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ABSTRACT

Over the decades, a great deal of attention has been focused on the solvation and transport properties of small rigid monatomic ions such as
Na+, K+, Li+, Cl−, and Br− due to their importance in physical chemistry. Much less attention has been devoted to polyatomic ions although
many polyatomic ions (such as nitrate, acetate, sulfate, and ammonium) are of great importance in biological and chemical processes. While
the translational diffusion of smaller rigid ions shows the remarkable nonmonotonic dependence on inverse ion size (known as the “break-
down of Walden product”), the intermediate- to large-sized polyatomic ions (such as nitrate, acetate, and sulfate) exhibit different anomalies
pointed out only recently. In this Perspective article, we provide an overview of how rotational diffusion and translational diffusion of these
ions themselves are coupled to translational and rotational motions of water molecules. We discuss how diffusion of polyatomic ions is differ-
ent from that of monatomic ions due to the rotational self-motion of the former that enhances diffusion in specific cases because of symmetry.
While a continuum hydrodynamic model fails to describe the motion of polyatomic ions, we discuss how a mode-coupling theory approach
can capture many aspects of this coupling between the solute ion and solvent water. We discuss how ionic mobility in water and other dipolar
solvents are intimately connected to the dipolar solvation dynamics, in particular to its ultrafast component. We point out how the usual
thinking on the relation between the diffusion and entropy needs to be modified in the case of ion diffusion.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5090765

I. INTRODUCTION

The aim of this article is to provide an up-to-date view of
the past and present developments in the important area of ion
motion in liquid water. Because of the vast nature of the problem,
we have limited our perspective to the ions in the liquid water only
although many other solvents and binary mixtures demand atten-
tion. But it is beyond the scope of our article. There have been an
innumerable number of studies on the dynamics of water molecules
both in the bulk state and in the presence of solutes and surfaces
of various kinds. More recently, the study of jump orientational
motion of water molecules and the effect of the solute on this jump
motion has drawn intense interest.However,much less attention has
been focused on the role of these water dynamics on the motion of
solute molecules. This is indeed surprising because one would imag-
ine that the latter is the main point of studying the former. This
issue is particularly relevant to small- to intermediate-sized atomic
and molecular ions that couple strongly to the surrounding water
molecules.

In the case of ions, much attention has remained focused on
rigidmonatomic ions, such as Li+, Na+, and K+, and other rigid alkali
cations and also, to a lesser extent, on halide anions. Much less work

has been carried on polyatomic ions. This lacuna is indeed surprising
because polyatomic ions are of great importance in chemistry, in biol-
ogy, and also in industry. For example, sulfate ion is quite common
as metal sulfates, also as sulfuric acid (H2SO4). The latter is used in
almost every industry such as batteries, paint, fertilizer, ore process-
ing, steel production, and water treatment. KNO3 and Na2SO4 are
used as electrolytes in salt bridges, fertilizers, rocket propellants, and
even as detergent. Acetate ion serves as a common buffer. The list is
endless.

Having said the above, let us also point out that an under-
standing of motion of ions in water has remained largely incomplete
because, in analytical study, the long-range nature of ion-dipole and
ion-ion interaction poses serious problems and this makes a detailed
first principle study nearly impossible. For example, an ion-solvent
pair correlation function involves both distance and orientation and
a reliable expression for the same, even for a spherical ion in a
water system, has not been made available. This considerably slowed
down the progress of the study of the diffusion and conductivity
of an ionic system. There is also the issue of reliable intermolecu-
lar potential between the ion and water. Therefore, a considerable
amount of work has been directed to develop continuum models
based on electrohydrodynamic equations. This approach completely

J. Chem. Phys. 150, 190901 (2019); doi: 10.1063/1.5090765 150, 190901-1

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1063/1.5090765
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5090765
https://crossmark.crossref.org/dialog/?doi=10.1063/1.5090765&domain=aip.scitation.org&date_stamp=2019-May-15
https://doi.org/10.1063/1.5090765
https://orcid.org/0000-0002-7146-5994
mailto:profbiman@gmail.com
mailto:bbagchi@iisc.ac.in
https://doi.org/10.1063/1.5090765


The Journal
of Chemical Physics

PERSPECTIVE scitation.org/journal/jcp

bypasses the need of intermolecular potential parameters. However,
these attempts are not quantitatively successful, as will be described
briefly later.

Therefore, the development of a proper perspective of ion
motion in water can be developed mainly with the help of com-
puter simulation studies of these complex systems. Almost simul-
taneously, a mode coupling theory (MCT) approach has been devel-
oped recently to study ions’ motion. These two together allowed the
development of thismodern perspective of the ions’ motion in water.

The primary quantity in theoretical and experimental investiga-
tion is the diffusion coefficient or the ionicmobility. The universality
of diffusion phenomena is primarily due to the conservation ofmass.
Compared to the time scale of molecular processes such as momen-
tum relaxation, diffusion is a slow process. When Fick’s law of diffu-
sion is combined with the continuity theorem (which is a statement
of the conservation of mass), we obtain the diffusion equation

∂ρ(x, t)
∂t

= D
∂
2ρ

∂x2
. (1)

Here, ρ(x, t) is the position (x) and time (t) dependent density, and
D is the self-diffusion coefficient of the species being studied.

Equation (1) provides perhaps the best-known definition of the
diffusion constant but gives no information about its microscopic
origin or how to calculate it from theoretical models. In the early
twentieth century, Einstein embarked on an analysis on the origin
of the incessant motion of pollens suspended on the surface of water
and it was observed by the botanist Robert Brown using an optical
microscope. Einstein introduced several groundbreaking definitions
and derived all important relations. First, the diffusion coefficient
was defined as

D = lim
t→∞

[r(t) − r(0)]2
6t

, (2)

where r(t) and r(0) are the positions of the diffusing particle at time
t and at t = 0, respectively. Equation (2) is for a three-dimensional
system, and the limiting step signifies that the mean square dis-
placement of the particle grows linearly with time in the long time
limit.

Equation (2) is known as Einstein’s relation, and it opens the
door for further microscopic understanding of the self-diffusion
coefficient. For example, it could be easily shown that Eq. (2) is
equivalent to the following expression for the self-diffusion coeffi-
cient:

D =
1
3

∞

∫
0

dtCV(t), (3)

where Cv(t) = ⟨v(0)⋅v(t)⟩ is the velocity-velocity time correlation
function (TCF). Einstein did not derive Eq. (3) but had something
equally important. By using the Langevin equation, he derived the
following well-known expression between the diffusion and friction
ζ (this is also known as Einstein relation):

D =
kBT

ζ
, (4)

where kBT is the Boltzmann constant times absolute tempera-
ture T. Although based on the phenomenological Langevin equa-
tion, Eq. (4) is exact and can be used as a definition of friction.

Interestingly, it relates a single particle property (D) to a mechanical
quantity (friction) that is tied to a collective property (viscosity). In
reality, however, from its original appearance, this relation has been
used to obtain the diffusion coefficient which is partly because of the
availability of the hydrodynamic expression of friction that was used
by Einstein himself to obtain the diffusion coefficient. A substantial
amount of work of time-dependent statistical mechanics is devoted
to the calculation of friction on a tagged solute particle, be it a sphere
or a molecule of an arbitrary shape.

The relation between the diffusion and friction is the subject
of the present Perspective, with due emphasis on moving ions and
dipoles in dipolar solvents, specifically liquid water.

As already mentioned, Einstein’s relation between the diffusion
and friction is exact but often difficult to use because no easy access
to the friction coefficient is available. As mentioned above, Einstein
himself used the hydrodynamic relation with a stick hydrodynamic
condition for friction on a sphere of radius r to obtain the values of
the self-diffusing coefficient

ζ = 6πηr. (5)

In Eq. (5), η is the viscosity of the solvent. Equation (5) is well-known
in hydrodynamics as a Stokes equation for friction on a sphere.
When this equation is combined with Eq. (4), we get D = kBT

6πηr , a
relation known as the Stokes-Einstein relation.

Our reason for reviewing the above basic relations is to point out
that our understanding of diffusion depends crucially on our ability
to describe friction. The Stokes hydrodynamic relation between the
friction and viscosity was derived under the assumption that sphere
is much larger in size than that of the solvent molecules so that we
can describe the solvent as a viscous continuum. The Stokes calcu-
lation was based on the solution of the Navier-Stokes equation to
obtain the flow field of the solvent far away from the solute and the
distortion in the flow field near the solute surface. Such a description
naturally ignores all the details of the molecularity of solute-solvent
interactions and the distortion of the microscopic structure of the
solvent around the solute. We shall discuss examples where the sim-
ple hydrodynamic description breaks down completely due to the
molecular interaction effects.

Although we based the above discussion with an emphasis on
diffusion, the friction on a solute itself is an important quantity and
finds use in many theoretical descriptions. A notable application is
the Kramers expression of the rate of a barrier crossing event in a
bistable potential. Kramers expression is given by

k
K =

ωR

2π
[( ζ
2
)2 + ω

2
b]

1/2

exp(−Eact/kBT). (6)

In Eq. (6), ωR is the harmonic frequency that describes the poten-
tial energy minimum of the reactant well, ωb is the frequency that
describes the curvature at the barrier top, and Eact is the activation
energy of the reaction. These three parameters describe the reaction
potential energy surface. The rate of the reaction is partly deter-
mined by the friction ζ on the reactive motion. If the motion of an
ion is involved, then the friction becomes a dielectric friction that we
discuss here.

Equation (6) and its generalization provided by Grote and
Hynes are routinely used in the theoretical study of a large
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number of chemical reactions, ranging from isomerization dynamics
to electron transfer reactions to surface hopping problems. Thus, the
friction on a moving ion is an important quantity in its own right.

