
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg)Nanyang Technological University, Singapore.

Ionotronic halide perovskite drift‑diffusive
synapses for low‑power neuromorphic
computation
John, Rohit Abharam; Yantara, Natalia; Ng, Yan Fong; Narasimmam, Govind; Mosconi,
Edoardo; Meggiolaro,Daniele; Kulkarni, Mohit Rameshchandra; Gopalakrishnan, Pradeep
Kumar; Nguyen, Chien Anh; De Angelis, Filippo; Mhaisalkar, Subodh Gautam; Basu,
Arindam; Mathews, Nripan
2018
John, R. A., Yantara, N., Ng, Y. F., Narasimman, G., Mosconi, E., Meggiolaro, D., ... & Mathews,
N. (2018). Ionotronic halide perovskite drift‑diffusive synapses for low‑power neuromorphic
computation. Advanced Materials, 30(51), 1805454‑. doi:10.1002/adma.201805454
https://hdl.handle.net/10356/138301
https://doi.org/10.1002/adma.201805454

© 2018 WILEY‑VCH Verlag GmbH & Co. KGaA, Weinheim. All rights reserved. This paper was
published in Advanced Materials and is made available with permission of WILEY‑VCH
Verlag GmbH & Co. KGaA, Weinheim.
Downloaded on 27 Aug 2022 23:57:19 SGT



 i 

Ionotronic Halide Perovskite Drift-Diffusive Synapses for Low-Power 

Neuromorphic Computation  

 

Rohit Abraham John1, Natalia Yantara2, Yan Fong Ng1,2, Govind Narasimman3, Edoardo 

Mosconi4,5, Daniele Meggiolaro4,5, Mohit R. Kulkarni1, Pradeep Kumar Gopalakrishnan3, Nguyen 

Anh Chien1, Filippo De Angelis4,5, Subodh G. Mhaisalkar1,2, Arindam Basu3, Nripan Mathews1,2* 

 

1 School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang 

Avenue, Singapore 639798 

2 Energy Research Institute @ NTU (ERI@N), Nanyang Technological University, 50 Nanyang 

Drive, Singapore 637553 

3 School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang 

Avenue, Singapore 639798 

4 Computational Laboratory for Hybrid/Organic Photovoltaics (CLHYO), CNR-ISTM, Via Elce di 

Sotto 8, Perugia I-06123, Italy 

5 D3-Computation, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy 

 

*Corresponding author 

Prof. Nripan Mathews (Email: Nripan@ntu.edu.sg) 

 

Keywords: Halide Perovskite, Neuromorphic Computing, Synaptic Plasticity, Ionic semiconductor, 

Ion migration 

 

 

 

 

mailto:Nripan@ntu.edu.sg)


 ii 

Abstract 

Emulation of brain-like signal processing is the foundation for development of efficient learning 

circuitry, but few devices offer the tunable conductance range necessary for mimicking 

spatiotemporal plasticity in biological synapses. An ionic semiconductor which couples electronic 

transitions with drift-diffusive ionic kinetics would enable energy-efficient analog-like switching of 

metastable conductance-states. Here, we utilize ionic-electronic coupling in halide perovskite 

semiconductors to create memristive synapses with a dynamic continuous transition of 

conductance-states. Co-existence of carrier injection barriers and ion migration in the perovskite 

films defines the degree of synaptic plasticity, more notable for the larger organic ammonium and 

formamidinium cations than the inorganic cesium counterpart. Optimized pulsing schemes 

facilitates a balanced interplay of short and long-term plasticity rules like paired-pulse facilitation 

and spike-time dependent plasticity, cardinal for learning and computing. Trained as a memory 

array, halide perovskite synapses demonstrate reconfigurability, learning, forgetting and fault 

tolerance analogous to the human brain. Network-level simulations of unsupervised learning of 

handwritten digit images utilizing experimentally derived device parameters, validates the utility of 

these memristors for energy-efficient neuromorphic computation, paving way for novel ionotronic 

neuromorphic architectures with halide perovskites as the active material.  

 

Introduction 

Combining computational power in the order of exa-FLOPS and a low power consumption of 20 

W, human brain sets the benchmark for computational capability and power efficiency. 

Comprehensive emulation of neural signatures requires devices with a wide dynamic range of 

conductance and retention.[1] Synaptic emulation by conventional silicon circuitry often requires 

additional analog converters, imposing issues with scalability and power consumption.[2–5] 

Development of next-generation materials and devices for neuromorphic electronics entails detailed 

understanding of the fundamental device characteristics and their possible emulation capabilities at 
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an elemental level. Ionically-gated transistors harness diffusive mechanics to achieve continuous 

modulation of channel conductance at low-power, but require coupling of two disparate 

electronically- and ionically-active material sets.[6,7] Solutions based on drift-memristors are 

inherently disadvantaged due to digital-like abrupt switching transitions, which limit their 

plasticity[8]. Very recently, second-order drift memristors[9,10], electrochemical metallization cells[11] 

and diffusive memristors[8] have been engineered to approximate the biological Ca2+ dynamics 

based on metal atom diffusion, thermal dissipation[9], mobility decay[12] and spontaneous 

nanoparticle formation, but often require additional non-volatile elements in series for long-term 

memory storage. An ionic semiconductor which intimately combines rapid electronic transitions 

with slow drift-diffusive ionic kinetics will enable dynamic tuning of metastable memristive 

conductance-states, allowing efficient emulation of synaptic characteristics and catering for novel 

low-power architectures that exploit electronic properties of the semiconductor.  

 

Halide perovskites are facilely processable ionic semiconductors which have revolutionized the 

field of photovoltaics and light-emitting diodes (LEDs) with their superior electronic properties, 

such as long carrier-diffusion lengths and low defect-densities.[13] Ionic effects have been accounted 

for the origin of hysteresis, slow photocurrent decay as well as above bandgap photo-voltages in 

perovskite devices.[14–17] These ionic effects co-exist with excellent electronic properties such as 

low carrier effective mass and high photoluminescence quantum yield enabling construction of high 

performance solar cells and LEDs.[18] Herein, the memristive signatures due to intimate electronic-

ionic coupling in halide perovskites (namely CH3NH3PbBr3 (MAPbBr3), CH(NH2)2PbBr3 

(FAPbBr3) and CsPbBr3) are harnessed to build artificial synapses with concurrent processing and 

learning abilities (Figures 1A-B, Supplementary Section-A Figure S1). Ionotronic effects modulate 

the conductance-state, mimicking intracellular Ca2+-Na+-K+ flux changing the synaptic 

conductance. Charge transport pathways emulate the synaptic cleft and device conductance defines 

the synaptic weight. Co-existence of ion migration-relaxation kinetics and tunable potential barriers 
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facilitate comprehensive emulation of synaptic plasticity behaviours at both short and long-time 

scales, forming the basis of memory and learning. Temporally correlated pre- and post-synaptic 

action potentials initially create short-term volatile changes in the device conductance/weights, 

which further consolidates to long-term non-volatile changes upon persistent training. These long-

term weight changes are then optimized for depicting halide perovskite memristors as a 

reconfigurable and trainable memory array. With higher activation energies for ion migration, the 

weight changes- modulatable via amplitude, polarity, number and temporal correlations of training 

sequences, are observed to be more profound in organic cation-based halide perovskites. Network-

level simulations of unsupervised learning based on experimentally measured device properties 

illustrate the power of these drift-diffusive memristors for pattern recognition and image 

classification algorithms, paving way for novel ionotronic neuromorphic architectures with halide 

perovskites as the active material.  

