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Ionospheric signatures of gravity waves produced by

the 2004 Sumatra and 2011 Tohoku tsunamis:

A modeling study

Yonghui Yu1 , Wenqing Wang1, and Michael P. Hickey2

1College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing, China, 2Department of Physical

SciencesandCenter for SpaceandAtmospheric Research, Embry-RiddleAeronauticalUniversity,DaytonaBeach, Florida,USA

Abstract Ionospheric fluctuations inferred from observations of total electron content have previously

been attributed to tsunamis and have confirmed the strong coupling between Earth’s ocean and

ionosphere via atmospheric gravity waves (AGWs). To further advance our understanding of this wave

coupling process we employ a linear full-wave model and a nonlinear time-dependent model to examine the

ionospheric response to the AGW perturbations induced by the 2004 Sumatra and the 2011 Tohoku

tsunamis. In the 2004 case, our modeling analyses reveal that one component of the propagating AGWs

becomes dynamically unstable in the E-region ionosphere at a range exceeding 2000 km in a direction 340°

clockwise from north. Another component becomes convectively unstable in the E-region ionosphere at a

range exceeding 700 km in a direction 250° clockwise from north. In the 2011 case, a significant enhancement

in the ionospheric disturbance occurs in a direction northwest from the epicenter about 1 h following the

tsunami onset, in general agreement with observations. Our simulations also indicate that the AGW

propagating toward the southeast is responsible for a traveling ionospheric disturbance that remains of an

observable amplitude for over 4 h during which time it propagates horizontally almost 4000 km.

1. Introduction

Earthquakes often produce fast Rayleigh waves at the Earth’s surface, which can in turn produce fast atmo-

spheric acoustic waves that can propagate rapidly to ionospheric heights [e.g., Liu et al., 2006, 2011].

Subterranean earthquakes are able to produce tsunamis that in turn can generate obliquely upward propa-

gating atmospheric gravity waves (AGWs), which subsequently disturb the ionosphere thereby creating tra-

veling ionospheric disturbances (TIDs). These can be detected by a variety of techniques, one of which is

through the use of the Global Positioning System (GPS) array [e.g., Rolland et al., 2010; Galvan et al., 2011,

2012; Occhipinti et al., 2013; Crowley et al., 2016], while others utilize airglow imaging systems [Makela

et al., 2011; Smith et al., 2015].

Lee et al. [2008] postulated that the TID observed over Arecibo on 26 December was a response to the AGW

induced by the 2004 Sumatra tsunami. Shown in their Figure 7, Lee et al. [2008] proposed two different pos-

sible scenarios. In the first scenario, tsunami-induced AGWs propagate between Sumatra (3.316°N, 95.854°E)

and Puerto Rico (18.5°N, 66°W) along a great circle path of about 18,000 km; the AGWs are imperfectly ducted

for a long distance, and wave energy ultimately leaks into the ionosphere over Arecibo. In the second

scenario, the AGWs over Arecibo are generated locally by nearby tsunami waves (the latter having traveled

from the epicenter along a large U-turn path first across the Indian Ocean, then into the Atlantic Ocean),

and propagate in the northwest direction over Arecibo.

The 2011 Tohoku tsunami occurred in an area densely distributed with a GPS array, providing an excellent

opportunity to study the ionospheric response to a tsunami by monitoring the total electron content (TEC)

[e.g., Komjathy et al., 2012; Galvan et al., 2012]. Previous tsunami-ionosphere studies have shown that the

ionospheric response broadly depends on the latitude where the tsunami occurred and the direction of wave

travel [e.g., Artru et al., 2005a, 2005b; Occhipinti et al., 2006, 2008]. Hickey et al. [2009] found that the iono-

spheric response to the 2004 Sumatra tsunami would be most favorable for tsunami propagation in the mer-

idional direction. This dependence is due to a significant coupling between neutrals and ions that maximizes

along the geomagnetic field direction near the equator [Occhipinti et al., 2008].

Previous GPS observations in regions close to the epicenter have revealed that the TEC fluctuations asso-

ciated with the 2011 Tohoku tsunami were largest for waves propagating toward the northwest of the
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epicenter [Galvan et al., 2012]. It has been suggested that this remarkably different ionospheric response for

different wave propagation directions is due to the different ocean depths associated with the two different

directions of wave travel: slower (horizontal phase speed c) gravity waves are generated for propagation

toward shallow coastal waters and faster (c) gravity waves are generated for propagation toward the deep

ocean [Yu et al., 2015]. Horizontal mean winds indeed play a vital role in the upward propagation of gravity

waves. The zonal wind can significantly impact the ability of zonally propagating waves to reach higher alti-

tudes [Yu et al., 2015], while the typically weaker meridional wind has less effect on meridionally propagating

waves, although it can impact the efficiency of the coupling between the gravity wave and the plasma

[Occhipinti et al., 2008; Hickey et al., 2009].

Recently, Vadas et al. [2015] modeled the excitation of AGWs by the localized vertical body force of an ocean

surface wave packet . They derived linear solutions in an isothermal, windless, and nondissipative atmo-

sphere. One of their significant findings is that some of the excited AGWs may have greater phase speeds

than that of the ocean surface wave. This finding was used to explain observations of Makela et al. [2011],

in which some “early” AGW signatures were observed in the airglow layer an hour before the Tohoku tsunami

reached Hawaii.

The purpose of this paper is to further quantitatively evaluate the dependence of the ionospheric response

near the earthquake epicenters to propagation directions for the 2004 Sumatra and 2011 Tohoku tsunami

events. In so doing, we will improve our understanding with regard to the evolution of tsunami-generated

gravity waves and subsequent TEC variations over time and space. There is a solid evidence for tsunamigenic

gravity waves propagating in the ionosphere [e.g., Lee et al., 2008; Galvan et al., 2012; Crowley et al., 2016], but

their dissipation and contribution to the turbulence at ionospheric altitudes are still largely unknown. In this

paper we determine whether the tsunamigenic gravity waves eventually break into turbulence and, if so in

what form (dynamical or convective) that instability would take. In so doing, we are able to adequately dis-

tinguish the range of area that the waves affect in the ionosphere and retrospectively link the simulations

to the observations by Lee et al. [2008] and Galvan et al. [2012]. We prospect the simulated ionospheric

response to be a plausible bound to such tsunamigenic gravity waves (medium-scale, horizontal wavelength

λh ~hundreds of kilometer) [Occhipinti et al., 2008; Hickey et al., 2009]. Although rarely seen elsewhere in TEC

observations, small-scale AGWs (λh~ tens of kilometer) are sometimes observed to break down in airglow

images [e.g., Yamada et al., 2001].