However, a theoretical evaluation of friction on a solute
immersed in a liquid is a formidable task. The friction depends
critically on the type of motion involved. For example, friction on
rotational motion could be completely different from that on a
translational motion. For the case of ions, the picture is even more
complicated, particularly for ions in liquid water.1 This is due to a
multitude of factors. First and foremost, the interaction between the
charge of the ion and the dipole moment of water is long ranged and
anisotropic, and the ion size is often not much bigger than that of the
water molecule. Thus, the Stokesian hydrodynamics cannot provide
a valid description. Second, both the rotational and the translation
motion of water molecules become coupled to the motion of the
ions. Therefore, one needs to carefully consider the orientational
relaxation of the water molecules as they couple to the ion’s motion
in water.

For monatomic ions, there now exists microscopic theoretical
description of ion motion in water, which, although not perfect, is
sufficiently reliable. In this case, the complexity due to the rotational
degrees of freedom of the ion is absent. So, a quantitative description
of the ion-dipole correlation is tractable, as we will detail below.

Even for diatomic ions, a reliable quantitative description of the
translational and rotational diffusion of ions does not seem to exist.
The situation is evenmore complicated for polyatomic ions. The ori-
gin of the complexity and the consequent difficulties are many-fold.
First, the friction on a polyatomic ion depends not only on the trans-
lational and rotational modes of water molecules but also on the ion’s
own rotational and translational modes. Due to the prevalence of the
jump motions of water molecules in the liquid state, the motions
of polyatomic ions are intricately and intimately connected to these
motions.

Most of the microscopic approaches to friction actually start
with Eqs. (3) and (4). For the time being, we shall pursue a
simple approach which is based on the Langevin equation for
velocity V

m
dV

dt
= −ζV(t) + R(t), (7)

where m is the mass of the solute particle and R(t) is the random
force. The important aspect of Eq. (7) is that the friction and the
random force are related to each other by the fluctuation-dissipation
theorem

⟨R(0) ⋅ R(t)⟩ = 2dζδ(t), (8)

where d is the dimensionality of the system. Since δ(t) is an even
function of time, one can write down the following simple expres-
sion for the friction on the solute particle that experiences the
random force

ζ =
1
3

∞

∫
0

dt⟨R(0) ⋅ R(t)⟩. (9)

Equation (9) plays an important role although an analytical expres-
sion for the random force is not easy to derive or obtain. Zwanzig’s
projection operator technique provides an exact procedure to obtain
this force, but implementation of the procedure requires approxima-
tions.2,3 It was only in the 1980s that progress was made in theoreti-

FIG. 1. An illustrative flowchart, given for clarity and convenience (and also
for pedagogical purpose), showing the major topics to be discussed and the
interconnections between them.

cal developments in the form of mode coupling theory that allowed
meaningful use of Eq. (9) for dense liquids. Even then, the progress
of this theory has remained limited to liquids where molecules
interact with radial potential because a wavenumber-based descrip-
tion is rapidly convergent. Difficulty remains for liquids interact-
ing with orientation dependent potential (anisotropic interaction)
which unfortunately is the case for most liquids.

The dynamics of electrolyte solutions has remained an area of
great research interest for a long time.4–10 While the objective of
this Perspective article is to understand the translation diffusion of
ions—both rigid monatomic ions such as Na+ and K+ and poly-
atomic ones such as nitrate (NO3

−), acetate (CH3COO
−), and sulfate

(SO4
2−) ions—this translational diffusion is intimately connected

not only with the rotational dynamics of water but also with the ion’s
self-rotational motion. Therefore, in the case of polyatomic ions,
rotational diffusion of the ions is also of interest.

Figure 1 provides a flowchart showing the course of our dis-
cussion. At first, we present an overview of translational friction
which is related to both monatomic and polyatomic ions. Then,
for diatomic and polyatomic ions we discuss rotational friction. For
both cases, we start with continuum model approaches and then
discuss microscopic mode-coupling theory and simulation results.
Unlike hydrodynamics, mode-coupling theory involves both single
particle dynamics and collective dynamics. We connect these theo-
retical approaches using real-system simulation results, such as the
effect of ion dynamics on water dynamics.

II. SIZE DEPENDENCE OF DIFFUSION OF
MONATOMIC AND POLYATOMIC IONS:
ANOMALIES AND DIFFERENCES

Experimental measurements of the mobility of monatomic
alkali cations exhibit a spectacular breakdown of the Stokes-
Einstein’s hydrodynamic relation. This has been extensively dis-
cussed, and several different explanations have been put forward.5–7
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FIG. 2. (a) The experimental values of ionic diffusivity (obtained from limiting ionic
conductivity through Nernst-Einstein’s relation) of rigid, monatomic ions (at 25 ○C)
vs the inverse of crystallographic ionic radii are shown. The data in yellow color
correspond to cations, and those in blue color correspond to anions, and (b) exper-
imental ionic diffusivity of polyatomic ions vs ionic radius at 25 ○C. Black dashed
line represents the Stokes-Einstein value of diffusion. Values are taken from Refs.
11 and 12.

The breakdown, popularly known as the “breakdown of Walden’s
product” (which is the product of the limiting ionic conductivity,
Λ0, and solvent viscosity η0), is also evident from the plot of diffu-
sivities of alkali cations in water [Fig. 2(a)]. Monatomic halide ions
also show a similar trend.11,12 This nonmonotonic dependence of
conductivity on inverse ion radius has been attributed to dielectric
friction which is the extra friction (in addition to the Stokes friction
due to viscosity) because of the interaction of the ion’s charge with
the solvent dipoles.

For polyatomic ions, the situation is strikingly different, with
several different anomalies. Figure 2(b) shows the experimental dif-
fusivity of some monovalent polyatomic ions of similar sizes. It is
evident that the diffusivity of polyatomic ions belongs to two different
classes. Nitrate (NO3

−), nitrite (NO2
−), chlorate (ClO3

−), perchlo-
rate (ClO4

−), etc., belong to the class with considerably higher (75%–
100%) diffusivity than the other class of ions consisting of iodate
(IO3

−), bicarbonate (HCO3
−), acetate (CH3COO

−), etc. These ions
have similar ionic radius. So according to the Stokes-Einstein rela-
tion, they are supposed to exhibit similar diffusivity [Stokes-Einstein
predicted diffusivity values are shown by black dashed line in
Fig. 2(b)].

While Fig. 2(a) has drawn interest for almost a century, the
second anomaly [Fig. 2(b)] has been pointed out only recently.13

Figure 2(b) reveals a completely new ingredient in the motion of poly-
atomic ions that is not present in rigid spherical monatomic ions, not
usually discussed and that is a major subject of interest in the present
Perspective.

III. CONTINUUM MODEL THEORIES OF FRICTION
AND DIFFUSION

The sharp fall in the limiting ionic conductivity (which is
the same as the self-diffusion of the ion) for the smaller-sized
monatomic ions, depicted in Fig. 2(a), was attributed earlier to the
formation of a “solvent-berg” around the ion.14,15 Subsequent com-
puter simulations and theoretical studies have mostly nullified the
picture although a remnant of a structured layer holds true for the
lithium ion. However, the water molecules in the first layer of these
ions retain significant mobility, may be reduced, especially for Li+,
from the bulk value. The commonly accepted picture now invokes
the presence of an additional friction due to ion-water interactions,
and the total friction is written as

ζ = ζSE + ζDF, (10)

where ζSE and ζDF are the Stokes friction due to the viscosity of the
medium and the dielectric friction due to ion-dipole interactions,
respectively. Equation (10) has been widely used although such a
clear separation between the Stokes friction and dielectric friction
s has been a subject to question.6,8,16,17

The first attempts to explain the size nonmonotonicity and the
observed anomalously low limiting ionic conductivity of small rigid
cations such as Li+ and Na+ and anions such as F− employed the
continuummodel approach. Boyd18,19 and Zwanzig20 both indepen-
dently solved electrohydrodynamic equations and obtained expres-
sion for the additional friction due to the interaction of the electric
field of the ion with the time dependent polarization field of the
dipolar liquid. The latter was assumed to be given by a single dielec-
tric relaxation with the time constant given by the Debye relaxation
time, τD,

18–21

ζDF =
2
3
( q2

R3ion
)[1 − ε∞

ε0
]τD
ε0
, (11)

where Rion and q are the solute radius and the charge in the solute,
respectively, and ε0 and ε∞ are the dielectric constant at the low-
frequency (that is, static) and that at the high-frequency (that is,
optical) limits, respectively. τD is the dipole relaxation time.

Later Zwanzig revised the calculation of dielectric friction by
taking into account both electrostatics and hydrodynamics and
obtained the following expressions for ζDF for slip and stick bound-
ary conditions:20

ζDF(stick) = 3
8
( q2

R3ion
)[ (ε0 − ε∞)

ε0(2ε0 + 1)]τD,
ζDF(slip) = 3

4
( q2

R3ion
)[ (ε0 − ε∞)

ε0(2ε0 + 1)]τD.
(12)

It was argued that the friction coefficient for the slip boundary con-
dition is larger than that for the stick because the former allows a
greater relative motion of the ion and the surrounding fluid. The
faster motion of the ion allows less polarization relaxation of the
solvent, hence the larger drag or dielectric friction.

These simple expressions need no adjustable parameter. The

notable feature is the dependence on q2

R3ion
τD. Thus, the theory pre-

dicts that the friction increases with charge, for slow solvent polar-
ization relaxation, and decreases with size. The friction is also pre-
dicted to decrease with an increase in the static dielectric constant
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because the field of the ion gets screened better. However, both these
expressions overestimate the dielectric friction for small ions and
fail to account for the size dependence across the cation series. It
especially breaks down for the smaller cations.5,12

A more sophisticated expression for the dielectric friction was
derived by Hubbard and Onsager,22 which, in the language of
Wolynes, is “the ultimate achievement in a purely continuum the-
ory of ionic mobility.”4 The Hubbard-Onsager (H-O) expression is
given by

ζDF(stick) = ( 17
280
)τDq2
R3ion
( ε0 − ε∞

ε20
),

ζDF(slip) = ( 1
15
)τDq2
R3ion
( ε0 − ε∞

ε20
).