 

Results 

In synapses, action-potentials are transduced into chemical-signals through the release of 

neurotransmitters, which form the crux of decision making. Correlations between presynaptic 

activity and extent of post-synaptic membrane polarization result in changes in connection weights- 

synaptic plasticity.[19] Plasticity occurs in the human brain on multiple timescales—while long-

term plasticity occurring on a time-scale of several minutes is thought to be the basis of experience-

dependent modification of the neural circuit, short-term plasticity occurring on a time-scale of tens 

of milliseconds is useful for temporal filtering and might have a role in speech processing and 

working memory.[20] 
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Figure 1. Short-term plasticity features emulated in halide perovskite memristors. (A) Schematic of chemical 

synaptic transmission. Arrival of an action-potential causes selective endocytosis and exocytosis of Na+, K+ and Ca2+ 

deciding the extent of membrane polarization. (B) Architecture of an artificial synapse with halide perovskites as the 

active switching materials. Three different materials namely CH3NH3PbBr3 (MAPbBr3), CH(NH2)2PbBr3 (FAPbBr3) 

and CsPbBr3 are investigated as switching matrices. The memristive/hysteretic electrical effects in halide perovskites 

are utilized to create and modulate plasticity in these devices. (C) PPF index variation with increasing pulse interval: 

comparison of MAPbBr3, FAPbBr3 and CsPbBr3. An exponential decay fit is applied to obtain two characteristic 

timescales as shown in Supplementary Section-B Table T1. All the devices under test depicted diode characteristics 

with the threshold (Vth) for sharp current increase varying from 2 to 2.5 V. Hence for a fair comparison between the 

three systems and not compromising on the energy consumption per spike, pre-conditioning pulses of + 3 V (> Vth) 

were chosen to simulate short-term plasticity. (D) Temporal high-pass filters enabled by frequency-dependent short-

term plasticity of halide perovskite memristors. EPSCs in response to presynaptic stimuli trains of different frequencies 

(2-95 Hz) for MA-based memristors. The stimulus train at each frequency consisted of 10 stimulus spikes of amplitude 

+ 3 V. (E) Filter gain (B10/B1) plotted as a function of pre-synaptic spike frequency. Note: B10 and B1 are amplitudes of 

the 1st and 10th EPSC for each frequency as shown in (D). (F) Comparison of the ON-state energy consumption per 

spike (𝐸𝑜𝑛) of the halide perovskite synapses. 

 

 

 

 

Short-term plasticity evaluation indices such as Paired-pulse facilitation (PPF) of all the three 

devices exceeded 100% with an exponential time-decay behaviour analogous to chemical synapses. 

Organic cation (MA and FA-based) systems depicted a higher retention and much slower decay 

when compared to inorganic Cs, and showed an exponential behaviour in resemblance to the 

coupling of the neurons.[21] At the shortest interval of 5.3 ms, MA-systems exhibited the highest 

PPF index (192%), as compared to 145 % for FA and 104 % for Cs-devices. This ratio continued to 

decrease with increasing pulse interval and finally reached around 100 % for the largest pulse 

interval of 2000 ms (Figure 1C, Supplementary Section-B Figure S2). This observed decay 
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resembled the coupling of biological neurons and could be fitted with an exponential decay 

equation.[21,22]  

𝑦 =  𝐵1 ∗ exp (− 𝑥𝑡1) +  𝐵2 ∗ exp (− 𝑥𝑡2) +  𝑦0 

where x is pulse interval time, y0 is resting facilitation magnitude, B1 & B2 are facilitation constants, 

and t1 and t2 are characteristic time constants of the rapid and slow phases respectively 

(Supplementary Section-B Table T1). The extracted rapid (t1) and slow (t2) time constants were 

comparable with the time scales previously reported for both emulated[23] (25 ms) and biological 

systems[24] (40-300 ms). Extending this concept, a training sequence consisting of 10 presynaptic 

action potentials induced dynamic high-pass temporal filtering[25] of signals via volatile changes in 

conductance with a frequency-dependent gain (Figures 1 D-E). Slower relaxation time-constants of 

the organic-cation based perovskites resulted in superior facilitation and thus larger filter gains 

(MAPbBr3 = 2.92, FAPbBr3 = 1.74 at 95 Hz) when compared to the inorganic Cs-based system 

(CsPbBr3 = 1.34 at 95 Hz).  

 

Extreme low power consumption of the human brain (~10 fJ per synaptic event) remains 

unmatched by any artificial neural network till date. Hence, our devices were benchmarked on 

power consumption to investigate the feasibility of realizing ultra-low power neuromorphic circuits. 

All the three systems under investigation depicted energy scaling in a near linear manner across two 

orders of dimensional magnitude. FA and MA-based synapses outperformed the Cs-counterparts 

with an ON-state energy consumption of 23 nJ/mm2 and 34 nJ/mm2 per event respectively, making 

them one of the most energy efficient artificial synapses reported till date (Figure 1F, 

Supplementary Section-C Figure S3, Table T2).  

 

Repeated presynaptic stimulations consolidated the metastable conductance-states to achieve long-

term potentiation (LTP) and depression (LTD) in congruence with the Atkinson-Shiffrin 

multistore model (Figure 2A).[26] Dependent on device history, the magnitude of weight changes 
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could be tuned by the number and amplitude of the presynaptic training spikes (Figures 2 B-G, 

Supplementary Section-D Figure S4 Table T3), resulting in controlled facilitation/depression in 

accordance with the quantal and probabilistic neurotransmitter release model.[27] Slower relaxation 

nature of the organic cations once again resulted in larger weight changes and higher retention of 

the memory states as depicted by the Ebbinghaus forgetting curves. Spaced repetition resulted in 

softening of the forgetting process, enhancing memory and learning. Trained with 40 pulses of 

amplitude + 3 V, width 500 ms and interval 5 ms, MA- synapses depicted long-term change in 

conductance/weight equivalent to 24.32 %, followed by FA and Cs with 18.61 % and 5.54 % 

respectively. The degree of long-term weight changes also depended heavily on the amplitude of 

the training pulses. The long-term weight change in MA-synapses increased to 54.19 % from 24.32 

% when the amplitude of the training pulses were increased from + 3 V to + 5 V. Similar trend was 

observed in FA- and Cs-based synapses as shown in Figures 2 B-G. 

 

Temporal correlations between the pre- and postsynaptic spikes created voltage-dependent changes 

in conductance/weight, establishing four forms of spike-timing-dependent plasticity (STDP) 

rules. A refinement of Hebb’s theory, STDP is considered to be the first law of synaptic plasticity 

and forms the basis of associative learning.[28] Various forms of STDP have been observed in 

biological synapses and are attributed to different functions regarding to the information processing 

and storage.[19] Although several investigations report the most common form of asymmetric 

Hebbian learning rule, most fail to emulate other forms of Hebbian plasticity.[8,29] Here, four 

different forms of STDP were realized by modifying the shape of the pre-synaptic and post-synaptic 

spikes, effectively translating timing differences into voltage amplitude differences (Figures 2H-K). 

Spike patterns corresponding to Supplementary Section-D Figure S5 were applied in our 

measurements, and the change in conductance (weight) was recorded as a function of the pulse 

interval between pre- and postsynaptic spikes. Repeated arrival of pre-post or post-pre spike pairs 

led to resistance changes above the writing threshold in proportion to the voltage and time-
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integrated device conductance function (f(Vpre-Vpost), t), where the net voltage on the device at each 

instant of time (t) is defined by the voltage difference between the pre- and post-spike (Vpre–Vpost).
[7] 

Changes in conductance were compared to the initial conductance value to convert the data to 

percentage weight changes (reading pulses of 0.5 V was utilized for this measurement). The device 

was then allowed to relax back or erased to the initial conductance state before the next 

measurement to avoid dependence of previous history. MA- and FA-based systems depicted a 

higher modulatable STDP function in comparison to Cs, suggesting the possibility of implementing 

rate coding schemes with varying STDP time windows. Weight changes were predominant at small 

pulse intervals, and weakened with increase in the interval, reflecting strong temporal correlations 

between the pre- and postsynaptic spikes. Flipping of the input waveforms resulted in switching 

from anti-Hebbian to Hebbian rules. The STDP time windows shown here in milli-seconds and 

weight changes are comparable to biological values[28] and could be further tuned by modulating the 

width, number and shape of the input spikes. 
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Figure 2. Long-term plasticity in halide perovskite synapses. (A) Classification of human memory based on the time 

scale of retention. Training (B) MAPbBr3, (C) FAPbBr3 and (D) CsPbBr3 synapses with large number of rehearsals 

resulted in higher weight changes, higher retention and slower decay of memory. Increasing presynaptic pulse 

amplitudes also resulted in higher weight changes, higher retention and slower decay of memory as indicated by (E-G). 