Analyses of the height dependence of wave amplitudes are first performed by using a full-wave model

[Hickey et al., 2009] for a nonisothermal atmosphere with the inclusion of viscosity and mean winds.

Second, the neutral-ion coupling is studied in detail by using a 2-D time-dependent nonlinear model [Yu

and Hickey, 2007a; Yu et al., 2009] that has been modified to include ion chemistry and dynamics. The simu-

lated ionospheric response associated with each of the two tsunami events is presented in terms of the ver-

tical TEC (V-TEC) and/or the electron number density, and we will investigate how these relate to

previous observations.

The paper is arranged as follows. The numerical models, one of which includes ion chemistry and dynamics,

are described in section 2. The ambient mean atmosphere near the two earthquake epicenters is described in

section 3. The wave parameters and the model forcing are described in section 4. The results of the wave

simulation are provided in section 5 and are followed by a discussion and conclusions in sections 6 and

7, respectively.

2. Numerical Models

2.1. Full-Wave Model

The first model is a high-resolution 1-D, linear, steady state full-wave model [Hickey et al., 1997]. Note that

a spectral version of the full-wave model (not used here) has been previously used by Hickey et al. [2009]

to study tsunami-driven gravity wave packet propagation in the atmosphere associated with the 2004

Sumatra tsunami. The effects of these waves on the ionosphere were also modeled [Hickey et al., 2009].

In follow-up studies, the effects of these waves on mesospheric and thermospheric airglow emissions

were studied [Hickey et al., 2010a], and the nonlinear interaction of these waves with the mean state

was also examined [Hickey et al., 2010b]. In the present study we do not use this version of the full-wave
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model, but instead rely on the nonlinear 2-D model (section 2.2) to describe the upward propagation of

AGW packets.

The full-wave model solves the complete linearized equations of continuity, momentum, and energy for a

compressible, viscous, and thermally conducting atmosphere with the effects of ion drag and Coriolis force,

and with realistic altitude variations of the basic temperature and wind structure. At the upper boundary a

radiation condition is imposed using the dispersion equation of Hickey and Cole [1987].

2.2. 2-D Model

The second model is a 2-D, nonlinear, time-dependent gravity wave model that incorporates ion chemistry

and dynamics. The model has been previously used to study gravity wave propagation in the atmosphere

[Yu and Hickey, 2007a, 2007b, 2007c; Yu et al., 2009, 2015]. The model solves the Navier-Stokes equations with

an explicit Lax-Wendroff scheme and an implicit Newton-Raphson scheme for wave propagation in a noni-

sothermal, viscous atmosphere in the presence of background winds. Rayleigh friction and Newtonian cool-

ing are imposed as a sponge layer near the upper boundary of the model [Walterscheid and Schubert, 1990],

while lateral boundaries are periodic over a horizontal wavelength to simulate a horizontally infinite domain.

Coded in the 2-D model, the hydromagnetic momentum equation (1) is solved for the ions O+, N2
+, O2

+, and

NO+, which are influenced by collisional coupling with neutral perturbations produced by tsunami-induced

AGWs. This equation, with the ion continuity equation (2) and the equation (3) for charge neutrality, governs

the ion dynamics [Kelley, 1989]. Note that a similar approach to include ion dynamics has been applied by

Occhipinti et al. [2008] to study the ionospheric response to tsunami-induced AGWs.

ρj
dvj
!

dt
¼ �∇
¯
pj þ ρj g

!þ njqj E
!

þ vj
!�BÞ

!
� ρjυjn vj

!� vn
�!� �

�

(1)

∂nj

∂t
þ ∇
¯
� nj vj

!� �

¼ Pj � njLj (2)

ne ¼ ∑
4

j¼1
nj (3)

Here ρj, pj, nj, qj, and vj
!are the jth ion density, pressure, number density, charge, and velocity, respectively; vn

�!

is the neutral velocity; υjn=2.6 × 10� 15(nn+ nj)A
� 1/2 [Kelley, 1989] is the collision frequency between an ion

and neutrals; nn is the neutral number density; A is the mean neutral molecular mass. The g!, E
!

, and B
!

are the gravity, the electric and magnetic fields, respectively. Pj and Lj are the chemical production and loss

rates for the jth ion, respectively; ne is the electron number density.

The magnetic field vector B
!

is related to the magnetic dip angle I [Hickey et al., 2009]:

B
!
=B ¼ i

!
cosI þ k

!
sinI: (4)

The dipole angle I is related to latitude θ with a simple dipole field assumption.

sinI ¼�2sinθ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 3sin2θ
p

; (5)

cosI ¼�cosθ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 3sin2θ
p

(6)

where i
!

and k
!

are positive due southward and upward, respectively. We prescribe the electric field E
!

in

equation (7) so that the forcing term K
!

becomes independent of B
!

for gravity wave propagation

[Occhipinti et al., 2008].

K
!

¼�∇
¯
pj þ ρj g

!þ njqj E
!

¼�ρjυjn vn
�! (7)

The numerical method to solve the ion densities is straightforward. Following the neutral dynamics solution

for each time step, we first solve the ion equation (1) to calculate the ion velocity vj
!, and then apply the

second order explicit Lax-Wendroff scheme in the ion continuity equation (2), which is rewritten as a partial

differential equation in a flux-preserved form. All ion number densities nj (O
+, N2

+, O2
+, and NO+) are indivi-

dually solved with respect to time. Finally, we use the ion equation (3) to obtain the electron number density

(ne) and calculate the time-resolved V-TEC by integrating ne over altitude.
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The ion chemistry is applied from

Schunk and Sojka [1996] with some

reaction rates acquired from Rees

[1989]. The atomic and molecular

ions O+, N2
+, O2

+, and NO+ are pro-

duced by charge exchange processes

and lost by emission and dissociative

recombination processes (Table 1).

Their chemical production and loss

rates (Pj and Lj, respectively) are pre-

sented in Table 2. Note that similar

ion chemistry has been applied by

Hickey et al. [2009] to study the

ionospheric response to the 2004

Sumatra tsunami.