(13)

Note the similar dependence on the main factors. Unfortunately,
the H-O expression also fails to account for the size dependence. It
underestimates the dielectric friction at intermediate to small sizes.
Later, the continuum model theory of dielectric friction was further
revised and extended by Hubbard and Kayser23,24 and Felderhof.25

The reason for the failure of the continuum model theo-
ries is many-fold: (i) neglect of the molecularity of charge-solvent
interactions and thereby underestimation of solute-solvent and
solvent-solvent correlations and (ii) inadequate description of sol-
vent dynamics.26 We would like to point out that these theories
were developed two to three decades before the discovery of ultrafast
solvation dynamics in water, acetonitrile, and methanol.

IV. MICROSCOPIC THEORIES FOR
MONATOMIC IONS

The first molecular approach was attempted by Colonomos and
Wolynes who used the Kirkwood expression in terms of the force-
force time correlation function to obtain the dielectric friction.27

The force that goes into the Kirkwood expression was obtained by
using a time dependent density functional theory. We shall refrain
from discussing this theory in detail because our aim is to discuss
the more involved mode coupling theory approach below. The main
merit of the Colonomos-Wolynesmolecular approach was the inclu-
sion of the role of translational modes of the solvent in reducing the
dielectric friction.

According to Kirkwood’s formula, the total dielectric friction
on an ion is given by the force-force time correlation function1,28,29

ζDF =
1

3kBT

∞

∫
0

dt⟨F(0).F(t)⟩, (14)

where F(t) is the total force on the ion due to polar interactions at
time t. kB is the Boltzmann constant, and T is the absolute temper-
ature. If we decompose the total force on the ion into a short range
repulsive part (hard: H) and a long range attractive part (soft: S), the
total force-force autocorrelation function and thus the total friction
can be written as a sum of four terms as suggested by Allnatt and
Rice30

⟨F(0) ⋅ F(t)⟩ = ⟨FH(0) ⋅ FH(t)⟩ + ⟨FH(0) ⋅ FS(t)⟩ + ⟨FS(0) ⋅ FH(t)⟩
+ ⟨FS(0) ⋅ FS(t)⟩,

(15)
ζ = ζHH + ζHS + ζSH + ζSS.

Wolynes in his attempt to formulate a microscopic theory of dielec-
tric friction identified the term ζHH as the Stokes friction and ζSS as
the dielectric friction and neglected the other two terms.7,27 Later by
theoretical approach6 and by computer simulations,8,16,17,31–34 sev-
eral studies confirmed that the cross terms cannot be fully neglected.

In a series of papers, Bagchi et al. reformulated the Kirkwood
expression based approach in terms of wavenumber based equations
that closely resemble the mode coupling theory approach that was
already developed for nonpolar liquids.5,6,35 The difference in the
Bagchi approach is that one could develop a consistent theory of
dielectric relaxation, solvation dynamics, and dielectric friction. The
final expression for the dielectric friction is given by

ζDF(z) = 2kBTρ0
3(2π)2

∞

∫
0

dt e−zt
∞

∫
0

dk k4Fion(k, t)∣c10id (k)∣2F10solvent(k, t).
(16)

We shall discuss about this later in detail in Sec. V. Here, Fion(k, t) is
the self-dynamic structure factor of the ion, F10solvent(k, t) is the orien-
tational dynamic structure factor of the dipolar solvent, and c10id (k)
is the ion-dipole direct correlation function.

It is interesting to study a reduction in the microscopic or
molecular expressions of the friction to the continuum model pre-
diction. It is always a fruitful exercise because of the valuable insight
that such a derivation provides. For example, the reduction in the
microscopic expression of the solvation time correlation function
to the continuum model prediction and the recovery of the longi-
tudinal time constant are indeed revealing as one finds that while
we replace the wavenumber (k) dependent relaxation times by the
k = 0 limiting value, the initial solvation energy is obtained by aver-
aging over all the wavenumbers. Similar approximations have to be
made in the derivations of the continuum model expression of the
rotational dielectric friction36 and the derivation of the expressions
of Fatuzzo-Mason-Nee-Zwanzig expression of the frequency depen-
dent dielectric function.37,38We shall discuss the rotational dielectric
friction on ions in Sec. VIII.

In the case of limiting ionic conductivity, the situation is a bit
more complex. Here we have to consider the contributions of both
the density mode and the current mode. Hydrodynamic approaches
of Boyd-Zwanzig-Hubbard-Onsager included only the contribu-
tion of the current mode. By contrast, the molecular approach of
Wolynes considered only the density mode. Thus, the contributions
considered in the latter study cannot be reduced to that of the for-
mer as they are orthogonal contributions. However, numerically the
two contributions might approach each other as indeed happens
for friction on a tagged spherical solute in a solvent of spherical
molecules.39

V. MODE COUPLING THEORY OF ION DIFFUSION:
MONATOMIC IONS

The most sophisticated and also the most accurate description
of diffusion and transport properties of liquids are provided by the
mode coupling theory.40–44 For tagged particle diffusion, one can
derive the following simple yet fairly accurate expression for the
friction on an uncharged solute

1
ζ
=

1
ζbin + ζρρ

+
1
ζhyd

, (17)
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where the terms on the right-hand side (RHS) have the following
meanings. ζbin is the friction from the binary (uncorrelated) interac-
tion between the solute and the solvent, ζρρ is the correlated many-
body interaction which is described by (that is, projected on) the
density mode, and ζhyd is the contribution to diffusion due to the
hydrodynamic transverse current mode. This expression needs gen-
eralization for ions that we shall discuss later. For now, we would
just like to point out that the origin of the first two terms on the RHS
in Eq. (17) is completely different. The first term comes from binary
and correlated collisions which we can be described by the density
mode, while the second term is due to the transverse current mode,
or the flows in the liquid.

We now make an important observation. The electrohydro-
dynamic approach of Boyd-Fuoss-Zwanzig19,20,45 and Hubbard-
Onsager22 considered only the current mode. It was internally con-
sistent because the Stokes friction is also due to the transverse cur-
rent mode. The inconsistency arises if we add the friction from
the molecular or the structural relaxation term to the current term
because for these orthogonal modes, the addition is to be made at the
level of diffusion coefficient—not at the level of friction. The two con-
tributions should be considered as two independent contributions to
diffusion.

There is, however, an important additional point to be remem-
bered. The numerical estimates of the mode coupling theory calcu-
lations of friction on a solute in the solvent of the similar sizes give
results that are similar to (but slightly larger than) 4πηR—the Stoke-
sian value with the slip boundary condition. This important point is
often missed and has been discussed in Refs. 43 and 46.

We now turn to the discussion of ion diffusion and explanation
of molecular aspects of the results shown in Figs. 2 and 6(i). There
are several new features that enter the discussion here, including a
surprising role of the translational diffusion of solvent molecules on
the friction of the ion.36

At a molecular level, a small ion facing water molecules expe-
riences multitude of forces. It is easy to see why the point dipole
approximation of the continuummodels of Boyd-Onsager-Zwanzig
could be inadequate because the point dipole fails to produce the
orientational structure that forms in the first hydration shell.

Microscopic mode coupling theory (MCT) provides a differ-
ent approach and a different picture which we discuss below with-
out invoking the complex equations. First, let us differentiate the
present approach from that based on hydrodynamic equations. The
latter involves assumption of long wavelength and long-time (small
wavenumber and small frequency). MCT is a molecular approach
that includes spatial and orientational correlations and also dynam-
ics at molecular length scales all the way up to macroscopic dis-
tances. Another important positive aspect of MCT is that it includes
the local structural changes in the solvent due to the presence of the
ions. Self-consistent MCT is a culmination of renormalized kinetic
theory of gases40,47 and molecular hydrodynamics48 and was formu-
lated in the early 1980s. We have shown a flowchart in Fig. 3 to
describe the origin of the concept of MCT. In some respects, the cal-
culation of MCT parallels that of hydrodynamics, except that here
the main contributions are made by structural relaxation at micro-
scopic length scales. In extended hydrodynamic theory descrip-
tion, the decay of wavenumber dependent hydrodynamic modes is
expressed in terms of frequency and wavenumber dependent trans-
port coefficients. However, this description is valid in intermedi-
ate time scales and breaks down in very short and very long time
scales. On the other hand, renormalized kinetic theory works well
in very short and very long-time responses. These two approaches
are combined in mode-coupling theory, and the self-consistency
comes into picture through the time correlation function of hydro-
dynamic modes in terms of transport coefficients (Green-Kubo for-
mulation). The two approaches can be considered to be complimen-
tary in another aspect. From the time of Boltzmann, kinetic theory

FIG. 3. An illustrative (and pedagogical) flowchart showing
the origin of mode-coupling theory and the ideas behind
it. Note that the two formidable theoretical frameworks are
combined to build the mode coupling theory (MCT).
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was used to calculate the transport properties, such as viscosity,
diffusion, and thermal conductivity. Hydrodynamics, on the other
hand, was largely used to obtain the time correlation function, as
in Rayleigh-Brillouin spectroscopy. Of course, we do get an expres-
sion of friction from hydrodynamics but at the expense of intro-
ducing viscosity. Hydrodynamics has no way to provide a value of
viscosity.

The basic idea is to describe the static and dynamical influ-
ence of the solvent on the tagged solute through the coupling of
the slow hydrodynamic modes and their binary product. The end
result is always an integration of product of three terms, which are
as follows: (i) The time correlation function (TCF) of the solvent
mode (such as dynamic structure factor or current correlation func-
tions), F10Solvent(k, t), (ii) a vertex term that accounts for the coupling
between the solute and the solvent, c10id (k), and (iii) another time

FIG. 4. (a) For convenience and clarity, a flow chart illustrating the complex self-
consistent scheme of mode-coupling theory for the translational dielectric friction
of a rigid, monatomic ion in water is provided in this figure. Note that a similar
self-consistency is to be applied for the solvent memory function, Σ10(k, z) as
well. (b) The values of the Walden product Λ0η0 of rigid, monatomic positive ions

are plotted as a function of the inverse ionic radius rion
−1 in methanol at 298 K.