Hebbian spike-time-dependent plasticity (STDP) variants realized in halide perovskite synapses. Difference in timing of 

the pre- and post-synaptic pulses are translated into voltage amplitude differences inducing weight changes (W) in the 

system. Shape of the input waveforms modulated the STDP type and window ranging from (H) antisymmetric anti-

Hebbian, (I) antisymmetric Hebbian, to (J) symmetric Hebbian, (K) symmetric anti-Hebbian learning rules. 
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Figure 3. Neuromorphic halide perovskite memory array for pattern recognition. (A) A 4x4 array of halide 

perovskite synapses was implemented as a reconfigurable and trainable memory unit with fault tolerance. The image of 

“N” was programmed into the array using an external microcontroller biasing (5 V, 10 seconds) individual pixels on 

demand with others in a floating-mode. With time, these synapses exhibited extinction of memory analogous to 

forgetting but could be retrained faster to reach the same conductance levels. (B) After complete erasing of the image of 

“N”, “T” and “U” were also programmed and erased. (C) The memory array also exhibits good fault tolerance and 

robustness to spurious inputs. Spurious inputs of + 1.5 V, 10 ms did not affect the conductance state on a long time-

scale and the pixels could be read successfully. (D) The proposed two-layer neural network that is trained in simulations 

to recognize handwritten digits selected from the MNIST database. All input pixels connect to each excitatory neuron in 

layer 1 through synapses equipped with STDP behavior. Each excitatory neuron connects to an inhibitory neuron in 

layer 2 through fixed weight excitatory synapses. Each inhibitory neuron connects to all layer 1 neurons using fixed 

weight inhibitory synapses inducing winner-take-all based competition among layer 1 neurons. The receptive fields of 

100 neurons in the excitatory layer obtained after training on 6000 images are shown here. 

 

 

To further illustrate the significance of our findings, a 4x4 array employing halide perovskite 

synapses was experimentally implemented as a reconfigurable and trainable memory unit with 

fault tolerance (Figures 3-A-C). Fresh MA-based synapses were arranged in a pixelated array 

format with an initial low-conductance state (stage: i). The image of “N” was then programmed into 
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the array using an external microcontroller that biased (5 V, 10 seconds) selected individual pixels 

on demand with others in floating-mode. The pixel resistances were then read (+ 0.5 V, 1 second) 

individually few minutes after the training process and the corresponding readout-conductance map 

reflected the image of “N”. With time, the conductance decreased akin to forgetting in the human 

brain, but could be retrained with fewer training cycles as shown in stages: ii-iv, reflecting the 

learning ability of these synapses. After complete extinction of memory of “N” (described 

procedure in Figure 3A), new patterns corresponding to “T” and “U” were programmed into the 

same array using facilitating (write) and depressing (erase) pulses as depicted in Figure 3B. Fault 

tolerance and robustness against non-ideal input signals were then tested by introducing spurious 

and random spikes (+ 1.5 V, 10 ms width) together with training pulses during the retrain process 

for the “N” pattern (Figure 3C). The network was seen to remain highly sensitive to the training 

pulses (re-establishing of memory state) while insensitive to the spurious spikes (no permanent 

conductance change) at both active ([2,2], [4,1], [3,3]) and non-active ([1,2], [3,2], [4,3]) nodes 

(Figure 3C). By varying the total writing-erasing time, it is possible to further fine-tune and exploit 

the wide range of conductance state and memory retention in these devices. 

 

Based on the STDP behaviour of MAPbBr3 synapses (Figure 2I), a two-layer neural network was 

trained in a simulation to recognize handwritten digits selected from the MNIST database 

(Supplementary Section-E).[30,31] Input spike trains were connected to the first layer of neurons 

using synapses initialized with random weights, while the second layer introduced competition 

within the network by a winner-take-all mechanism.[32] The neuron whose receptive field matched 

the input pattern best, could further tune its synaptic weights to match the input. Receptive field of 

neurons in the first layer resembled the handwritten digits after presentation of 6000 images in a 

randomized order (Figure 3D) through unsupervised learning. Training the neural network using 

6000 images resulted in an accuracy of 80.8 %. Compared to other STDP implementations in 

CMOS[33,34], this approach has the potential of ~ 200X reduction in energy for learning.  
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Discussion.  

Ion migration and charge-trapping effects have been suggested as possible mechanisms for the 

origin of hysteresis in halide perovskites, leading to slow photocurrent decay, above bandgap photo-

voltages and switchable photovoltaic effects.[14–16] Dependent on the local defect structure, energy 

profile, scanning rate and grain boundaries, these deleterious effects of localized ion redistribution 

have been studied in detail by various spectroscopic and microscopic investigations.[15,35] The wide 

variety of synaptic phenomena noted in our devices also support a mechanism of vacancy-mediated 

ion drift-diffusion, pointing to mixed ionic–electronic conduction in these hybrid perovskites.  

 

Figure 4. Proposed ionic and electronic conduction in halide perovskites. (A) Galvanostatic measurement setup for 

ion migration kinetics. Electronic resistance of the films extracted from (B) was used to decouple ionic resistance from 

the total resistance (ionic- blue region and electronic- yellow region) (C) for a constant current level. Al2O3 (2 nm) was 

used as an ion blocking layer for this measurement. (D) Vacancy-mediated migration-pathways for A-site cations and 

bromide anions with the calculated activation energies obtained from DFT calculations. (E) Schematic of ion migration 

in halide perovskite synapses. Pulse induced ion redistribution in halide perovskites causes self p- and n-doping and 

defect passivation, resulting in better carrier injection into the devices. Removal of the bias causes the ions to relax 

back. This ion migration-relaxation (drift-diffusion) kinetics is modulated by the pre- and post-synaptic training pulse 

characteristics like amplitude and frequency, to create short and long-term plasticity.  
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Galvanostatic measurements revealed similar electronic and ionic conductivities for all the three 

halide perovskite films, reiterating the hybrid electronic-ionic conduction in these systems (Figures 

4A-C Supplementary Section-F Table T4). To account for the differences in synaptic signatures 

observed in the three films and as a first judgement of the kinetics of migrating species, first 

principles calculations on MAPbBr3, FAPbBr3 and CsPbBr3 were performed on their room-

temperature stable phases (pseudo-cubic and orthorhombic, respectively) (Figure 4D 

Supplementary Section-G Tables T5-6). Our first principles calculations indicated significant 

differences in vacancy-mediated migration activation energies for A-site cations (VMA-: 0.56 eV, 

VFA-: 0.61 eV, and VCs-: 0.32 eV) with their magnitudes indicating a time scale of ~ milli-seconds to 

minutes. We hypothesize this to be the primary contributing factor of the transient responses noted 

here since halide motion/relaxation with much lower activation energies are expected to play a role 

at much faster timescales (< 1 µs).[36] This is consistent with the degree of short and long-term 

synaptic plasticity observed in our devices which followed the same trend as the vacancy-mediated 

migration activation energies for the A-site cations. 