3. Ambient Mean Atmosphere

The ambient neutral atmosphere is described by the Mass Spectrometer and Incoherent Scatter-90 (MSIS-90)

model [Hedin, 1991] for the mean conditions prevailing at the epicenter location of the 11 March 2011

Tohoku tsunami, for a latitude and longitude of 38.322°N and 142.369°E, respectively, and for a universal time

of 05 h 46m. This model is also used to define the mean conditions prevailing at the epicenter for the 26

December 2004 Sumatra tsunami, for a latitude and longitude of 3.316°N and 95.854°E, respectively, and

for a universal time of 0 h 58m. The solar and geomagnetic activities appropriate to the time of the 2004

event are moderately active (Ap=12; F10.7=88.7 and its 81 day mean is 102.8) [Hickey et al., 2009]. We are

aware that there was an enhanced geomagnetic activity during the time of the 2011 event [Komjathy

et al., 2012], and so we apply slightly higher solar and geomagnetic conditions for it (Ap= 48; F10.7=121.5

and its 81 day mean is 104.4) (ftp://ftp.ngdc.noaa.gov/STP/GEOMAGNETIC_DATA/INDICES/KP_AP/). To facili-

tate a consistency (or perhaps a comparison) with previous studies [Hickey et al., 2009; Yu et al., 2015], the hor-

izontal mean winds are incorporated by using the Horizontal Wind Model-93 [Hedin et al., 1996] using the

same input parameters as provided above.

Horizontal mean winds can profoundly influence upward wave propagation, leading to anisotropic wave pro-

pagation and thereby leading to characteristics (such as intrinsic wave period and vertical wavelength) that

depend on propagation direction in the thermosphere. Figure 1a shows the mean wind profiles related to

the 2004 Sumatra tsunami. The meridional wind is small below 100 km altitude and approaches 30m/s north-

ward by 500 km altitude. The zonal wind is about 20m/s westward near the stratopause (45 km). At higher alti-

tudes it increases, reaching a local maximum of about 50m/s eastward near 110 km altitude, and then about

54m/s westward near 132 km altitude. At greater heights it reaches about 75m/s eastward by 500 km altitude.

We also plot the mean winds projected in the N250°E and N340°E directions (Figure 1a), each defined by a

rotation of 250° and 340° clockwise from the north, respectively. These two directions are inferred from

the directions of two major ocean surface wave propagations associated with the tsunami event [Abe,

2006]. It can be seen that over most

altitudes the N250°E wind is signifi-

cantly larger than the N340°E wind.

Altitude profiles of the sound speed,

mean temperature, and Brunt-

Väisälä period (τB) near the 2004

Sumatra epicenter are shown in

Figure 1b. The temperature reaches

an exospheric temperature of about

750 K at high altitudes. Above about

120 km altitude τB increases with

Table 1. Chemical Reactions for Ions (kj, the Chemical Reaction Rate,

m
3
s
� 1

; T, Temperature, K)

Chemical Reaction Reaction Rate

O
+
+N2→NO

+
+N k1 = 5 × 10

� 19

O
+
+O2→O2

+
+O k2 = 2 × 10

� 17
(300/T)

0.4

O
+
+N2→N2

+
+O k2a = 2 × 10

� 17
(300/T)

0.4

O
+
+NO→NO

+
+O k3 = 8 × 10

� 19

O
+
+ e→O(

5
P) + hν1356 k4 = 7.3 × 10

� 19

O2
+
+N2→NO

+
+NO k5 = 5 × 10

� 22

O2
+
+N→NO

+
+O k5a = 1.2 × 10

� 16

O2
+
+NO→NO

+
+O2 k6 = 4.4 × 10

� 16

O2
+
+ e→O +O k7 = 1.6 × 10

� 13
(300/T)

0.55

N2
+
+O→NO

+
+N k8 = 1.4 × 10

� 16
(300/T)

0.44

N2
+
+O→O

+
+N2 k9 = 1 × 10

� 17
(300/T)

0.23

N2
+
+O2→O2

+
+N2 k10 = 5 × 10

� 17
(300/T)

N2
+
+NO→NO

+
+N2 k11 = 3.3 × 10

� 16

N2
+
+ e→N+N k12 = 1.8 × 10

� 13
(300/T)

0.39

NO
+
+ e→N+O k13 = 4.2 × 10

� 13
(300/T)

0.85

Table 2. Chemical Production (Pj, m
� 3

s
� 1

) and Loss Rates (Lj, s
� 1

)

Loss rate Production rate

O
+

(k1 + k2a)N2 + k2O2 + k3NO
+ k4e

k9ON2
+

N2
+

(k8 + k9)O + k10O2 + k11NO
+ k12e

k2aN2O
+

O2
+

k5N2 + k5aN+ k6NO+ k7e k2O2O
+
+ k10O2N2

+

NO
+

k13e

k1N2O
þ þ k3NOO

þ

þk5N2O2
þ þ k5aNO2

þ þ k6NOO2
þ

þk8ON2
þ þ k11NON2

þ
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height, leading to a filtering of the shortest-period waves. τB is about 10.5min near the F-region peak (300 km)

[Hickey et al., 2009; Galvan et al., 2012], so that waves having periods longer than this are expected to domi-

nate. The sound speed has two local minima near 20 and 100 km altitude with values of about 280m/s.

The horizontal mean winds, mean temperature, sound speed, and Brunt-Väisälä period near the 2011 Tohoku

epicenter are shown in Figures 1c and 1d for reference. A detailed description of the atmospheric variables

plotted in Figures 1c and 1d is not presented here, but they have been described before by Yu et al. [2015].

The mean profile of the electron number density (ne(z)) is modeled as a Chapman layer with the F2 peak

(300 km) [Hickey et al., 2009; Galvan et al., 2012] and an E-layer peak (105 km) with a respective maximum

Figure 1. Horizontal mean winds positive toward the east (zonal), south (meridional), and southeast (upper x axis) and
negative in the N250°E and N340°E directions (lower x axis) ((a) Sumatra and (c) Tohoku). Brunt-Väisälä period (upper x
axis), sound speed and mean temperature (lower x axis) ((b) Sumatra and (d) Tohoku).