The solid line represents the predictions of the microscopic mode-coupling theory.
The filled circles denote the experimental results. The large-dashed and the short-
dashed lines are the representatives of the Hubbard–Onsager and the Zwanzig
continuum model based theories, respectively (taken from Ref. 49).

correlation function (TCF) that describes the solute dynamics,
Fion(k, t). The self-consistency enters, in this case, through the last
two terms—the vertex term and the solute dynamic TCF. In this the-
ory, the dielectric friction equation which is solved self-consistently
is expressed as given in Eq. (16).

The ion-solvent coupling has a significant solvent orientational
component through the coupling of the ion with the dipoles of
the solvent. Thus, both the orientational arrangement of the sol-
vent molecules and their orientational relaxation enter into the
theoretical description.

We describe the self-consistent MCT calculation through a
flow chart given in Fig. 4(a). However, Fig. 4(a) is appropriate for
monatomic (spherical) ions. The situation is more complex for poly-
atomic ions which shall be described later. Mode-coupling theory
results are shown to agree well with the experimental result for
monatomic ions in methanol [Fig. 4(b)].

The self-consistency, also called boot-strapping, requires use
of the expression for frequency and wavenumber dependent trans-
port property, such as diffusion, friction, or memory-kernel, into
the expression of the time correlation function that is used to cal-
culate the transport property. That is, the transport property and the
time correlation function are made consistent with each other, as
described in Fig. 3 and implemented in Fig. 4.

An important aspect of the self-consistency scheme is that it
involves both solute and solvent dynamics. Thus, one can envis-
age that solvent dynamics also gets modified by the solute’s pres-
ence and its motion. This MCT scheme can indeed address this
oft-debated issue of the effects of ion on dynamics of surrounding
water molecules.50,51,49

VI. ION SOLVATION DYNAMICS AND IONIC MOBILITY

We now discuss an interesting correlation between the ion sol-
vation dynamics and ionicmobility. In solvation dynamics, we probe
the polarization response of the dipolar solvent after an optical exci-
tation of an internal dye molecule.29,52 The excitation induces a
dipole moment in the dye. The subsequent stabilization of the dye
can be measured by the red shift of the fluorescence emitted by the
dye. The measured relaxation is quantified in terms of a normalized
time correlation function, S(t), defined by

S(t) = ⟨ν(t)⟩ − ⟨ν(∞)⟩⟨ν(0)⟩ − ⟨ν(∞)⟩ =
E(t) − E(∞)
E(0) − E(∞) =

∆E(t)
∆E(0) , (18)

where ⟨ν(t)⟩ is the average frequency of the fluorescence spectrum
of the dye at time t. This is assumed to be equal to the energy of
the dye, E. The last term on the right-hand side is just a defini-
tion. Recently, in a review article, Hynes summarized these aspects
of solvation dynamics as well as molecular motion in water.53

A deeper insight is obtained when we realize that the solvent
memory kernel used in the mode coupling theory expression of the
dielectric friction is the same as the one involved in the solvation
dynamics. In the long wavelength limit, the relaxation of longitudi-
nal polarization rate is ultrafast and is largely responsible for sub-100
fs solvation dynamics observed in experiments and simulations on
water.

The above observation has a significant role in reducing the
dielectric friction on a moving ion. Because of the presence of ultra-
fast solvation, the magnitude of the friction decreases significantly
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FIG. 5. The probability distribution
of square displacement of four alkali
monatomic ions Li+, Na+, K+, and Rb+

in water at four different time intervals:
(a) 50 ps, (b) 100 ps, (c) 200 ps, and (d)
300 ps. Note the sharp fall in probability
is going from Na+ to K+.

because the initial part of the force-force time correlation function
decays at an ultrafast rate in the long wavelength limit which has
a significant contribution to the dielectric friction.54,55 Theoretical
studies in fact show that if we progressively remove the ultrafast
components, then the limiting ionic conductivity approaches the
prediction of Zwanzig theory.

This interesting result partly explains the overestimate of the
dielectric friction by the continuum model expression of Zwanzig.
The continuum models include contributions from the long wave-
length modes but assume that the relaxation of polarization can
be described by invoking the single Debye relaxation time-based
approach that gives rise to the longitudinal relaxation time. This
approximation vastly underestimates the rate of the polarization
relaxation. Thus, the friction, which is the time integral over the
polarization relaxation time correlation function, is overestimated.
The same criticism is valid for the approach of Colonomos and
Wolynes. In fact, a lack of knowledge of the ultrafast component
(prior to 1991 for acetonitrile and 1994 for water) compromised our
understanding of ionic mobility. For water, the solvation dynamics
was found to be ultrafast, with 60%–70% of the energy relaxation
[that is, the decay of S(t)] completed within 100 fs.We thus encounter
a rather strange and unique case where a fast process controls a slow
relaxation.

Friction on an ion is given by the integration over the force-
force time correlation function. It is expected that the polar compo-
nent of the force-force time correlation function should also decay
on the ultrafast time scale, thus reducing its contribution to the total
friction. Numerical calculations verified the above picture.

The relative contributions of the two friction terms are shown
in Fig. 6(i). Clearly, the polar contribution increases as the size
of the ion decreases, and at the same time, nonpolar contribution
decreases.

In Fig. 6(i), the example of Li+ ion presents an interesting case.
In the absence of the charge, this small ion is expected to move
fast, move in a way different from the prediction of hydrodynamics
and decouple from solvent viscosity. In the presence of the charge,
it generates a strong electric field that forms a structure akin to
the solvent-berg model. MCT captures the ensuing effects through
two factors. (i) The solute-solvent structure through spatial and
orientational correlation functions and (ii) a self-consistency that
takes into account the effects of slowdown of the solute on its own
friction.

Figures 5(a)–5(d) depict the probability distribution of the
square displacement, ∆r2, for four ions. It shows that the size depen-
dence indeed has a strong effect; while the distribution of displace-
ment of smaller ions such as Li+ and Na+ behaves similarly, that
of the larger ions such as K+ and Rb+ behaves significantly differ-
ent. Such a sharp difference in the distribution curves is not seen in
a model solvent such as Stockmayer liquid (LJ spheres with point
dipoles at the center).

VII. NUMERICAL TECHNIQUE TO CALCULATE
DIELECTRIC FRICTION

Accurate analytical microscopic calculation of friction on a
tagged solute ion is an extremely difficult task. In computer sim-
ulations, one can obtain this quantity from the Einstein equation
by calculating the diffusion coefficient from the mean square dis-
placement of the solute. However, to compute dielectric friction
on an ion, we need to separate it from the total friction. Here, we
discuss a simple technique employed to compute dielectric friction
on an ion. One carries out two categories of simulations, one with
proper charges and force-field for ions and another with every-
thing the same but zero charges. Finally, the dielectric friction is
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FIG. 6. (a)–(d) Pictorial illustration of the hydration shell of Na+ and Cs+ ions
and their uncharged analogs, created from snapshots. (a) and (c) correspond to
charged Na+ and Cs+ ions, and (b) and (d) are the hydration shells of uncharged
Na and Cs atoms with similar Lennard-Jones interaction potentials. [(e) and (f)]
Radial distribution function of Na+ and Cs+ ions and their uncharged analogs and
[(g) and (h)] time evolution of square displacement of single Na+ and single Cs+

ions in water and comparison to their uncharged analogs. (i) Variation of Stokes
friction, ζSE, and dielectric friction, ζDF, for different sized ions.

obtained as

ζDF = ζCharged_ion − ζUncharged_molecule
= kBT[ 1

DCharged_ion
− 1
DUncharged_molecule

]. (19)

In Figs. 6(a)–6(f), we illustrate the physical situation for charged
and uncharged ions, for two cases, Cs+ and Na+. One can compute
Stokes-Einstein friction, ζSE, from the diffusivity of the solutes in
the absence of any charges on it, and the dielectric friction can be
obtained by subtracting ζSE from the total friction of the ionic species
[Eq. (10)].

Figures 6(a) and 6(b) show the hydration shells of the Na+ ion
and an uncharged Na atom. Note the marked difference between the
two. Similarly, Figs. 6(c) and 6(d) correspond to those of cesium
(Cs). Here, the difference is large despite the much larger size of
cesium. In the absence of charge, the structure of hydration shell
is destroyed or minimized for both the ions. The change is more
pronounced in the case of sodium due to the charge density of the
ion [Figs. 6(e) and 6(f)]. We have plotted the square displacement of
single ions of Na+ and Cs+ from an initial timeframe. Cs+ ions show
larger translational jump than Na+ ions, while the reverse is true for
the uncharged case.

The differences in surrounding structural arrangements essen-
tially give rise to changes in the dynamics of the ions. Unfortunately,
continuummodel based hydrodynamic theories fail to capture these
aspects while they are incorporated in a sophisticated microscopic
theory such as the mode coupling theory.

As we have described earlier, Stokes friction and dielectric fric-
tion on these monatomic ions can be obtained from the diffusivity
values of charged ions and uncharged atoms. These friction values
of five alkali monatomic cations are plotted in Fig. 6(i). This figure
shows that while the Stokes friction increases, as expected, with the
increase in the size of the atoms (Li–Cs), the dielectric friction shows
a sharp decrease after Na+ ions. The two lines cross each other at
potassium which is thus predicted to experience similar Stokes and
dielectric friction.

An important point to note here is that the structure and
dynamics of these salt solutions may depend significantly on the
polarizability of water molecules. Berne and co-workers demon-
strated that in a simulation with a polarizable model of water,
the hydrogen bond relaxation time gets lengthened by a factor of
between 50% and 100% and the Gibb’s energy of activation for
breaking hydrogen bond increases by ∼0.2 Kcal/mol.56,57 They also
showed that the solvation of a chloride ion in a water cluster changes
its nature. In a nonpolarizable model, interior solvation of Cl− is
preferred, while in a polarizable model, the ion is solvated near the
surface of the cluster. In a recent article, Nguyen et al. showed that
a nonpolarizable model cannot reproduce the trend of the diffu-
sion constant of water with the increase in the salt concentration
as obtained from experiments.58 The effect of polarizability and/or
charge transfer needs to be included in the simulation model to
obtain a good agreement with experiment.