 

Therefore, we hypothesize that upon pre-synaptic spike application, negatively charged bromide 

anions and A-cation vacancies drift and accumulate near the hole transporting material interface 

(self p-doping), while positively charged A-cations and bromide vacancies n-dope the electron 

transporting material interface (Figure 4E); culminating in better carrier injection.[37] The built-in 

electric field due to the band alignment between halide perovskites and transport layers and ion 

concentration gradient result in ion back-diffusion/relaxation on bias removal, as also noted in 

perovskite solar cells.[38] Thus, the carrier injection barrier could be temporarily or persistently 

regulated, resulting in modulation of device conductance/synaptic weight. In the case of PPF, when 

the pulse interval was short, ions activated by the first spike do not relax back before application of 

the second spike. This results in more ions being accumulated near the interfaces, which 

subsequently reduces the carrier injection barrier, hence increasing the PPF index. Higher PPF 
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indices indicate slower net ion back-diffusion kinetics which could be attributed to slower cation 

migration, lower availability of mobile ions, smaller mobile ion formation energy or lower net built-

in voltage (Vbi) in the organic-cation based systems. Similar film thicknesses, defect formation 

energies (DFE) (Supplementary Section-G Table T6) and ionic conductivities (Supplementary 

Section-F Table T4) indicated that a smaller mobile ion formation energy or lower Vbi across the 

organic cation-based system could be responsible for the stronger synaptic response. In addition to 

perovskite self-doping, ion accumulation at the injection layer interfaces could also modulate the 

conductivities of the injection layer itself (i.e. both PEDOT: PSS and Bphen).[39] Long-term 

plasticity (LTP and LTD) could also occur due to permanent pinning of ions at the PEDOT: 

PSS/perovskite and Bphen/perovskite interfaces at sufficiently large spike widths and numbers.  

 

Conclusion 

The often-overlooked but unique ionotronic conduction in halide perovskites was employed for the 

demonstration of the comprehensive synaptic signatures that closely emulate biological signal 

processing. The memristive behaviour was attributed to the co-existence of ion migration and 

carrier injection barrier in the system, which resulted in self-doping or passivation at the interfaces, 

and ion relaxation due to the built-in potential in these devices. Presynaptic stimuli first activated 

short-term plasticity in our artificial synapses and persistent stimuli consolidated the conductance 

states to achieve long-term plasticity. Delay between the presynaptic and postsynaptic action 

potentials created temporal correlations in weight changes, resulting in emulation of four forms of 

spike-timing dependent plasticity rules. Trained as a memory array, these devices depicted 

reconfigurability and fault tolerance to spurious and random inputs. Network-level simulations of 

unsupervised learning of handwritten digit images based upon experimentally measured device 

properties illustrated the power of these memristors for bio-inspired pattern recognition and image 

classification algorithms. The possibility of exploring the perovskite family of ionic-electronic 

semiconductors for a novel application with an insight into the desired material characteristics and 
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conduction mechanism paves way for novel ionotronic neuromorphic architectures with halide 

perovskites as the active material. Our results motivate a further exploration of the compositional 

space of perovskites to study the correlation between the material properties and synaptic 

behaviour. Ruddlesden-Popper (2D) perovskites with bulkier organic ions and incorporation of both 

2D and 3D ions within the halide perovskite layer provides the possibility of more exquisite 

control.[40] Since the interfaces play a significant role in defining the charge injection barriers, 

investigation of all-inorganic charge extraction layers and ion blockers would enable further 

insights into the ion migration mechanism under play. The composition of the halide perovskite 

next to the interface could also be modified to ensure independent ionic/ electronic coupling at the 

interfaces with respect to the bulk.[41] Demonstration over organic – inorganic hybrid and all-

inorganic perovskites raise the appealing prospect that this material system depicts intimate ionic-

electronic coupling that can deliver high-performance neuromorphic elements. 

 

Experimental Section: 

Device Fabrication. ITO coated glass substrates (7 Ω.cm-2) were cleaned in soap, deionised water, 

and ethanol solution. Substrates were then subjected to oxygen plasma treatment for 15 minutes, 

followed by deposition of PEDOT: PSS (the hole transporting layer (HTL)) (Clevios P VP Al 4083) 

via spin coating (4000 rpm for 60 s). Samples were annealed at 140 °C for 10 minutes in air, after 

which the perovskite films were spin coated (5000 rpm for 30 s) from equimolar precursor solutions 

and annealed at 100 °C for 15 minutes under nitrogen environment to remove the solvent residue. 

Three types of precursor solutions were used, i.e. 1 M CH3NH3Br – PbBr2, 1 M CH(NH2)2Br – 

PbBr2 in DMF-DMSO mixture solvent (25 % DMSO), and 0.5 M CsBr – PbBr2 in DMSO solvent. 

Due to the low solubility of CsBr in the solvent, 0.5 M CsBr and 0.5 M PbBr2 in DMSO solvent 

was used to deposit CsPbBr3 film instead. In case of MA and FA systems, toluene was dripped for 

25 seconds during spin coating to facilitate formation of compact films. 45 nm of 

bathophenanthroline (Bphen) was then thermally evaporated, followed by evaporation of 7 nm 
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Calcium and 100 nm aluminum. All evaporation processes were carried out at a base pressure of 4 x 

10-6 Torr with the active device area defined by shadow masks during calcium and aluminium 

evaporation. Devices were finally encapsulated using UV-curable epoxy and glass cover. 

 

Characterization. Keithley 2612B was used to record the current density-voltage (J-V) 

characteristics of the devices. Field emission scanning electron microscopy (FESEM, JEOL JSM-

7600F) was employed to characterize the topographical and cross-sectional images, while X-ray 

diffraction (XRD)-Bruker D8 Advance was used to probe the crystal structure of the films. 

Electrical measurements were carried out using Keithley 4200-SCS semiconductor characterization 

system via custom defined pulsing programs. 
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Section A. Crystal structure of halide perovskites, band diagram of the device stack under test 

and DC I-V memristive characteristics 

 

Figure S1. Crystal structure of halide perovskites and their memristive characteristics. (A) X-ray diffraction 

spectra of MAPbBr3, FAPbBr3, and CsPbBr3 films respectively, (B) Cross-sectional scanning electron microscope 

(SEM) images of the halide perovskite films deposited on ITO-PEDOT: PSS. (C) Energy band diagram of the device 

architecture used. (D-F) Standard memristor characteristics for MAPbBr3, FAPbBr3 and CsPbBr3- based thin film 

devices [Device structure: Au/perovskite/ITO]. 

 

A series of organic-inorganic halide perovskites (i.e. MAPbBr3, FAPbBr3, and CsPbBr3) were used 

as active materials for this study. X-ray diffraction spectra of the deposited perovskite films are 

reported in Figure S1-A. MAPbBr3 and FAPbBr3 films depicted a cubic crystal structure (Pm-3m), 

while the CsPbBr3 film revealed an orthorhombic crystal structure (Pnma). No additional phase or 

impurities were observed from XRD spectra of all films. Both MAPbBr3 and FAPbBr3 film were 

preferentially oriented towards (100) direction. Figure S1-B depicts the cross-sectional scanning 

electron microscope (SEM) images of the halide perovskite films deposited on ITO-PEDOT: PSS. 

The memristive devices were built by sandwiching the halide perovskite active layer with hole 

(HTL) and electron transporting materials (ETL). PEDOT: PSS was utilized as the HTL while 

Bphen served as the ETL. ITO electrode was used for hole injection while a stack of calcium-

D E F
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aluminium was employed to inject electrons into the device. The energy band diagram of the 

corresponding device architecture is shown in Figure S1-C.   