Journal of Geophysical Research: Space Physics 10.1002/2016JA023116
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number density of 1.17 × 1012m�3 and 1.47 × 107m�3 for the tsunami events. This assumption implies a con-

dition of moderate solar activity. The Chapman layer is defined by

ne zð Þ ¼ Nmaxexp 0:5 1�
z � zmaxð Þ

H
� exp �

z � zmaxð Þ

H

� �	 
� �

(8)

Figure 2. Ocean surface displacement ξ (equation (10), x = 0) (solid line, upper x axis, left y axis) and normalized spectral amplitude (dashed dotted line, lower x axis,
right y axis) at the 2011 Tohoku epicenter [Yu et al., 2015] ((a) τc= 0min, τd= 32min, FWHM=14min, τ = 20–60min, χ = 120min) and at the 2004 Sumatra epicenter
((b) N340°E, τc = 0min, τd = 139min, FWHM= 60.8min, τ = 87–262min, χ = 525min; (c) N250°E, τc = 0min, τd = 40min, FWHM= 17.5min, τ = 25–75min, χ = 150min).

Figure 3. Refractive indexes (a) for the 40 and 139min (τd) waves, respectively, propagating toward the N250°E and N340°E

directions (λh = 238 and 826 km) driven by the 2004 Sumatra tsunami and (b) for the 32min (τd) waves, respectively,
propagating toward the southeast and northwest (λh = 466.56 and 232.32 km) driven by the 2011 Tohoku tsunami.

Journal of Geophysical Research: Space Physics 10.1002/2016JA023116
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where zmax and Nmax are the height and value of the maximum number density, respectively, and H is the

atmospheric scale height at the E-region or F-region peak. The TEC mean value was calculated by integrating

ne(z) (8) over altitude. It was about 21 and 17 total electron content unit (TECU) at the Tohoku and Sumatra

epicenters, respectively, where 1 TECU= 1016 elm�2.

We solve for the mean number densities of O+, N2
+, and O2

+ by neutralizing charge to eliminate NO+, and

then following Hickey et al. [2009] solve the matrix equation below with chemical rate coefficients supported

by Schunk and Sojka [1996] (Tables 1 and 2).

L Oþð Þ �k9O 0

k1N2 þ k3NOþ k13ne k8Oþ k11NOþ k13ne
k5N2 þ k5aN

þk6NOþ k13ne

�k2O2 �k10O2 L O2
þð Þ

2

6
6
6
6
4

3

7
7
7
7
5

Oþ

N2
þ

O2
þ

2

6
4

3

7
5 ¼

0

k13ne
2

0

2

6
4

3

7
5 (9)

Themean number density profiles of the neutral species were acquired from theMSIS-90 model [Hedin, 1991]

except for NO, which was modeled as a Gaussian profile with a maximum number density of 1014m�3 at

115 km altitude and with a full width at half maximum (FWHM) of about 42 km [Hickey et al., 2009]. This is

a good representative profile based on the empirical model of Marsh et al. [2004].

4. Wave Parameters and Forcing

Tsunami travels at the shallow-water wave speed (
ffiffiffiffiffiffi

gh
p

) that depends on the gravity (g) and the ocean depth

(h) [Holton, 2012]. For wave propagation toward the northwest of the Tohoku epicenter (shallow coastal

waters, average depth about 1.5 km), the shallow-water wave speed was about 121m/s. Deep-ocean

Assessment and Reporting of Tsunamis (DART) allows measurement of the average speed of a tsunami

between the epicenter and the ocean buoys. DART buoy no. 21419 measured an average wave speed of

about 243m/s southeastward [Galvan et al., 2012]. The wave amplitude of the sea surface height was about

0.76m (Am), and the dominant wave period was about 32min (τd) [Galvan et al., 2012]. The horizontal wave-

length λh (and associated phase speed c) was about 232.32 km (121m/s) for the northwestward propagating

wave and about 466.56 km (243m/s) for the southeastward propagating wave.

Abe [2006] discussed the tide gauge records associated with the 2004 Sumatra tsunami and found that the

N340°E direction was associated with the direction of fault strike, for which the dominant wave period (τd)

was about 139min and the horizontal wavelength (λh) was about 826 km. The N250°E direction was asso-

ciated with the normal fault, for which τd was about 40min and λh was about 238 km. These periods were

derived from tide gauge measurements, while the horizontal wavelengths λh were derived from a horizontal

phase speed equal to the local shallow-water wave speed (99m/s) for an average sea depth of about 1 km

[Abe, 2006].

4.1. Full-Wave Model Forcing

In the steady state full-wave model the wave of 32min period (τd) for the 2011 Tohoku tsunami is forced at

sea level with vertical velocity amplitude of about 2.49 × 10�3m/s (=ωAm, where ω is the extrinsic wave fre-

quency and Am is the maximum surface displacement of 0.76m) [Galvan et al., 2012].

For the 2004 Sumatra tsunami, the wave of 139min period (τd, λh= 826 km, c=99m/s) propagating toward

the fault strike (N340°E) and the wave of 40min period (τd, λh= 238 km, c= 99m/s) propagating toward the

normal fault (N250°E) are forced with vertical velocity amplitudes of about 3.77 × 10�4 and 1.31 × 10�3m/s,

respectively (Am=0.5m) [Hickey et al., 2009].

4.2. 2-D Model Forcing

Forcing in the 2-D model is implemented by prescribing a time-dependent vertical displacement ξ at the

lower boundary (sea level), which is applied to the right-hand side of the vertical momentum equation

(Appendix A of Yu et al. [2015]). Following Yu et al. [2015], it is described analytically as a traveling sinusoidal

wave modulated by a Gaussian envelop over time,

ξ x; 0; tð Þ ¼ Amexp � t � τcð Þ2=2Δt2
� 

sin k0x � ω0tð Þ: (10)
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Here x is the horizontal position and t is the time. The remaining parameters are the maximum ocean surface

displacement (Am, Tohoku: 0.76m, Sumatra: 0.5m), the center time (τc, Tohoku: 05 h 46m UT, Sumatra: 0 h

58m UT), the Gaussian depth of time (Δt = τd/2 before τc, Δt = τd after τc), a horizontal wave number

(k0= 2π/λh), and an extrinsic frequency (ω0=2π/τd), respectively, for the 2004 and 2011 cases.