VIII. MOTION OF DIATOMIC IONS

Diatomic ions with a linear geometry, such as CN− and CO,
exhibit markedly different rotational and translational dynamics
from the rigid monatomic ions. These ions all have one character-
istic that is the hallmark of polyatomic ions: the presence of dis-
tributed charges across heteroatoms, which makes their coupling
with water molecules strong and complex. Also, unlike monatomic
ions, diatomic ions can rotate in response to a fluctuation in the
force acting on its atoms. Therefore, the total friction acting on a
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polyatomic ion derives its contributions from translational motion,
from rotational motion, and also from the coupling of translation-
rotational motion. One often discusses the presence of such cou-
pling in terms of a friction tensor where the off-diagonal terms
describe translation-rotation coupling as described in the following
equation:

ζ = [ ζT ζTR

ζRT ζR
]. (20)

We have already discussed translational friction ζT in the context
of monatomic ions. Now we turn to a discussion of rotational fric-
tion. A myriad of theoretical models for rotational friction exist in
the literature. This start with the simplest hydrodynamic model of
Debye-Stokes-Einstein (DSE) for a sphere

ζR ≃ ζDSE = 8πηR
3, (21)

where R is the ionic radius and η is the viscosity of the bulk sol-
vent. However, similar to the Stokes-Einstein model for transla-
tional friction, here also the molecularity of the solute and solvent
is neglected.

We briefly discuss here the existing theoretical approaches to
obtain the frictional drag on rotational motion (shown in Fig. 7);
a more detailed discussion can be found elsewhere.59 In one of the
most important work in this specific area, Hu and Zwanzig pre-
sented a calculation of the frictional drag on rotating nonpolar ellip-
soids (prolates and oblates) by hydrodynamic calculation.60 This was
an important contribution because a rotating sphere experiences no
frictional resistance under the slip boundary condition, while the
stick boundary condition gives too high friction. Thus, the work of
Hu and Zwanzig removed an important lacuna. For the rotational
dielectric friction, pioneering contributions came from Fatuzzo and
Mason61 and Nee and Zwanzig.37,62 Similar to work of Zwanzig
on translational friction, as discussed earlier, here also they started
with decomposition of the total rotational friction in terms of a

FIG. 7. For convenience, we present a chart of the different theoretical formulations
developed for the rotational friction over the years. The list is not exhaustive but
attempts to capture some of the essential developments.

hydrodynamic term due to viscosity and a term due to polarization
fluctuations

ζRot = ζDSE + ζR,DF, (22)

where ζDSE is the hydrodynamic contribution to rotational friction
obtained from the Debye-Stokes-Einstein (DSE) relation [Eq. (21)]
and ζR,DF is the rotational dielectric friction. This is in fact closely
connected to the solvation dynamics of the polar medium.63–65 A
continuum model based expression of frequency dependent friction
on a point dipole in the center of a spherical cavity was obtained by
Nee-Zwanzig in the following form:

ζDF(ω) = 2kBT
iω
(εS − ε∞)

εS

(ε(ω) − εS)(2ε(ω) + ε∞) . (23)

Hubbard and Wolynes significantly extended this theory and sug-
gested an interesting inverse dependence of dielectric friction on
the rank, l, of the spherical harmonic.66 Later, Ravichandran and
Bagchi presented a detailed analysis on the rank-dependence of
orientational correlation function.65

In a work relevant to the present Perspective, Alavi-Waldeck
generalized the theory of Nee-Zwanzig to obtain dielectric friction
for an arbitrary charge distribution.37,67 They derived the following
formidable expression:

ςR,DF = ( 8Rc )(
εS − 1
(2ε1 + 1)2 )τD

N∑
j=1

N∑
i=1

∞∑
l=1

l∑
m=1
(2l + 1
l + 1

)(l −m)!(l + m)!
×m3

qiqj( riRc
)l( rj

Rc
)lPm

l (cos θi)Pm
l (cos θj) cosmφji, (24)

where Pm
l (xi) are the Legendre polynomials describing the orienta-

tion of the charge at distance ri, in the space fixed frame. Rc is the
cavity radius, (ri, θi, φi) are the polar coordinates of the charges, qi is
the partial charge of i-th atom, εS is the static dielectric constant of
the solvent, and τD is the Debye relaxation time.

An extended molecular theory of orientational relaxation
including solvation dynamics was developed by Bagchi et al.68,69

The theory was based on the nonlinear Smoluchowski equation
for rotational and translational diffusion where the effective force
was obtained from time dependent density functional theory. For a
molecular species, a similar theory was developed using the reference
interaction site model (RISM).70

Rotational dielectric friction, ζR,DF, is related to the torque-
torque time correlation function (TTTCF). For a linear molecule or
a dipole, it is defined as

ζR,DF =
1

2kBT

∞

∫
0

dt⟨N(0) ⋅N(t)⟩. (25)

As noted earlier in the context of translational friction, ζR,DF also is
not directly accessible from simulation using Eq. (25). Here, N(t) is
the random torque acting on the solute at time t. Here, the effect
of solute’s self-motion on the torque it experiences needs to be pro-
jected out. Zhou et al. investigated rotational friction by computer
simulation by choosing an immobile solute.71 Later, Maroncelli and
co-workers pointed out that the treatment suffered from an internal
inconsistency.72
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FIG. 8. The radial distribution function
(RDF), g(r), of water oxygen atoms
surrounding the constituent atoms of
(a) cyanide (CN−) ion and (b) carbon
monoxide (CO) molecule. Trajectories
demonstrate coupled translation jump of
water molecules with (c) cyanide ion and
(d) CO molecule.

Another way to obtain ζR,DF from simulation is through the
angular velocity autocorrelation function and the torque-angular
velocity correlation function

Cωω(t) = ⟨ω(0) ⋅ ω(t)⟩, (26)

where ω(t) is the angular velocity vector at time t. Then, the friction
coefficient is obtained using Einstein’s relation again.73–75

Due to the distributed charges of diatomic ions, the molecules
of liquid water may need to undergo significant structural arrange-
ment to obtain the stable structure, and there could be frustration in
water structure.

This simple point can be understood by comparing the dif-
ference in the dynamics of CN− and CO molecules in water.76

The arrangement of water molecules around the two molecules is
observed to be considerably different [Figs. 8(a) and 8(b)]. Carbon
monoxide molecules behave like a hydrophobic solute in an aqueous
solution.

There are interesting consequences of this difference. Although
a CO molecule rotates faster, it is less connected to the water dynam-
ics. The cyanide ion, being better connected due to the presence of the
charges, derives benefits from the jump dynamics of water molecules,
as manifested in the trajectories of the two species [Figs. 8(c) and
8(d)]. Here, the translational jump motion of the neighboring water
molecules is coupled with that of the CN− ion and CO molecules. A
similar coupling is observed in their rotational jump also.

The uncharged species, CO molecule, exhibits both the trans-
lational (Dtr,CO = 2.68 × 10−5 cm2/S) and rotational dynamics (τCO
= 0.16 ps) faster than the cyanide ion (Dtr,CN

− = 2.03 × 10−5 cm2/S
and τCO = 0.58 ps) in water. Furthermore, the translational motion
of these diatomic ions/molecules is again coupled to their own

rotational motion. The average displacement of these two solutes
as a function of their angle of rotational jumps is shown in Fig. 9
(detailed calculation has been discussed in Ref. 13). Here, different
data points of a particular species represent different time frames.
For similar time gaps, τ, 2τ, etc., CO rotates more and in turn, trans-
lational displacement of this species is more than that of the cyanide
ion.

In these cases of diatomic molecules, analytical treatment of
total friction is more complicated than that for the rigid monatomic
ions. The treatment becomes further nontrivial for polyatomic ions.

FIG. 9. These graphs show the average displacements of the solutes CO and
CN− as a function of the average angle of rotation. Each point marked as τ and
2τ signifies data at different time frames. Note that CO rotates faster and also
translates faster than CN−.
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These categories of diatomic species being intermediate between the
monatomic and polyatomic ions help to understand the complex
dynamics of polyatomic ions, which we shall discuss in Sec. IX. In
the case of polyatomic ions, complexity comes from the geometry
and the charge distribution of the ionic species.

IX. DYNAMICS OF POLYATOMIC IONS IN WATER

As discussed, the quantification of the total friction on a poly-
atomic ion is more nontrivial than that for a spherical ion and
a diatomic ion. Experimental data of ionic conductivity at infi-
nite dilution (or ionic diffusivity) suggest that polyatomic ions with
similar crystallographic radius but different geometries and charge
distributions exhibit different diffusivities in an aqueous medium
[Fig. 2(b)]. As pointed out earlier, the most important features
that distinguish polyatomic ions from rigid monatomic ions, and
among different polyatomic ions, are the distributed charges and
different geometries. Chandra and co-workers investigated struc-
tural, dynamic, and spectroscopic behavior of several polyatomic
ions employing ab initio simulation.77–79 In an interesting study,
they showed how the structure of iodate ions dictates the nature of
solvation and makes the anion behave partly as a cation.

In a series of papers, detailed computational analyses of 0.1M
aqueous solution of potassium salt, with three different anions, two
of them being monovalent ions, such as nitrate, NO3−, and acetate,
CH3COO

− and also of a bivalent ion, sulfate, SO4
2−, were presented

recently. Simulation details are given in Ref. 59. It was observed that
the rotational motion of nitrate ions was significantly coupled to
the orientational jump of neighboring water molecules.80 Almost a
decade ago, researchers found that the rotational motion of water
molecules were not merely diffusive in nature but consisted of large
magnitude rotational jumps.1,81,82 Now, the orientational motion of
a solute, such as a nitrate ion that is hydrogen bonded with water
molecules, also exhibits jump rotations. Figures 10(a) and 10(b)

show two different trajectories of orientational jump motion of both
the water molecules and nitrate ion that were hydrogen bonded ini-
tially. When the ion-water hydrogen bond gets broken, both exhibit
large amplitude rotational jump motions and the two jump motions
are correlated, sometimes occur together and sometimes after a short
time lag. This is true for other ions also. Clearly, these correlated
jump motions are expected to affect the dynamics of the nitrate ion
significantly.