 

Figure S1 D-F shows the DC I-V memristor curves of the active halide perovskite layers [Device 

structure: Au/perovskite/ITO]. All the 3 active layers demonstrated switching capabilities with a 

butterfly-like memristor characteristics. Recently, several reports have investigated switching 

abilities of halide perovskites and have attributed the switching mechanism to vacancy-mediated 

migration of both halide and A-site cations.[1,2] The switching characteristics of halide perovskites 

have been reported to heavily depend on the selection of top active electrode, the device area, use of 

protective oxide/organic layer, etc.[3–6] In this study, we focus on utilizing this memristive/hysteretic 

property of halide perovskites as a proxy for developing synapses with modulatable plasticity and 

hence, investigations on factors like top active electrode, the device area, use of protective 

oxide/organic layer, etc. remain currently out of scope.  

 

Section B. Short-term plasticity (STP)  

Chemical synapses exhibit properties of both facilitation and depression, which interact with each 

other to create short-term plastic changes within neurons according to the dual-process theory of 

plasticity.[7] When a synapse with low initial probability of vesicle release is stimulated in rapid 

succession, the second postsynaptic response can be larger than the first - a phenomenon called 

neural facilitation or paired-pulse facilitation (PPF).[8] In a chemical synapse, temporally 

correlated action potentials cause voltage-gated Ca2+ channels to open, resulting in Ca2+ influx and 

higher presynaptic active calcium (Ca2+) concentration. This in turn triggers synaptic vesicles to 

release large amounts of neurotransmitters into the synaptic cleft. PPF index, which is the ratio of 

the amplitude of the second response to that of the first, could be used to quantify facilitation of 

EPSCs and is an easy measure of synaptic vesicular release probability.[9] PPF is an exclusive 

presynaptic phenomenon as per the residual Ca2+ hypothesis by Katz and Miledi[9], according to 
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which residual Ca2+ after the first impulse causes an increase in neurotransmitter release following 

the second stimulus. The degree of facilitation is determined by the amount of active Ca2+ and is 

greatest when the Ca2+ ions are not allowed to return to the baseline concentration prior to the 

second stimulus, that is, when the pulse interval is kept shortest. In the opposite scenario, decreased 

vesicular release probability and inactivation of voltage-gated Ca2+ could lead to short-term 

depression (STD)[9], usually seen in synapses with high probability of initial vesicle release. 

 

Neural-facilitation/PPF contributes to associative learning tasks incorporating auditory-visual 

signals.[10] Here, PPF was emulated via a pair of programmed presynaptic spikes, which in turn 

triggered a pair of excitatory postsynaptic currents (EPSCs) analogous to a chemical synapse 

(Figure S2-A). When the pulse interval between two presynaptic spikes was kept < ~ 50 ms, the 

PPF index was observed to be much higher than 100 %, indicating strong ionic retention and 

facilitation at such timescales, akin to the residual Ca2+ hypothesis as explained above. For the 

shortest pulse interval (5.3 ms), MA-based systems depicted the highest PPF index (192%) 

followed by FA (145%) and Cs (104%), implying different ionic retention capabilities dependent on 

the active material composition. This ratio continued to decrease with increasing pulse interval and 

finally reached around 100 % for the largest pulse interval of 2000 ms (Figure 1C). This observed 

decay resembled the coupling of biological neurons and could be fitted with an exponential decay 

equation.[11,12]  

𝑦 =  𝐵1 ∗ exp (− 𝑥𝑡1) +  𝐵2 ∗ exp (− 𝑥𝑡2) +  𝑦0 

where x is pulse interval time, y0 is resting facilitation magnitude, B1 & B2 are facilitation constants, 

and t1 and t2 are characteristic time constants of the rapid and slow phases respectively  as shown in 

Table T1 below. 
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Figure S2. Short-term plasticity in halide perovskite memristors. (A) PPF index comparison between MAPbBr3, 

FAPbBr3 and CsPbBr3. PPF index is defined as the amplitude ratio between the second (A2) and the first (A1) 

postsynaptic current [𝑃𝑃𝐹 = (𝐴2𝐴1) ∗ 100%)].[11] (B) Spike-duration-dependent plasticity (SDDP): Postsynaptic current 

in the artificial synapse as a function of presynaptic spike width. (C) PPF index variation with pulse interval of MA 

devices for increasing pulse widths of presynaptic spikes. Variation in (D) EPSCs of MAPbBr3- based devices and PPF 

indices of (E) MAPbBr3, (F) FAPbBr3, (G) CsPbBr3-based devices fabricated in a single batch consisting of 32 devices. 

 

 

EPSC and PPF index modulation with pulse interval for increasing pulse widths of presynaptic 

spikes is depicted in Figures S2-B,C. While larger presynaptic pulse widths induced higher EPSCs 
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(Spike-duration-dependent plasticity), the PPF index reduced inversely. Here, PPF index curves 

for MA-system is presented for comparison. A maximal PPF index of 192% was obtained for the 

combination of smallest pulse width and interval of 10.5 ms and 5.3 ms respectively. Although 

higher pulse width of the prior spike possibly activated a larger number of ions, the depleted ion 

source for the subsequent second spike could have resulted in the lower effective retention and PPF 

index. All these modulations of PSCs and short-term indices as a function of the amplitude, 

number, polarity and frequency of presynaptic spikes, could be utilized as design knobs for 

implementing bio-inspired temporally-coded algorithms, in congruence with the quantal and 

stochastic models.[13,14] 

               

  Table T1 Best fit values of PPF decay as a function of pulse interval 

 

Figure S2 D-G shows the variation in EPSCs and PPF indices of all the three investigated systems 

among 32 devices fabricated in a single batch. We would like to point out that the variation in 

EPSCs was less than 15 nA for MA-based devices as shown in Figure S2-D. FA and Cs-based 

devices followed a similar trend with Cs showing the least variation among the 3 systems on a 

general note. Although the PPF indices varied by about 50 % across MA and FA devices (Figure S2 

E-F), all the devices depicted an exponentially decaying behaviour with pulse interval, similar to 

Figure 1C and depicted other short and long-term plasticity features comparable to those 

demonstrated in this manuscript. Although Cs-based devices depicted the least variability (Figure 

S2 G), it falls behind in terms of the achievable degree of plasticity. 
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Section C. Energy consumption  

The ON-state energy consumption per spike (𝐸𝑜𝑛) was calculated from the equation[15] 𝐸𝑜𝑛  =  𝐼𝑝𝑒𝑎𝑘,𝑓𝑖𝑟𝑠𝑡  ×  𝑡 ×  𝑉 

where Ipeak, first is the maximum value of the 1st generated EPSC for a single spike event, t is the 

spike duration, and V is the applied voltage. The energy consumption was normalized for an active 

area of 1 mm2 for direct comparison with other state-of-the-art reports. We would like to point out 

that Ipeak, first in the formula for energy calculation is the peak value of current for a single-spike 

event, i.e. only the magnitude of the 1st EPSC is taken into consideration for calculation (Figure S2-

A).[16–19] 

 

A minimum ON-state energy dissipation of 23 nJ/mm2 per event was obtained for FA-based 

devices with an active area of 12 mm2. MA-systems followed closely with a minimum energy 

dissipation of 34 nJ/mm2 per event, while Cs-systems drained energy at a minimum rate of 153 

nJ/mm2 per event. All the three systems under investigation depicted energy scaling in a near linear 

manner across two orders of dimensional magnitude (Figure S3). Hence, with a future scaled 

version of these devices (1 m2), the energy consumption per event could be as low as couple of 

10s of fJ/event. Table T2 shows a detailed comparison of the energy consumption our artificial 

synapses, benchmarked against state-of-the-art reports in literature.  
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   Figure S3. Energy scaling of halide perovskite synapses with device area.  
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Section D. Long-term plasticity  

 

