWang et al. [1999], mesoscale models could be embedded in an ensem-

ble of large-scale forecasts to provide probabilistic predictions of small-scale effects such as scintillation. The

system demonstrated here includes a coupled thermosphere, so it could also form the basis of a satellite drag

forecast system [e.g., Matsuo et al., 2013].
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Erratum

The paper has been modified slightly to acknowledge a grant from NASA's Explorer's Program. This updated

version may be considered the authoritative version of record.
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