Next, it has been observed that the rotational jump of the nitrate
ion is also coupled to its own translational motion.13 Figures 10(c)
and 10(d) show the time evolution of the square displacement of
the ion and quaternions of the same trajectory. At a particular time
(∼80 ps) when the square displacement exhibits a sharp change,
the three quaternions (q1, q2, and q3) also exhibit a sudden change
which signifies a rotational jump of the nitrate ion. This translation-
rotational coupling contributes significantly to the overall dynamics
of the polyatomic ions.

Let us first discuss the coupled rotational jump motion of poly-
atomic ions. It was recently observed that the nitrate ion with its pla-
nar geometry could have two different rotational motions in water
with significantly different dynamical features. In mechanism 1, the
hydrogen bond switches from one nitrate oxygen atom to water oxy-
gen atom and the ion rotates in an out-of-plane manner. In the
secondmechanism, the hydrogen bond switches between two nitrate
oxygen atoms as it undergoes in-plane rotational motion.80 In both
the mechanisms, during the hydrogen bond switching (HBS), the
water jump and nitrate jump are coupled. The probability of the
water jump during the nitrate jump with or without a time lag is
shown in Figs. 11(a) and 11(b) by P(φjump). Note that the magni-
tude of the jump angle for both the nitrate ion (θ) and water (φ) is
different.

The rotational motions of nitrate and acetate ions have been
analyzed in detail.13 It turns out that the symmetric nitrate ion
rotates much faster (τ2 = 2.35 ps) than the acetate ion, which, with

FIG. 10. (a) and (b) This figure demonstrates the coupling
between the nitrate ion jump and water jump when they are
neighbors. [(c) and (d)] Translation-rotational coupling of the
motion of nitrate ion (taken from Refs. 80 and 13).
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FIG. 11. This figure depicts the variation of RN
∗

Oa (the
distance between nitrate nitrogen and water oxygen under-
going H-bond switching), θ (angle of nitrate jump) during
H-bond switching as well as the probability distribution of
water jump [P(φjump)] before and after nitrate jump at time 0
for (a) mechanism 1 and (b) mechanism 2. The results are
averaged over all hydrogen bond switching events following
mechanism 1 and mechanism 2. (c) Variation of φ (angle of
water jump) during H-bond switching in mechanism 1 and
mechanism 2 (taken from Ref. 80).

its asymmetric charge distribution among the constituent atoms
(τ2 = 6.5 ps), exhibits hindered rotational motion. On the other
hand, the sulfate ion, with higher partial charges on the constituent
atoms, exhibits a very slow rotational relaxation (τ2 = 11.66 ps)
despite being symmetric in nature.59

Interestingly, the solvation shell structures around the nitrate
ion and the acetate ion are found to be significantly different
(Fig. 12). In the acetate ion, the magnitude of the partial charge of
the C2 atom [shown in Fig. 12(e)] is considerably smaller than the
other two peripheral oxygen atoms. This causes the water density

FIG. 12. (a) Computed radial distribution function (RDF) of
water oxygen atoms (Ow) around the constituent atoms of
the nitrate ion, (b) showing the nitrate ion with its partial
charges on the constituent atoms. (c) The probability dis-
tribution function of water molecules around the nitrate ion.
[(d)–(f)] correspond to acetate ion (taken from Ref. 13).
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to be shifted to two oxygen atoms in the first solvation shell. As a
result, the rotational motion of the acetate ion is largely hindered
for the asymmetric potential energy surface for rotation which in
turn reduces its translational diffusion compared to the nitrate ion
in water [shown in Fig. 2(b)].

Similar to diatomic molecules, the study of the average dis-
placement vs the angle of rotation for these two ions provides inter-
esting insights (Fig. 13). Even for a shorter time interval of 2 ps,
the behavior of nitrate and acetate ions is seen to be quite different.
Figures 13(a), 13(d), and 13(g) correspond to the nitrate ion at dif-
ferent time intervals, Figs. 13(b), 13(e), and 13(h) correspond to the
acetate ion, and Figs. 13(c), 13(f), and 13(i) present the difference
between the contours of nitrate and acetate ions at different time
intervals.

To further analyze the effect of charge distribution symmetry
on the dynamics of polyatomic ions, a series of ions were modeled
with a similar geometry as the nitrate ion but different charges on
the peripheral oxygen atoms of the ion [Fig. 14(a)]. It was observed
by molecular dynamics (MD) simulations that rotational motion of

the nitrate ion with its full charge distribution symmetry was the
fastest and as asymmetry was introduced in the model ions, the
rotationalmotion of the asymmetric ions became slower [Fig. 14(b)].
Similarly, Fig. 14(c) shows that the diffusivity decreases with increas-
ing asymmetry of model ions. These results clearly prove that for
asymmetric ions, reduced rotational motion couples to their trans-
lational motion and reduces the diffusivity of the ions. Dynam-
ics of polyatomic ions have been studied both theoretically and
computationally in a series of work.13,59,80,83,84

All the ions we have discussed till now are monovalent and
with a planar geometry. Now, there is a different class of molecules
with fully symmetric charge distribution but in a tetrahedral geome-
try, such as sulfate (SO4

2−) and ammonium (NH4
+). Earlier stud-

ies suggested that positive and negative ions behave quite differ-
ently. Molecular dynamics simulations of sulfate and ammonium
were used to perform a comparative study with the dynamics of
the methane molecule which has the same geometry but with no
charge. All simulations were done with a very low concentration of
solute (0.1M). As observed in the diatomic uncharged molecule, CO

FIG. 13. Demonstration of the translation-rotation coupling in nitrate and acetate ions. Here, [(a)–(c)] are the contour plots of the translation-rotation joint probability distribution
of the nitrate ion [Pnitrate(dr, θ, φ)] and acetate ion [Pacetate(dr, θ, φ)], both in water, and the difference in the probability distribution of the acetate ion from that of the nitrate
ion, respectively, at a time interval (τ) of 2 ps. [(d)–(f)] correspond to the same quantities at a time interval of 5 ps, and [(g)–(i)] are at 10 ps (taken from Ref. 13).
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FIG. 14. A hypothetical calculation to demonstrate the role of symmetry in the
charge distribution on the orientational relaxation of a polyatomic ion. (a) Model
ion with the same geometry as that of the nitrate ion, but the charges on peripheral
atoms are different (qa ≠ qb), (b) orientational correlation function, C2(t), of the
nitrate ion (qa/qb = 1) and the model ions(qa/qb ≠ 1) in water, and (c) diffusivity
of the nitrate ion and the same model ions in water. Note that both the diffu-
sion and the rotational relaxation are the fastest for the symmetric ion (taken from
Ref. 13).

here, methane also behaved like a hydrophobic molecule in terms
of both structural and dynamical features with considerably faster
translational and rotational dynamics.

Sulfate ions due to high partial charges exhibit an ultraslow
rotational and translational dynamics (Table I). Ammonium ions
on the other hand are considerably faster. However, although their
translational diffusivity is comparable with nitrate ions (with sin-
gle negative charge), the rotational dynamics of ammonium ions is
much slower than that of the nitrate ions.

In summary, a number of factors play important roles in decid-
ing both structural and dynamical features of these polyatomic ionic
solutes: the overall charge, then the individual partial charges of con-
stituent atoms, symmetry of the molecule, its geometry, etc. These
complex factors make the determination of friction on these solutes
prohibitively hard, both analytically and computationally.

TABLE I. Comparison of diffusivity and orientational relaxation time of sulfate,
ammonium, and methane.

Ion DExpt. (×10−5 cm2/S) DSimu (×10−5 cm2/S) τ2 (ps)

Sulfate 1.065 0.95 11.66
Ammonium 1.957 2.15 8.39
Methane . . . 3.1619 0.071

The solvation shell structure of sulfate ions is fully symmet-
ric. This has an interesting consequence. While orientational caging
by hydrogen bonds makes rotation by Brownian diffusion slow,
rotational jump motions are partly facilitated because successful
jump rotation from one energy minimum to another is possible for
the symmetric nature [Fig. 15(a)]. The torques on sulfate ions and
nitrate ions in water are found to have the distributions shown in
Fig. 15(b). It is evident from this figure that the rotational jump
motion of sulfate ions is feasible, even though it is rare, in com-
parison with the singly charged nitrate ions, due to the high partial
charges of constituent atoms of the sulfate ion. The latter causes
the formation of a strong hydrogen bonding with the surround-
ing water molecules. Therefore, rotational jump motions are less
frequent compared to nitrate ions. This in turn increases the orienta-
tional decay time constant of sulfate ions, as illustrated in Fig. 15(c).
The ultraslow dynamics of sulfate ions in water with its higher
charge affects the dynamics of the entire system significantly (we
shall discuss about this in Sec. XIII).

A mode-coupling theory (MCT) formalism has recently been
developed and employed to describe the rotational coupled trans-
lational motion of polyatomic molecules. In Figs. 16(a) and 16(b),
schematic pictures of the difference between the orientational relax-
ation of solvent molecules with the solute motion in monatomic
and polyatomic solutes are shown. Unlike for monatomic solutes as
described earlier [by Eq. (16)], it is now required to include the ori-
entation Ω of solutes in a force-force time correlation function. The
resulting expressions are complex, with Eq. (16) being the first term
of a series of terms that originate from spherical expansion of two
densities and the direct correlation function and integration over all
the variables.

This effect can be incorporated, albeit approximately, by a
modified self-dynamic structure factor of the ion

Fion(k, z) = 1

z + DT
ionk

2 + τ−1R
. (27)

Therefore, Eq. (16) needs to be modified for the friction on a
polyatomic solute to

ζion(z) = 2kBTρ0
3(2π)2

∞

∫
0

dte−zt
∞

∫
0

dkk4L−1[ 1

z + DT
ionk

2 + τ−1R
]∣c10id (k)∣2

×F10solvent(k, t)
=
2kBTρ0

3(2π)2
∞

∫
0

dte
−(z+ 1

τR
)t
∞

∫
0

dkk4 e−D
T
ionk

2t∣c10id (k)∣2

×F10solvent(k, t). (28)
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FIG. 15. (a) A snapshot of the hydration shell of a sulfate
ion. (b) The distribution of torque acting on nitrate and sul-
fate ions in water and (c) orientational correlation function,
C2(t), of nitrate and sulfate ions in water. Note the larger
torque and slower decay of the sulfate ion than those of the
nitrate ion.