Figure S4. Long-term plasticity in halide perovskite synapses. The metastable conductance-states consolidated to a 

permanent state on application of > 10 training pulses of width 500 ms and amplitude + 3 V. (A) Depicts short-term 

memory (STM) on application of 2 pulses of amplitude + 3 V, pulse width = 10.5 ms and interval = 5 ms. The current 

returns back to the original state on removal of the pulse, i.e. volatile change. (B) Depicts long-term memory (LTM) on 

application of 40 pulses of amplitude + 3 V, pulse width = 500 ms and interval = 5 ms. The current does not return back 

to the original state on removal of the pulse, i.e. non-volatile change. (A-B) depicts the STM-LTM transition in our 

devices. For weight analysis, the conductance state was allowed to reach a stable steady state and the final conductance 

state was read by a reading pulse of + 0.5 V. Comparison of the long-term potentiation achieved in (C) MAPbBr3, 

FAPbBr3 and  CsPbBr3-based synapses trained with 40 pulses of amplitude + 3 V, width 500 ms and interval 5 ms. The 

graph depicts the decay of current 5 seconds after the application of these pulses. (D) The Ebbinghaus forgetting 

curve depicts the decline of memory retention with time. Highest numerical value of the long-term weight changes were 

normalized to compare the retention characteristics. Repetitive learning softened the forgetting behaviour. (E) 

Controlled long-term potentiation (LTP) and depression (LTD) were achieved in our devices by applying a series of 

potentiating and depressing presynaptic spikes. Potentiating spikes were of amplitude + 3 V, while depressing pulses 

were – 3 V. The degree (slope) of potentiation and depression was dependent on the active material composition and 

could be further modulated with the amplitude and number of training pulses. Note: Samples with similar initial 

conductance states were taken for fair analysis. 

 

 

 

A form of activity-dependent plasticity which results in a persistent enhancement/weakening of 

synaptic transmission, long-term potentiation (LTP) and depression (LTD) satisfies Hebbian 

criteria as a synaptic memory mechanism. In LTP, excited AMPA receptors cause an influx of Na+, 

heavily depolarizing the postsynaptic cell. This EPSP releases Mg2+ blocking the NMDA receptor 
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and allows entry of calcium-glutamate molecules. Increase in intracellular Ca2+ activates proteins 

such as calcium/calmodulin-dependent protein kinase II (CaMKII) and protein kinase C (PKC), 

facilitating phosphorylation of existing AMPA receptors (AMPAr's) and increasing postsynaptic 

AMPAr's due to kinase activity. LTP creates changes in both postsynaptic (increased dendritic area 

and number of AMPA receptors) and presynaptic (increased synaptotagmin levels and total number 

of presynaptic neurotransmitter vesicles) signalling, thereby enhancing the sensitivity. These 

changes that occur in both the presynaptic and postsynaptic neurons are the underlying mechanisms 

for learning and addiction. LTD decreases the efficacy of a synapse due to low frequency stimuli 

and a slow rise in postsynaptic Ca2+.  It has been observed to play a major role in motor learning in 

the cerebellum, and memory decay in the hippocampus, visual cortex, and prefrontal cortex. 

Insufficient Ca2+ leads to internalization of AMPAr's, decreasing the total sensitivity of the 

synapse.[24] 

 

LTP and LTD, marked by a permanent increase in synaptic weight were achieved by repeated 

presynaptic stimulations (analogous to repetitive learning in human brain). In congruence with “the 

multistore model” of human memory proposed by Atkinson and Shiffrin[25], steep initial facilitation 

of EPSCs mimicking excitatory glutamatergic systems, and depression emulating inhibitory 

GABAergic responses were observed in our systems. Transition from a low to high conductance 

state indicated a time-dependent "consolidation"[26] effect in our devices. For long–term memory 

measurements, new devices devoid of any history were taken and the initial conductance state was 

read with a pulse of + 0.5 V. Devices with similar initial conductance states were chosen for a fair 

analysis. For long-term weight change analysis the following approach has been used in the 

manuscript throughout:  

1. Read the device conductance with V = 0.5 V. 

2. Apply necessary voltage waveforms to induce non-volatile weight change/ long-term plasticity. 

In this manuscript, voltage amplitudes, number and pulse durations have been varied to modulate 
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this behaviour. For Figures 2 B-D, presynaptic pulses of amplitude + 3 V, width = 500 ms and 

pulse-interval = 5.3 ms were applied. The number of training pulses were varied to obtain the 

graphs. For Figures 2 E-G, 40 pulses of width = 500 ms and pulse-interval = 5.3 ms were applied 

but with varying amplitudes of + 3-5 V.  

3. Monitor the channel conductance 15 minutes after application of the waveforms to account for 

the non-volatile change in conductance and compare it to the initial conductance state to calculate 

weight %. These stable states observed 15 minutes after application of voltage pulses are the ones 

taken for analysis of linear weight changes. Table T3 provides a list of the raw initial and final 

current values used for our analysis.  

Material System MAPbBr3 FAPbBr3 CsPbBr3 

Initial current state (nA) ~ 1 ~ 1 ~ 1 

Final current state (nA) after 10 pulses + 3 V  1.0606 1.0506 1.01248 

Weight change % after 10 pulses + 3 V 6 5 1 

Final current state (nA) after 20 pulses + 3 V  1.115 1.09223 1.02635 

Weight change % after 20 pulses + 3 V 11.5 9 2.6 

Final current state (nA) after 30 pulses + 3 V  1.1759 1.13847 1.04022 

Weight change % after 30 pulses + 3 V 17.6 13.8 4 

Final current state (nA) after 40 pulses + 3 V  1.24223 1.18747 1.05409 

Weight change % after 40 pulses + 3 V 24 18.7 5.4 

Final current state (nA) after 40 pulses + 4 V  1.37769 1.2624 1.08876 

Weight change % after 40 pulses + 4 V 37.7 26 9 

Final current state (nA) after 40 pulses + 5 V  1.54198 1.33446 1.13037 

Weight change % after 40 pulses + 5 V 54 33 13 
          Table T3 Average values of the current states used for long-term plasticity analysis. 

 

Observation of depression or decrease in conductance was best observed immediately after 

potentiation measurements and could be induced by applying reverse potential across the device. 

The degree of potentiation and depression was directly proportional to the total duration and 

amplitude of pulsing/biasing. Moreover, the rate of such weight changes was dependent on the 

active material composition as indicated in Figures S4-C-E. Slow relaxation nature of the organic 

cations resulted in larger weight changes and higher retention of the memory states as depicted by 

the Ebbinghaus forgetting curves. Spaced repetition resulted in softening of the downward slope 

of the forgetting curve, indicating modulation of the strength of memory and process of forgetting 

that occurs with the passage of time. 
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Figure S5. Spike-timing-dependent plasticity (STDP). (A) Difference in timing of the pre- and post-synaptic pulses 

(t) lead to potentiation (pre before post) or depression (post before pre). In circuit realizations, these differences in 

timing can be translated into voltage amplitude differences in various ways inducing weight changes (W) in the 

system and hence, facilitating different types of STDP. The graph on the right side shows the commonly observed 

STDP curves in biology. Input waveforms applied at the pre and post-synaptic terminals to realize (B) antisymmetric 

anti-Hebbian, (C)  antisymmetric Hebbian, (D) symmetric Hebbian, (E) symmetric anti-Hebbian learning rules in 

halide perovskite synapses. 

 

Spike-timing-dependent plasticity (STDP): A refinement of Hebb’s theory, STDP is considered 

to be the first law of synaptic plasticity[27] and forms the basis of associative learning[28] and synfire 

chain stabilization[29]. In pristine excitatory connections, precedence of presynaptic action potentials 

results in LTP whereas presynaptic activity following postsynaptic spikes causes long-term 

depression (LTD) [Antisymmetric Hebbian]. For excitatory to inhibitory connections, LTP and 

LTD can be induced in the opposite manner [Antisymmetric anti-Hebbian], while in neocortex and 

neuromuscular junctions, the order does not play a role[27] [Symmetric anti-Hebbian and Hebbian]. 