The spectral amplitude for each wave period is normalized by partitioning a fraction of the total power ampli-

tude. For the 2011 case, the wave source is derived with a maximum normalized spectral amplitude of about

0.42 at 32min (τd) and with a FWHM of about 14min (Figure 2a) [Yu et al., 2015]. This ocean surface wave

packet composes a continuum spectrum of periods (τ) ranging from 20 to 60min and a duration (χ) of

120min (Figure 2a). This is a good representative wave configuration based on the DART measurements

[Galvan et al., 2012] and previous simulations [Yu et al., 2015].

For the 2004 case, we similarly derive the wave source with a maximum normalized spectral amplitude of

about 0.42 at 139min (τd) and with a FWHM of about 60.8min for the N340°E wave (Figure 2b). The ocean

surface wave packet in this direction composes a continuum spectrum of periods (τ) ranging from 87 to

262min and a duration (χ) of 525min. For the N250°E direction, we also derive the wave source with a max-

imum normalized spectral amplitude of about 0.42 at 40min (τd) and with a FWHM of about 17.5min

(Figure 2c). The ocean surface wave packet in the direction composes a continuum spectrum of periods (τ)

ranging from 25 to 75min and a duration (χ) of 150min. Each wave packet propagates horizontally with

one monochromatic wavelength (λh) [Yu et al., 2015; Vadas et al., 2015]; most gravity wave components of

the spectrum lie within a range of �21% centered about the dominant wave period (τd) (Figure 2).

Vadaset al. [2015] found largestmomentumflux for the fundamental excitedgravitywaves, andonly thosecon-

sistentwith the sole λhof anocean surfacewavepacket are significant andnonnegligible.Hereweapproximate

thehorizontal group velocity of thegravitywavepacketwith the horizontal dominant phase speed (c) [Salmon,

2014, p. 27]. We configure those ocean surface wave packets close to the epicenters according to exact mea-

sures by Abe [2006] and Galvan et al. [2012] and soundmodeling by Yu et al. [2015] unless otherwise noted.

5. Results of Wave Simulation

In this section we present from the full-wave model the altitude variations of the refractive index, and the

amplitudes of the temperature and velocity perturbations, for the dominant (monochromatic) wave in the

source spectrum. From the 2-D model, we present the V-TEC time variations of the ionospheric response,

resulting from an entire source spectrum as discussed before, and the atmospheric stability.

5.1. Full-Wave Model Results

The square of the vertical wave numberm2, the so-called refractive index, determines the wave propagation.

It obeys the dispersion equation [Gossard and Hooke, 1975]

m2 ¼
N2 �Ω

2
� �

k2
� �

Ω
2 � f 2

� � þ
Ω

2

Cs
2 �

1

4H2 : (11)

Here N is the nonisothermal Brunt-Väisälä frequency, Ω is the wave intrinsic frequency (Ω=ω� kŪ), k is the

horizontal wave number, Ū is the horizontal mean wind in the direction of wave propagation, f is the inertial

frequency, Cs is the sound speed, and others are as defined previously.

Figure 3 shows the refractive indexes for the gravity waves driven by the 2004 Sumatra and 2011 Tohoku

tsunamis. The waves propagating toward the N250°E and N340°E directions (Sumatra tsunami, c=99m/s;

Figure 3a) remain internal (m2> 0) in most regions except for a narrow region of evanescence (m2< 0) in

the upper troposphere. These waves become evanescent due to the thermal structure of this region (large

atmospheric lapse rate, see Figure 1b). The wave propagating toward the southeast (Tohoku tsunami,

c= 243m/s; Figure 3b) exhibits regions of evanescence (m2< 0) in the lower and middle troposphere and

also in the upper mesosphere. The wave propagating toward the northwest (Tohoku tsunami, c=121m/s;

Figure 3b) remains internal (m2> 0) everywhere. The Tohoku waves have been previously discussed by

Yu et al. [2015].

These results indicate that the upward propagation should be partially impeded for the southeastward pro-

pagating wave in the lower and middle troposphere, mainly due to the fact that its intrinsic phase speed
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(c�Ū=243� 16 =~227m/s, c is the extrinsic phase speed, Ū is the southeastward mean wind, see Figure 1c)

exceeds about 0.8 of the local sound speed (about 280m/s, see Figure 1d). An evaluation of the limited wave

intrinsic phase speed compared to the local sound speed for internal gravity waves can be found in the works

ofWalterscheid and Hickey [2011] and Yu et al. [2015]. The northwestward wave does not experience evanes-

cence and its propagation to the ionosphere occurs freely.

Figure 4a shows perturbation amplitudes for the temperature T0, the horizontal velocity U0 and the vertical

velocity W0, and for wave propagation toward the N250°E and N340°E directions near the 2004 Sumatra

epicenter. For both waves, the T0 amplitude grows with height up to about 120 km altitude. Undulations

in the amplitude below this height are mainly associated with weak reflections from the base of the ther-

mosphere. The two waves have an identical extrinsic phase speed (
⇀

V e ¼ ω=k) (about 99m/s), but differ-

ent intrinsic phase speeds (
⇀

V i ¼ Ω=k) due to the mean wind (
⇀

V i ¼
⇀

V e �
⇀

U ). In the region directly below

about 120 km altitude, the refractive index for the N340°E wave is larger than that for the N250°E wave

(see Figure 3a). The larger refractive index equates to smaller vertical wavelength (λz) which in turn

results in greater viscous dissipation. This explains the slightly smaller amplitude of the wave propagating

in the N340°E direction at altitudes directly above this region (at altitudes of 120 to 130 km shown in

Figure 4a).

In the 120 to 220 km altitude range, the N250°E wave, which is slower and therefore has a smaller value

of λz (and a larger refractive index, see Figure 3a), experiences a larger viscous dissipation rate than does

the N340°E wave (see Figure 4a). Consequently, by about 280 km altitude the temperature amplitudes of

the two waves become equal. Above 280 km altitude the N340°E wave has a larger temperature ampli-

tude than does the N250°E wave because the refractive index for the N250°E wave asymptotes to

m= 0, and it becomes marginally evanescent (see Figure 3a) so that its upward propagation is partially

impeded. Consequently, by 500 km altitude the N340°E wave achieves a temperature perturbation ampli-

tude of about 0.4 K, while the N250°E wave only achieves a temperature perturbation amplitude of about

0.007 K (see Figure 4a).

Figure 4. Amplitudes of the temperature (upper x axis), horizontal and vertical velocity perturbations (lower x axis) for the
waves (a) propagating toward the N250°E and N340°E directions driven by the 2004 Sumatra tsunami and (b) propagating

toward the southeast and northwest driven by the 2011 Tohoku tsunami.
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Amplitudes of the horizontal velocity perturbations U0 for the waves propagating in the N250°E and N340°E

directions are also shown in Figure 4a. U0 for the N250°E wave has a maximum value of about 50m/s at about

120 km altitude, larger than U0 (about 20m/s) for the N340°E wave in this region. For the reasons discussed

previously, U0 for the N250°E wave decreases more rapidly with height in the thermosphere, achieving about

0.02m/s by 500 km altitude. For the N340°E wave the decrease of U0 is more modest, and this wave achieves

an amplitude of about 1m/s by 500 km altitude.