In order to comprehend the role of rotational motion on the dynam-
ics of a polyatomic ion better, let us compare the limiting case of a
rotationally frozen (RF) ion (τR = ∞) with one that is rotationally
mobile (RM) and hence can couple to the dynamics of the hydrogen
bonding network structure of water. The diffusivity of rotationally
mobile ions is given by the zero frequency friction ςRMion (z = 0)which
is lower than ςRFion(z = 0) due to the shift in the frequency caused by

the self-rotation [Fig. 16(c)]

ς
RF
ion(z = 0) = 2kBTρ0

3(2π)2
∞

∫
0

dkk4Fion(k, t) e−DT
ionk

2t∣c10id (k)∣2F10solvent(k, t),
ς
RF
ion(z = 0) = ςRFion(z = 1

τR
). (29)

FIG. 16. A pictorial illustration of the orientational and trans-
lational motion of the dipolar solvent molecules (labeled
“v”): (a) during the translational displacement of a spherical
monatomic solute (labeled “s”) and (b) during both transla-
tional and orientational motions of a polyatomic molecule.
(c) Frequency dependent translational dielectric friction of a
polyatomic ion in two limiting cases: rotationally frozen (RF)
translational motion and rotationally mobile (RM) transla-
tional motion. Approximately, dielectric friction on a rotation-
ally mobile ion can be given by that on a rotationally frozen
motion but at a higher frequency equal to the inverse of the
rotational correlation time. (d) A comparison of the simula-
tion results with that of semiquantitative mode-coupling the-
ory formalism for nitrate ions (qOa/qOb = 1) and four model
ions (qOa/qOb ≠ 1) (taken from Ref. 83).
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TABLE II. Comparison of the simulation results with that obtained from semiquantita-
tive mode-coupling theory.

qOa/qOb
DMCT
qOa/qOb

DMCT
qOa/qOb=1

DSimulation
qOa/qOb

DSimulation
qOa/qOb=1

0.125 0.32 0.65
0.5 0.57 0.74
1.5 0.85 0.86
2.0 0.67 0.75

Now, a simple (albeit a bit crude) approximation [Eq. (30)] allows
one to obtain a semiquantitative result of diffusivity given by Eq. (31)

ζDF(z = 0) = C
∞

∫
0

dte
− t

τR = C*τR,

C =
2kBTρ0

3(2π)2
∞

∫
0

dkk4 e−D
T
ionk

2t∣c10id (k)∣2F10solvent(k, t) = constant,
(30)

DMCT
qOa/qOb=1
DMCT
qOa/qOb

=
ςqOa/qOb(z = 0)
ςqOa/qOb=1(z = 0) =

CqOa/qOb ∗ τR,qOa/qOb
CqOa/qOb=1 ∗ τR,qOa/qOb=1 . (31)

As shown in Fig. 14(b), by gradual introduction of asymmetry into
the model ions, the diffusivity gradually decreases. If one now uses
the rotational decay constants of those model ions and assumes
that the constant C for all the model ions is the same, one obtains

the ratio
DMCT
qOa/qOb

DMCT
qOa/qOb=1

(given in Table II): This MCT formalism is

found to agree fairly well with simulation results except for qOa/qOb
= 0.125 which is due to the approximation CqOa/qOb=1 = CqOa/qOb=0.125
as the constant C involves the direct correlation function between
the solute and solvent which is significantly different for these two
model ions.

X. ENTROPY AND DIFFUSION OF IONS

A large number of studies have addressed the correlation
between the diffusion and entropy. The two foremost relations are
those of Rosenfeld85 and Adam-Gibbs.86 Rosenfeld relation is given
by

D = D0a exp(bSex). (32)

Here, Sex is the excess entropy, defined with respect to ideal gas
entropy per particle, Sid,

Sex = S − Sid. (33)

Sex is clearly negative. At higher density, excess entropy further
decreases (becomes more negative) as intermolecular correlation
increases, leading to a decrease in the diffusion coefficient.

The second popular relation between the diffusion and entropy
is the Adam-Gibbs relation, given by

D = D0 exp(− C

TSC
), (34)

where SC is the configuration entropy. Both the expressions show
that diffusion decreases with entropy. They have drawn much atten-
tion because here an equilibrium thermodynamic property is said

to determine a transport property. The Adam-Gibbs relation was
initially proposed for viscosity.

In a recent perspective article, Dyre had discussed excess
entropy scaling in detail.87 Chakravarty88 showed earlier that excess
entropy scaling was not obeyed for tetrahedral systems such as water
and silica at moderate pressure and dense liquid state points. While
most of the discussions focus on the variation of diffusion when
entropy changes with temperature or pressure and the solute-solvent
system is left unchanged, here we have an interesting situation where
diffusion changes substantially, while the temperature and pressure
remain unchanged, but the solute-solvent system is changed.

The question that arises now is can any of the above two
relatively successful expressions describe the variation of diffusion
and entropy as size of the solute varies? This is certainly a crucial
question.

For polyatomic molecules, the entropy of the solute must con-
tain the rotational entropy. For a liquid with polyatomic molecules
such as water, if we neglect the vibrational contribution, the total
entropy can be decomposed as

S = Strid + Srotid + Sex({ρ(r,Ω)}, T). (35)

Sex is the excess entropy that arises from the correlation of liquid
molecules which again derives its contribution from both trans-
lational and rotational motions. The translational entropy of an
ideal gas system, Strid, is given by the well-known Sackur-Tetrode
equation89

Strid =
5
2
R + R ln[V

N
(2πmkBT

h2
)3/2]. (36)

And the rotational entropy of ideal gas of polyatomic molecules can
be written as89

Srotid =
3
2
R + R ln

1
πσ

⎛
⎝
8π3(IAIBIC)1/3kBT

h2
⎞
⎠
3/2

. (37)

Here IA, IB, and IC are the components of moments of inertia along
three principle axes. For a symmetric molecule with a given total
moment of inertia, the rotational entropy is highest as IA = IB = IC.
Here, σ is the symmetric factor; for an asymmetric molecule, it is 1,
for H2O, it is 2, etc. In the entropic unit (eu) at 1 atm pressure and
298 K temperature, the ideal translational entropy of water (Strid) is
17.41 eu and the ideal rotational entropy, Srotid , is 5.45 eu, which is
about 30% of the translational contribution.

In the usual applications of the diffusion-entropy relations, the
entropy is assumed to be given by the solvent, and the role of solute
seems to have been neglected. However, the excess entropy is due to
correlations and it changes depending on the nature of solutes in an
aqueous solution. For an atomic system, the translational part of the
excess entropy can be approximated by a two-body excess entropy,
S2 (S

tr
ex ≃ S2), that is measured by the two body pair correlation

function or radial distribution function (RDF), g(r). The well-known
relation between the entropy and RDF is given by

S2
NkB

= −2πρ
∞

∫
0

{g(r) ln[g(r)] − [g(r) − 1]}r2dr. (38)

Now, for a liquid such as water, orientational ordering plays an
important role in determining the total entropy of the system
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because depending on the nature of the solute, structural ordering
of water changes significantly. In water, orientational correlations
imposed by hydrogen bonding give rise to spatial ordering. The
orientational tetrahedral order parameter,90,91 qtet, can capture the
change in the local tetrahedral network of water molecule in the
presence of solutes and is defined as

qtet = 1 − 38
3∑
j=1

4∑
k=j+1
(cosψjk + 1

3
)2, (39)

where ψjk is the angle between the bond vectors rij and rik, where j
and k label four nearest neighbor oxygen atoms of i-th oxygen atoms
of water. For an ideal tetrahedral structure, this order parameter
becomes 1, and for ideal gas, it is zero.

For dilute (0.1M) aqueous solutions of the chloride salt of
monatomic alkali cations, the calculated two-body excess entropy,
S2, fails to capture the trend in diffusivity of these alkali cations. It
has been pointed out recently that the same can be captured nicely
if one computes a tetrahedral entropy as discussed below. A dis-
tribution of the local tetrahedral order parameter, qtet,i, is shown
in Fig. 17(b). Although the bulk liquid structure is hardly affected
by the presence of the ions in this low concentration of solutes
[Fig. 17(a)],92 the hydrogen-bond network structure of water in
the first hydration shell of the ions exhibits a remarkably different
nature for these different sized ions. This leads to significant entropy
differences in these solutions and different diffusivities of the ions.

Fortunately, the tetrahedral entropy of water may be calculated
using the expression derived by Kumar et al.93

FIG. 17. The probability distribution of tetrahedral order parameter, qtet, of water
molecules (a) in bulk water and (b) in the first hydration layer of ions. The larger
the ion, the more ordered is the water tetrahedral arrangement.

Sqtet = S0 +
3
2
kB

qtet,max

∫
qtet,min

ln(1 − qtet)P(qtet)dqtet, (40)

where kB is the Boltzmann constant and

S0 = kB[lnΩ0 +
3
2
ln
8
3
]. (41)

The values of tetrahedral entropy for different ionic solvation shells
are found to exhibit a clear nonmonotonic behavior with ionic size.92

In fact, the orientational arrangement and ordering induced on
water by ions and ion pairs can lower the “local” entropy signifi-
cantly. Investigations of the arrangement of water molecules around
two similar sized ions have been carried out, with one positively
charged (K+) and the other negatively charged (Cl−). It is observed
that the tetrahedral order parameter of water around these simi-
lar sized ions is significantly different.92 The value of tetrahedral
entropy ([Sqtet − S0]/kB) obtained for the first solvation shell water
molecules of K+ is −1.097, and that of Cl− is −0.909. It is to be noted
here that this is the value of the excess entropy as the more negative
it becomes, the actual entropy is reduced more. These results partly
explain the enhanced diffusivity of anions over cations [shown in
Fig. 2(a)].