The precise relative timing of pre- and postsynaptic spikes significantly affects the sign and 

magnitude of long-term synaptic modification. Portraying a variety of functional consequences in 

neural information processing, these different STDP forms reflect the complexity of the underlying 

cellular mechanisms. Here, spike patterns corresponding to Figure S5 were applied to the pre and 
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post-synaptic terminals of the halide perovskite synapses, and the change in conductance (weight) 

was recorded as a function of the pulse interval between pre- and postsynaptic spikes. Four different 

forms of STDP were realized by modifying the shape of the pre-synaptic and post-synaptic spikes, 

effectively translating timing differences into voltage amplitude differences (Figures 2H-K). 

Structurally, the device remained the same. But the resultant weight changes depended on the net 

effective voltage developed across the device integrated over a time t. For example, when spike 

pairs corresponding to Figure S5-B was applied to the device at an interval (tpost-pre) of + 500 ms, the 

maximum net voltage developed across the device was Vpre-Vpost =  (-1) – (+3) = - 4 V. This voltage 

difference was responsible for the non-volatile weight change and resulted in a decrease in 

conductance or depression, as evident from right-half of Figure 2H. On arrival of presynaptic pulses 

after postsynaptic pulses, i.e. tpost-pre of - 500 ms, the maximum net voltage developed across the 

device was Vpre-Vpost =  (+ 3) – (- 1) = + 4 V and this resulted in an increase in conductance or 

facilitation, as evident from the left-half of Figure 2H. Similarly, different voltage waveform shapes 

applied at the pre- and post-synaptic terminals corresponding to Figures S5 B-E resulted in Figures 

2 H-K. 

 

Section E. Simulations on STDP-based unsupervised learning using halide perovskite 

synapses  

A two-layer neural network[30,31] as shown in Figure 3D was used for unsupervised learning of 

handwritten digits through the interplay of STDP and competition. The input images were 

converted to spatio-temporal spike patterns by creating a poisson spike train for each pixel with 

mean firing rate proportional to pixel intensity. Each input was connected to a layer of 400 neurons 

through excitatory weights (initialized to random values) which were modified by STDP. A second 

layer of 400 inhibitory neurons induced competition in the network. Each inhibitory neuron was 

connected to a corresponding excitatory neuron and fired a spike whenever the excitatory neuron 

fired. Each inhibitory neuron inhibited all excitatory neurons making this a hard winner-take-all 
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(WTA) circuit. Note that this was done for simplicity in simulations and WTA could be made with 

a smaller number of inhibitory neurons as well. The equations governing the network dynamics can 

be broadly divided into the neuronal update and weight update parts. The neuronal update equations 

governing the membrane potential 𝑉(𝑡) are: 

𝜏𝑚𝑒 𝑑𝑉𝑑𝑡 = (𝑉𝑟𝑒𝑠𝑒𝑡 − 𝑉) + 𝑅𝐼𝑒 

𝐼𝑓 𝑉(𝑡) > 𝑉𝑡ℎ + 𝜃, 𝑠(𝑡) {𝑠(𝑡) → 1, 𝑉(𝑡) → 𝑉𝑟𝑒𝑠𝑒𝑡𝑠(𝑡) → 0  

where 𝜏𝑚𝑒 (membrane time constant) = 100 𝑚𝑠, threshold voltage (Vth) of the neuron = -52 mV, 

reset voltage (Vreset) = -65 mV, 𝑠(𝑡) is the spike output of the excitatory neuron, R (leak resistance 

of the neuron) =10 MΩ and θ is a threshold adaptation parameter that is updated to keep excitation 

levels of the neurons after learning at a balanced state allowing other neurons to participate in the 

competition. 

Ie denotes the total input current to the excitatory neuron. It can be further decomposed into an 

excitatory (Ixe) and inhibitory (Iie) components as:  

      𝐼𝑒=𝐼𝑥𝑒+𝐼𝑖𝑒 𝐼𝑥𝑒 = 𝑔𝑒𝑥𝑒𝑊𝑥𝑒𝑋𝑝𝑟𝑒 , 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦 𝐼𝑖𝑒 = −𝑔𝑖𝑒𝑊𝑖𝑒𝑋𝑝𝑜𝑠𝑡 

𝜏𝑋𝑝𝑟𝑒 𝑑𝑋𝑝𝑟𝑒𝑑𝑡 = −𝑋𝑝𝑟𝑒 + (1 − 𝑋𝑝𝑟𝑒) ∑ 𝛿(𝑡 − 𝑡𝑖𝑠)𝑡𝑖𝑠  

𝜏𝑋𝑝𝑜𝑠𝑡 𝑑𝑋𝑝𝑜𝑠𝑡𝑑𝑡 = −𝑋𝑝𝑜𝑠𝑡 + ∑ 𝛿(𝑡 − 𝑡𝑖𝑒𝑥)𝑡𝑖𝑠  

where Xpre is some variable mimicking temporal dynamics of the excitatory postsynaptic current 

(EPSC) created by excitatory synapses connecting input pixels to layer 1 neurons, Wxe denotes 

corresponding plastic weights normalized to 1 and gexe is a scaling constant. Similarly, Xpost is the 

variable for temporal dynamics of the inhibitory PSC created by the synapses connecting layer 2 

neurons with layer 1 neurons, Wie denote corresponding fixed weights and 𝑔𝑖𝑒 is a scaling constant. 
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Also 𝜏𝑋𝑝𝑟𝑒 = 20 𝑚𝑠, 𝜏𝑋𝑝𝑜𝑠𝑡 = 80 𝑚𝑠, ti
s and ti

ex denote spike times of inputs and excitatory neurons 

respectively. Finally, the STDP learning equation is applied as follows:  ∆𝑊𝑥𝑒(𝑡𝑖𝑒𝑥) = 𝜂(𝑋𝑝𝑟𝑒(𝑡𝑖𝑒𝑥) − 𝑋𝑡𝑎𝑟)(𝑊𝑚𝑎𝑥,𝑥𝑒 − 𝑊𝑥𝑒)𝜇 

where 𝜇 = 0.2, 𝑋𝑡𝑎𝑟 = 0.4, 𝜂 = 0.01, 𝑊𝑚𝑎𝑥,𝑥𝑒 = 1. 

Here, μ defines the dependence of change in weight on current weight, Xtar is the target value of the 

presynaptic trace at the moment of a postsynaptic spike and 𝜂 is the learning rate. 

 

To mimic the hardware constraints of the halide perovskite memristor, the maximum weight was 

bounded to Wmax,xe and the same voltage waveform Xpre was used as the memory trace to govern 

STDP as well as create the EPSC. Also, the measured STDP window for the halide perovskite 

synapses was around 2.5 sec; we used a time dilation factor to make the STDP window around 80 

ms to speed up simulations. Since all waveforms were equally contracted by the same dilation 

factor, the dynamics were unchanged. With these settings, the network with 400 excitatory and 400 

inhibitory neurons was simulated in MATLAB with 28x28 image inputs from the MNIST database 

of handwritten digits. The simulation procedure can be summarized as follows: 

1. Spike inputs from the image are incident on layer 1 neurons. Each input pixel is connected to all 

layer 1 neurons. 

2. By chance, one of these neurons, say the 20-th neuron in layer 1 (denoted by N1
20), will be 

maximally excited since its random weights match best with the presented image. It will then fire a 

spike first. If no neuron fires a spike within the pattern duration, then the same input is again 

presented to the network but with all input firing rates increased by a constant factor. 

3. Once a neuron in layer 1 fires, the corresponding neuron in layer 2 (for the example case above, it is 

N2
20) will also fire due to high values of connecting weights. Note that each neuron in layer 1 only 

connects to the corresponding neuron in layer 2.  