Amplitudes of the vertical velocity perturbation W 0 for the two waves are also shown in Figure 4a. Their var-

iations with altitude tend to follow the corresponding altitude variations of their U0 values, but W 0 is smaller

than the corresponding U0 by a factor of approximately k/m≈ τB/Ti, where τB= 2π/N is the Brunt-Väisälä

period, Ti=2π/Ω is the intrinsic wave period, and others are as defined previously. This factor is typically

about 0.1, as can be seen in Figure 4a. Note that while the amplitudes of U0 are similar for the two waves,

the values ofW0 are not. This is explained as follows. The forcing of the waves inW0 provides a displacement

ζ =W 0/iω=0.5 m [Hickey et al., 2009] and so because the two waves have different frequencies their vertical

velocities are different. However, for low-frequency gravity wavesW0 ≈�ωU0/N [Hickey and Cole, 1987], which

leads immediately to the result that |ζ |≈ |U0|/N. Hence, U0 is approximately the same for the two waves.

Altitude variations of the amplitudes of T0, U0, andW0 for the southeastward and northwestward waves asso-

ciated with the Tohoku event are shown here in Figure 4b for reference. A detailed analysis of their propaga-

tion properties has been described before and can be found in Yu et al. [2015].

Figure 5. V-TEC perturbations (mean: 21.3 TECU) due to AGWs propagating toward the (a) northwest (λh = 232.32 km,

τd = 32min, c = 121m/s) and (b and c) southeast (λh = 466.56 km, τd = 32min, c = 243m/s) driven by the 2011 Tohoku
tsunami.

Journal of Geophysical Research: Space Physics 10.1002/2016JA023116

YU ET AL. IONOSPHERIC MODEL SIGNATURES OF TSUNAMIS 10



Note that for the wave propagating in the N250°E direction driven by the 2004 Sumatra tsunami, the maxi-

mum temperature amplitude is about 50 K near 125 km altitude (see Figure 4a), approximately 12.5% of

the mean (400 K, see Figure 1b). The corresponding amplitude of the horizontal velocity fluctuation is about

50m/s near 125 km altitude (see Figure 4a). TheOrlanski and Bryan [1969] criterion for the onset of convective

instability is that U0 > c ’ where U0 is the horizontal wind perturbation and c ’ is the intrinsic horizontal phase

speed. For this wave the intrinsic phase speed is equal to the extrinsic phase speedminus the horizontal wind

speed (c�V = 99� 54=~45m/s near 125 km altitude; Figure 1a), which is less than the maximum value of U0

(~50m/s) near 125 km altitude. Because U0 > c ’, this wave amplitude exceeds the threshold amplitude

required for the onset of convective instability. Therefore, we expect that the wave propagating in the

N250°E direction associated with the 2004 Sumatra tsunami would achieve convective instability while pro-

pagating upward through the 125 km altitude region.

5.2. 2-D Model Results

The V-TEC is calculated at each horizontal position and at each time of the 2-D model by integrating ne over

altitude. In Figures 5 and 6, we show these V-TEC fluctuations as a function of time and horizontal position

across the grid. The horizontal positions vary from zero to one complete horizontal wavelength, and the

times shown are with respect to the times of the tsunami onset (Tohoku: 05 h 46m UT; Sumatra: 0 h 58m UT).

5.2.1. 2011 Tohoku

The results presented in Figure 5 are for the 2011 Tohoku tsunami and for the 32min wave packets

propagating toward the northwest (λh= 232.32 km; Figure 5a) and southeast (λh= 466.56 km;

Figure 6. V-TEC perturbations (mean: 17.2 TECU) due to AGWs propagating toward the (a) N340°E (λh = 826 km,

τd = 139min, c = 99m/s) and (b) N250°E directions (λh = 238 km, τd = 40min, c = 99m/s) driven by the 2004 Sumatra
tsunami.
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Figures 5b and 5c). The TEC mean value for this case is about 21.3 TECU. In Figure 5a we see a wavy

packet propagating toward the northwest, with a local maximum of about 0.45 TECU (~2% of the

mean) occurring at about 125min after the tsunami onset. Apparently, four or five cycles of significant

V-TEC fluctuations occur at times between about 60 and 200min after the tsunami onset, spanning a

horizontal extent between about 436 and 1452 km (≈ λh * t/τd) from the epicenter.

Figures 5b and 5c show another wave packet propagating toward the southeast. The V-TEC fluctuations

exhibit a local maximum of about 0.35 TECU (~1.6 % of the mean) occurring at a time of about 230min.

Four or five cycles of significant V-TEC fluctuations appear at times between about 90 and 270min after

the tsunami onset and span a horizontal extent between about 1312 and 3937 km (≈ λh * t/τd) from the

epicenter. The V-TEC amplitudes gradually increase with increasing time up to about 230min, after which

they decrease.

A comparison of the results for the two waves shown in these figures demonstrates that the

V-TEC fluctuations for the 2011 Tohoku tsunami are stronger and occur earlier for the wave propa-

gating toward the northwest than for the wave propagating toward the southeast. In the former

case the V-TEC fluctuations reach a value of about 0.45 TECU about 2 h following the tsunami

onset, whereas in the latter case the V-TEC fluctuations reach a value of about 0.35 TECU about

4 h following the tsunami onset. Analyses of these V-TEC fluctuations for the 2011 Tohoku tsunami

show that after 1 h following the tsunami onset, the TID activity northwest of the epicenter is

stronger (northwest: 0.06 TECU, southeast: 0.02 TECU). This result agrees with the observations of

Galvan et al. [2012] and with the previous simulations of Yu et al. [2015] that focused on the

gravity waves themselves. According to the simulations of Yu et al. [2015], the northwest wave sig-

nificantly perturbs the E-region ionosphere sooner (after 1 h following the tsunami onset) than does

the southeast wave, causing the TEC fluctuations to occur earlier (see Figure 5a). The northwest

wave also significantly disturbs the F-region ionosphere sooner (after about 2 h) than does the

southeast wave (after about 4 h) (electron number density fluctuations, not shown). Although the

southeast wave has an observable V-TEC fluctuation of about 0.2 TECU at near 120min (see

Figure 5b), this occurrence has not been confirmed by observations, such as those of Galvan et al.

[2012], most probably because of the sparsely populated GPS receiver network toward the south-

east of the epicenter.

5.2.2. 2004 Sumatra

The V-TEC fluctuations associated with the 2004 Sumatra tsunami are presented in Figure 6. The results

for the 139min wave packet propagating in the N340°E direction (λh= 826 km) are shown in Figure 6a,

and those for the 40min wave packet propagating in the N250°E direction (λh= 238 km) are shown in

Figure 6b. The TEC mean value for this case is about 17.2 TECU. We observe that in Figure 6a the

139min wave packet propagating in the N340°E direction leads to instability and breaks into turbulence

at about 378min (a horizontal distance of about λh * t/τd≈ 2246 km in the far field). A local maximum of

about 0.5 TECU (~3% of the mean) occurs at about 372min. Figure 6b shows that the 40min wave

packet propagating in the N250°E direction leads to instability and breaks into turbulence at about

130min (a horizontal distance of about λh * t/τd≈ 773 km in the far field). A local maximum of about

0.67 TECU (~4% of the mean) occurs at about 126min.

We present three pairs of comparison between the N340°E and N250°E waves in Figure 7 to show

wave breakdown characteristics. Wave breakdown can be partially supported by an altitude-time con-

tour plot of the relative fluctuations of electron number density ( ne � neð Þ=ne) (so-called factor change

in Figure 7). For the N340°E wave at position 544 km, Figure 7a shows that two local maxima and one

local minimum of about 1, 0.7, and �0.7 occur at approximate 338, 358, and 378min, respectively,

and at near 170 km altitude. Figure 7b indicates for the N250°E wave at position 224 km that two local

maxima of about 8 and 24 occur at about 120 and 130min, and at altitudes close to 170 and 180 km,

respectively.

Additionally, a time series of the V-TEC perturbations is presented for AGWs propagating toward the

N340°E direction at position 544 km (Figure 7c) and toward the N250°E direction at position 224 km

(Figure 7d). After initial sinusoidal oscillations, at later times (N340°E: about 360min, N250°E: about

125min) their amplitudes increase significantly and become more turbulent.

Journal of Geophysical Research: Space Physics 10.1002/2016JA023116

YU ET AL. IONOSPHERIC MODEL SIGNATURES OF TSUNAMIS 12



To further reveal the altitude region where the convective instability forms, we examine the atmospheric sta-

bility, defined by the square of the Brunt-Väisälä frequency (N2) [Holton, 2012]:

N2 ¼
gdθ

θdz
¼

g dT=dz þ g=cp
� �

T
(12)

Here θ is the potential temperature, T is the temperature, cp is the specific heat at constant pressure, dθ/dz is

the vertical potential temperature gradient, and dT/dz is the vertical temperature gradient. If N2 is less than

zero, which occurs when the atmospheric lapse rate (dT/dz) exceeds the adiabatic lapse rate (g/cp), the poten-

tial temperature decreases with height and convective instability occurs [Hecht, 2004].

In Figures 7e and 7f we show the relative change in N2 from its initial value ((N2�Ni
2)/Ni

2), and hence, con-

vective instability is indicated when this achieves a value of�1 or smaller. This ratio is shown in Figure 7e as a

function of height and horizontal position at a time of 378min for the wave propagating in the N340°E direc-

tion. It can be seen that this ratio never reaches �1 in the 120–300 km altitude region, and hence, this wave

remains convectively stable. Figure 7f shows this quantity for the wave propagating toward the N250°E

Figure 7. (a and b) Relative change of the electron number density (ne), (c and d) time series of the V-TEC perturbations,

and (e and f) relative change of the square Brunt-Väisälä frequency (N
2
) due to AGWs propagating toward the N340°E

(Figures 7a, 7c, and 7e) and N250°E directions (Figures 7b, 7d, and 7f) driven by the 2004 Sumatra tsunami.
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direction at a time of 130min. Convective instability (ratio<�1) is apparent near altitudes of 135, 170, and

205 km at horizontal positions exceeding 100 km. The earliest sign of the ratio less than�1 appears at about

126min and at about 180 km altitude (not shown). The N250°E wave propagates upward through the E-

region ionosphere (120 to 220 km) with a larger amplitude (see Figure 4a) and a smaller λz (see Figure 3a) than

those of the N340°E wave. It forms an instability layer in this altitude region (see Figure 7f) and appears much

earlier in the TEC fluctuation in its vertical propagation than the N340°E wave (see Figures 7a, 7b, 7c and 7d).

Although our analysis has indicated that the N340°E wave remains convectively stable, here we demonstrate

that it becomes shear unstable. Usually, convective instability preempts shear instability [e.g., Fritts and

Rastogi, 1985]. The criteria for shear instability involves the Richardson number, Ri [Richardson, 1920;

Gossard and Hooke, 1975], to quantify the dynamical stability of the atmospheric region. Ri is a measure of

the atmospheric stability to the destabilizing effects of wind shear. It is defined as

Ri ¼
N2

dU=dzð Þ2
¼

g=Tð Þ dT=dz þ g=cp
� �

dU=dzð Þ2
; (13)

where dU/dz is the horizontal wind shear and others are as previously defined. Richardson [1920] originally

claimed that the atmosphere would be unstable for Ri less than 1; however, later works have shown that

in order to initiate the shear instability Ri needs to be less than 1/4 [Miles, 1961; Howard, 1961; Chimonas,

1970]. As reported by Hines [1971], Gossard and Hooke [1975], and Hecht [2004], once formed, instability

can be maintained as long as Ri remains less than 1. The results of our analysis show that for the N340°E wave

at about 378min Ri is about 0.7 and 0.03 at about 125 and 105 km altitudes (not shown), respectively, where

mean wind shears are large (see Figure 1a). The earliest sign of Ri less than 1 appears at about 358min and at

about 130 km altitude (not shown).