4. Inhibitory current is then applied to all neurons in layer 1 due to the inhibitory connections from a 

layer 2 neuron to all layer 1 neurons. This prevents other neurons in layer 1 from firing. Hence, only 
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weights connecting input to N1
20 gets modified by STDP. Weights corresponding to inputs with 

high firing rate get potentiated while others are depressed. 

5. Move to next image and start from step 1. 

 

When the network was presented with 6000 images in a random order and the simulation was run 

following the steps above, the receptive fields of the excitatory neurons in layer 1 started 

resembling the input digits through competitive learning as shown in Figure 3D. The major 

advantage of our proposed halide perovskite based STDP synapse is its low energy consumption 

during learning. A future miniaturized memristor with an area of 1 m2 will consume ~ 23 

fJ/weight update (extrapolated from Figure S3). In comparison, memristor based synapses require ~ 

30 pJ of write energy[32] while CMOS solutions using floating gate synapses require about 4.5 

pJ[31,33]. Compared to other state of the art halide perovskite memristor implementations (Table T2), 

FA-based memristors depict an 18 % reduction in write energy making them one of the most energy 

efficient artificial synapses reported till date. 

 

Section F. Galvanostatic measurements 

Galvanostatic measurements were done on an Au/Al2O3/Perovskite/Al2O3/Au device configuration 

to further evaluate ion-migration within the perovskite active layer alone. For galvanostatic 

measurement, the symmetric configuration allows electron, hole, and ions to move freely from one 

electrode to the other (2 directions / linear current-voltage behavior). This is a widely accepted 

method to prove the existence of ionic migration in perovskites.[34,35] Au strips were thermally 

evaporated using shadow masks and 2 nm of Al2O3 was deposited on top through atomic layer 

deposition method (ALD). Perovskite layers were then spun coated on top of the sample with a 

procedure identical to the memristor fabrication to minimize possible differences between the active 

perovskite layers in both configurations. Upon bias application, positively charged A-cations and 

negatively charged bromide vacancies drift and accumulate near the negative and positive bias 
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terminals respectively. The trend in ionic conductivities between MAPbBr3, FAPbBr3, and CsPbBr3 

remained consistent with previous observations in the memristor stack, reiterating ion migration in 

halide perovskites as the plausible explanation for the observed synaptic behavior in our synapses.  

 

In these measurements, voltage and subsequently resistance of device was measured at constant 

current for a specific period. The total conductivities (σtotal) were extracted from the slope 

(dominated by both electronic (σe) and ionic (σion, σtotal = σion + σe) components) of normal I-V 

measurements with a scan rate of 4 V/s. In galvanostatic measurements, the measured resistance 

increased initially and finally saturated with time upon current extraction. At initial stages, 

resistance was dominated by both electronic and ionic components. The ionic response decreased 

with time as the ions gradually depleted and accumulated at both electrodes. Finally, the resistance 

saturated with all the mobile ions blocked at the electrodes, leaving the entire contribution from the 

electronic component. The electronic component was thus extracted from the resistance at 

saturation and the ionic counterpart was derived from the difference between total and electronic 

parts as tabulated in Table T4. The measured conductivities, of the order of 10-5 Sm-1, are fully 

consistent with previous reports on related lead-halide perovskites.[36]  

 σion (S/m) σe (S/m) σtotal (S/m) 

MAPbBr3 8.8 x 10-6 6.4 x 10-5 7.2 x 10-5 

FAPbBr3 8.3 x 10-6 6.3 x 10-5 7.1 x 10-5 

CsPbBr3 6.1 x 10-6 1.1 x 10-5 1.7 x 10-5 

Table T4. The calculated ionic, electronic, and total conductivities of halide perovskite thin films with different cations. 

 

Section G. Ionic migration model and first principles calculations 

Model and first-principles calculations. First principles calculations on MAPbBr3, FAPbBr3 and 

CsPbBr3 were performed on their room-temperature stable phases (pseudo-cubic and orthorhombic, 

respectively) (Table T5). The reported geometries are those of the transition states along each 
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pathway. The yellow circles represent the initial and final ionic positions, with blue arrows 

indicating the migration pathway. (Atomic color codes: Purple: Cs; Red: Br; Light blue: Pb; Green: 

C; Blue: N; White: H.) (Figure 4D). These calculations indicated that vacancy-mediated migration 

activation energies of both halide and A-site cations (i.e. MA, FA and Cs) were considerably lower 

than those for Pb2+ migration. Halide motion is predicted to be observable on a very short timescale 

(< 1 µs) due to its small migration activation energy (~ 0.1 eV for the three compounds). These 

timescales and comparable activation energies do not match the experimental phenomena presented 

here. On the other hand, significant differences in activation energy for A-site cation migration 

through the corresponding vacancies (VMA-: 0.56 eV, VFA-: 0.61 eV, and VCs-: 0.32 eV) which can 

take place on a time scale of ~ ms to minutes, could be the origin of the transient responses noted 

here.[37] Our calculations on lead-bromide perovskites are consistent with results for lead-iodide 

compounds showing similar activation energies for MA and FA vacancy migration.[38] The strong 

differences between organic (FAMA) and inorganic (Cs) vacancy-mediated migration activation 

energy is consistent with the cation size order (FA>MA >> Cs). Although both halide and cations 

are easy to diffuse, the synaptic behaviour in our study is heavily influenced by the cation 

movement due to the long pulse widths (~ ms) employed here. 

 

Table T5. Calculated vacancy migration energy barriers (eV) for MAPbBr3, FAPbBr3 and CsPbBr3 using the 

experimental cell parameters.  

 

 

The migration energy barriers remained similar when simultaneously optimizing the atomic 

coordinates and cell parameters. For VMA (VFA), the migration energy barriers of 0.56 (0.61 eV) at 

fixed cell parameters became 0.46 (0.61 eV) when allowing the cell parameters to optimize. 

Unfortunately, Cs-based systems did not converge on a reasonable TS structure when allowing cell 

relaxation. 
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The formation of A-cation vacancies on the representative CsPbBr3 and MAPbBr3 compounds was 

further investigated. We checked several different levels of theory and applied different corrections 

to charged species, but in any case, the results always showed a comparable (i.e. within less than 

0.1 eV see Table T6) defect formation energy (DFE) for VMA and VCs. Thus, we believe the leading 

factor in determining the different behaviour of the various A-cations is their migration energy 

barrier, with the possibly different DFE representing a fine-tuning contribution.  

no vdW DFE (Ef=0, eV) 

VMA
- -0.25 

VCs
- -0.27   

  

Br-rich 
 

vdW DFE (Ef=0, eV)  
eq_PbBr2 

VMA
- 0.1 

VCs
- 0.06 

 

Table T6. Calculated defect formation energies (DFE) for A-cation vacancies. 

Computational Details. Density Functional Theory (DFT) calculations were carried out, within a 

plane wave/pseudopotential approach, as implemented in the PWSCF program of the Quantum 

Espresso software package.[39] To accommodate the different point defects studied and their 

migration along the perovskite crystal, a rather large tetragonal unit cell containing 384 atoms (32 

PbI3 units) was built up. The PBE[40] exchange-correlation functional was used along with ultra-

soft, scalar relativistic pseudopotentials for all atoms. Plane wave cut-offs of 25 and 200 Ry were 

adopted for expansion of the wave function and density respectively, sampling the first Brillouin 

zone at the  point only. Electron−ion interactions were described by ultra-soft pseudopotentials 

with electrons from N, C 2s2p, H 1s, Pb 6s6p5d, Br 4s4p and Cs 5s5p6s electrons explicitly 

included in the calculations. Structural optimizations were performed with cell parameters fixed to 

the experimental values reported by Poglitsch and Weber.[41] The scalar relativistic approach (SR) 

for structural optimizations was adopted, since spin-orbit coupling is known to play a minor role on 
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the structure. Linear transit calculations were performed to calculate the energy profile along the 

migration paths of the defects, identify the saddle point, and estimate the energy barriers.  
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