For the wave propagating toward the N250°E direction, the earliest sign of convective instability (when the

relative change in N2<�1) appears at a time of about 126min and at an altitude of about 180 km (not

shown). At subsequent times, convective instability predominates for the N250°E wave and results in a differ-

ent type of feature from that of the shear instability associated with the N340°E wave (Figure 6). The N250°E

wave maintains values of Ri larger than 1 after about 126min, in agreement with the finding of Fritts and

Rastogi [1985] that convective instability preempts shear instability. Further detailed study on these wavefield

instabilities requires a considerable future work; the interested readers are referred to the previous work of

gravity wave saturation by Fritts [1989].

6. Discussion

6.1. 2004 Sumatra

Lee et al. [2008] reported on TID measurements from Arecibo that may have been associated with the 2004

Sumatra tsunami in the Indian Ocean. Two scenarios, described in their Figure 7, were postulated to explain

these TID observations. For the first scenario involving propagation along a great circle path between

Sumatra and Puerto Rico, our current findings suggest that the wave would propagate freely toward the

N340°E direction spanning a horizontal distance of about 2246 km. This wave would subsequently break in

the E-region ionosphere (see Figures 6a and 7a). Our results show that this wave would not be ducted

because there is no upper boundary for such a duct (m2 remains positive in the mesosphere and thermo-

sphere, as shown in Figure 3a). Our findings therefore suggest that long-range wave propagation over a con-

siderable distance (of about 18,000 km) between the epicenter and the observation site is highly unlikely.

Titov et al. [2005] determined the existence of tsunami disturbances in the Atlantic and Pacific Oceans

beyond the source region. They further suggested a scenario involving a large U-turn path, as presented in

Figure 7 of Lee et al. [2008]. The model results of Titov et al. [2005] indicated that the TIDs observed over

Arecibo were generated in the vicinity of Puerto Rico by tsunami waves traveling toward the coast of

Brazil. Stevenson [2005] estimated that the tsunami speed on the open Indian Ocean was about 200m/s,

while Wilson [2005] inferred a tsunami wavelength of about 500 km. Combined, they lead to an estimated

tsunami wave period of about 41.7min, consistent with the 40min period tsunami wave propagating in

the N250°E direction found by Abe [2006]. We have shown in Figure 6b that the 40min AGW only propagates

for about 130min in the N250°E direction (equating to a horizontal distance of about 773 km), after which it
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breaks in the E-region ionosphere (see Figure 7b). These findings lead us to conclude that the TIDs observed

over Arecibo were attributable to the 40min tsunami wave.

6.2. 2011 Tohoku

The 2011 Tohoku tsunami occurred in a region with densely distributed GPS receivers, the GPS Earth

Observation Network (GEONET) in Japan. The results of our simulation shown in Figure 5a demonstrate that

after 1 h following the tsunami onset, enhanced TID activity should first appear toward the northwest of the

epicenter, which agrees with the TEC observations reported by Galvan et al. [2012] and the simulations by Yu

et al. [2015]. Our current simulations demonstrate that the initial maximum TID activity occurs after an

elapsed time of about 125min and northwestward of the epicenter at a distance of about 900 km. The fact

that this maximum TID activity is marginally contained within the GPS observable region would have allowed

it to have been observed by the GEONET [Galvan et al., 2012].

The observations associated with the earlier tsunami in Sumatra [e.g., Lee et al., 2008] and the later tsunami in

Tohoku [e.g.,Makela et al., 2011; Smith et al., 2015; Crowley et al., 2016] affirm that the ionospheric response to

this kind of natural hazard occurs on a global scale. Our simulations for the 2011 Tohoku tsunami also show

an ionospheric response associated with long-range gravity wave propagation in the southeastward direc-

tion from the epicenter. We have shown that the latter maximum TID activity occurs after an elapsed time

of about 230min, and southeastward from the epicenter at a distance of about 3350 km. Because of the

sparse population of GPS receivers in the deep Pacific Ocean, there have been no reported TIDs by GPS

means that we are aware of that could confirm the existence of this latter long-range propagating

gravity wave.

However, over the west coast of the U.S., Crowley et al. [2016] detected TIDs due to the tsunami after about

10 h at an azimuth of N105.2°E; the observed waveform is with the wave period of 15.1min (near half of τd), a

horizontal wavelength of 194.8 km (less than half of λh), and a horizontal phase speed of 233.0m/s (close to

the value of 243m/s used here). These results are consistent with the far-field TID observations by Makela

et al. [2011] after almost 5 h in airglow measurements over Hawaii.

7. Conclusions

We have used two numerical models describing the ionospheric responses to the atmospheric gravity waves

that would likely be driven by the 2004 Sumatra and 2011 Tohoku tsunamis. Our results tend to argue against

the plausibility that the 139min gravity wave propagating toward the N340°E direction of the Sumatra epi-

center was attributable to the TIDs observed over Arecibo, some 18,000 km from the source [Lee et al.,

2008]. According to our simulations, the wave propagates freely for a horizontal extent of only about

2250 km, breaking afterward in the E-region ionosphere. Based upon our simulations and a combination of

past researches due to Abe [2006], Stevenson [2005], andWilson [2005], we attribute the 40min tsunami wave

propagating toward the N250°E direction from the Sumatra epicenter to the TIDs observed over Arecibo.

In addition to this, we have again found that the atmospheric gravity wave propagating toward the north-

west from the Tohoku epicenter initially appeared about 1 h following the tsunami onset, while the wave pro-

pagating toward the southeast appeared later than this [Galvan et al., 2012; Yu et al., 2015]. The initial

maximum TID activity would occur in about 2 h and northwestward at about 900 km from the epicenter.

Serendipitously, this maximum occurs within the region observable by the GPS array (GEONET) (albeit mar-

ginally), as reported by Galvan et al. [2012]. Our simulations for wave propagation (and the associated iono-

spheric response) toward the southeast indicate that the time and distance associated with that propagation

is over 4.5 h and 3900 km, respectively. This has not been confirmed by observations. However, we note that

GPS receivers sparsely populate the deep ocean region of the Pacific east of the Tohoku epicenter, which

could explain why the F-region TID activity we have simulated showing this later long-range propagation

toward the southeast has not been observed.
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