For polyatomic ions, the situation is even more interesting as
the solute, also, exhibits rotational jump motion and translation-
rotational coupling. As discussed earlier [Eq. (35)], the entropy of
the solute increases due to the rotational contribution. The rota-
tional jumpmotions of the polyatomic solute are a way to explore the
rotational conformation, the associated excess entropy. Otherwise,
the dynamics would be slower due to the highly correlated and struc-
tured solute and solvent system. These interesting and important
aspects of ion dynamics demand future work in this direction.

XI. INTERACTION BETWEEN SINGLE PARTICLE
AND COLLECTIVE DYNAMICS

The mode coupling theory correctly brings out the collective
nature of the single particle dynamics. The self-diffusion coeffi-
cient is a single particle property. Thus, the ions execute a complex
random walk which is coupled to the rotational and translational
motions of water molecules. The trajectory of ions in water reflects
the dynamics of surrounding water [Figs. 8(c) and 8(d)]. In fact, the
relationship between the diffusion and entropy is a reflection of the
coupling between the single particle and collective dynamics.

As depicted in the explanatory MCT flow chart (Fig. 4), the cal-
culation of dielectric friction involves both the self-dynamic struc-
ture factor of the ion, Fion(k, t), and the coherent orientational
dynamic structure factor of the solvent, F10solvent(k, t). For nonpolar
spherical systems, the analogous quantity is F(k, t). F(k, t = 0) = S(k)
is the static structure factor that describes pair correlation in an
interacting system. A recent theoretical study by Nandi et al. inves-
tigated the reduction of the mode coupling theory to a relationship
between the diffusion and entropy.94

There have been reports of long range orientational ordering
of water around a solute which in turn suggests that ions interact
at extraordinarily large separations.95 At present, this appears to be
a controversial issue. While a few experiments seem to suggest the
presence of interionic interaction at large separations, simulations
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find no clear evidence of such a presence. Water and other ions
effectively screen the interionic interaction.

XII. INTERACTION BETWEEN IONS: MULTIPLE
SCATTERING SCENARIO

As mentioned, there is yet no clear consensus about the dis-
tance of separation beyond which molecular aspects of ion-water
interaction do not affect ion-ion interaction. This is because not only
the long range nature of ion-ion interaction propagates through the
intervening water molecules, but also the water molecules undergo
orientational and structural change, and the two ions can “feel” each
other in a way different from what would be dictum of the con-
tinuum model. In the continuum model based theories of Debye-
Huckel-Onsager who developed the ion atmosphere theory, or even
in the Chandra-Bagchi mode coupling theory that uses an effective
interaction between the ions, the molecularity of the solvent was
neglected. In all these theories, the effects of the medium on the
interaction between any two ions is described by using the dielec-
tric constant and the force of interaction between two charges qi and
qj decays with separation r which is given by the screened Coulomb’s
law (SCL),

qiqj
εr
, where ε is the dielectric constant of the medium.

Due to the extensive hydrogen bond nature of water which can
be distorted by an ion, the effects of the presence of one ion can be
felt by another at a large separation, larger than one or twomolecular
diameters, and may be quite different from what is predicted by the
screened Coulomb’s law (SCL). Although asymptotically the force
between any two ions in a dielectric medium must approach SCL, a
question has been raised about the minimum separation where SCL
could become valid.

Numerical simulations with model potentials show that the
effect of one ion on another in water varies considerably from the
prediction of the screened Coulomb’s law (SCL) at short separa-
tion.96 The water molecules tend to solvate the ions in a specific
way, as demanded by electrostatics, but the ensuing arrangements
around two ions can interfere with each other, leading to a pro-
nounced departure from the prediction of the SCL. However, the
SCL is restored when the separation is typically larger than 15 Å or
so. At short separations, one finds an interesting ordered arrange-
ment of the water molecules around the ions, as shown in Fig. 18.

FIG. 18. A pictorial representation of the discussed interaction of the polarization
of water in the presence of two positive charges. The positive charge is K+ ion.
The black arrows denote the orientation of the water dipole moment (taken from
Ref. 96).

Such interactions affect not only the motion of ions but also those of
water molecules in electrolyte solutions at high concentrations.

Clearly, powerful forces are at play at small separations between
ions. This raises the possibility that at somewhat higher concentra-
tions, water plays an important role in mediating effective interac-
tions between the ions. The situation becomes more complex when
multiple ions interact through water. Thus, water introduces an
effective three and four particle interactions envisaged neither in
the screened Coulomb’s law nor in analytical theories, such as mode
coupling.

XIII. EFFECT OF ION DYNAMICS
ON THE SOLVENT DYNAMICS

As discussed earlier, the presence of the ion and its dynamics
affect the structure and dynamics of the surrounding water not to
a large extent. Hynes and co-workers demonstrated the interesting
shift in water reorientational dynamics in different types of hydra-
tion shells including anionic,51 hydrophobic,97 etc. A simulation
study at a small concentration of 0.1M salt solution finds that the
dynamics of water changes significantly. In an aqueous nitrate solu-
tion, the diffusivity of SPC/E (extended simple point charge model)
water is found to have a value of 2.97 × 10−5 cm2/s, whereas in an
aqueous sulfate solution, the diffusivity of water is obtained as 2.21× 10−5 cm2/s. The translational dynamics and rotational dynamics of
sulfate ions are much slower than those of the nitrate ions. The diffu-
sivities of ions and water in these two systems are given in Table III.

Interestingly, mode-coupling theory can straightforwardly
explain this effect of ion dynamics on water dynamics. In Eqs. (16)
and (28), we have shown the mode-coupling theory expression
for friction on the monatomic and polyatomic ions, respectively.
In an electrolyte solution, the total friction on a water molecule
derives its contributions from ion-water and water-water interac-
tions. Ion-water contributions are shown in Eqs. (16) and (28). Now,
for water-water interaction, it again has dependencies on self- and
cross-interactions as given below

Γwats (z) = Γbare + A
∞

∫
0

dt e−zt
∞

∫
0

dk k2 ∑
l1 l2m

c2l1 l2m(k)Fwatl2m(k, t),

Γwats (z) = Γbare + A
∞

∫
0

dt e−zt
∞

∫
0

dk k2 ∑
l1 l2m

Fwat,sl1m

× (k, t)c2l1 l2m(k)Fwatl2m(k, t),

(42)

TABLE III. Dynamics of cation, anion, and water in aqueous KNO3 and aqueous
Na2SO4.

KNO3 in water

Cation (K+) Anion (NO3
−) (SPC/E water)

Dsimu (×10−5 cm2/S) 2.05 ± 0.06 1.67 ± 0.07 2.97 ± 0.04
Na2SO4 in water

Cation (Na+) Anion (SO4
2−) (SPC/E water)

Dsimu (×10−5 cm2/S) 1.56 ± 0.03 0.95 ± 0.08 2.21 ± 0.02
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where the constant A = ρ
2(2π)2 . cl1 l2m(k) is the l1l2m-th coefficient of

the direct correlation function between the solute and solvent, and
Fsl1m(k, t) and Fl2m(k, t) are self- and cross-terms of the orientational
correlation function, defined as

Fsl1m(k, t) = ⟨eik⋅(ri(t)−ri(0))Ylm(Ωi(0))Ylm(Ωi(t))⟩, (43)

Fl2m(k, t) =∑⟨eik⋅(rj(t)−ri(0))Ylm(Ωi(0))Ylm(Ωj(t))⟩. (44)

Now, ion-water interaction modifies the collective dynamics of sol-
vent which in turn modifies the self-motion of water by Eq. (42).
This boot-strapping, which is the hallmark of mode coupling theory,
comes here real handy in explaining a rather complex dynamical pro-
cess.Note that neither a hydrodynamic theory nor a continuummodel
based description can explain these intricate interdependencies of cou-
pled solute-solvent dynamics. Therefore, MCT provides rich insight
into ion-water dynamics and provides a great perspective over the
entire dynamical process.

XIV. IONS IN AQUEOUS BINARY MIXTURES

Binary mixtures constitute important class of solvents that
exhibit remarkable composition dependence in their physical and
chemical properties and potentially can serve as the solvent for elec-
trolyte solutions in practical applications. Although there have been
a large number of studies on binary mixtures, relatively few studies
have appeared on the conductivities and thermodynamic properties
of ions in binary mixture.

Water-ethanol binary mixtures have drawn a great deal of
attention recently. Both computer simulation and experimental
studies have shown that thesemixtures exhibit multiple composition
dependent anomalies. There are two broad range of compositions,
one between 10% and 20% and another between 30% and 40%. The
composition of anomalous dependence is found to depend on the
property studied.

In a notable study, Bošković et al. investigated properties of
KCl in a water-ethanol binary mixture.98 They observed a maxi-
mum in viscosity at around 20% mole fraction of ethanol. The vis-
cosity maximum was found to be markedly asymmetric. The limit-
ing ionic conductivity, however, showed a monotonic decrease with
ethanol composition. The decoupling of limiting ionic conductivity
was surprising. This deserves further study.

Another surprising observation was the presence of a maxi-
mum in the Walden product of KCl at EtOH composition of 10%.
Since theWalden product already absorbs the effects of composition
dependence of viscosity, the maximum at 10% is somewhat surpris-
ing. This could be attributed to nonhydrodynamic factors, such as
preferential solvation.

It has been argued that water-ethanol mixture exhibits large
scale fluctuations around 10% of EtOH.99 This maximum could be
connected to such fluctuations which could give rise to enhancement
of conductivity. Ions in an aqueous binary mixture could offer a rich
field of research.

XV. MACROMOLECULAR POLYATOMIC IONS

It is fitting to discuss here the case of polyatomic macromolec-
ular ions, such as DNA, RNA, and protein. These ions themselves
are surrounded by other ions, not just the counterions but also

the ions from the buffer. Electrophoresis is widely used to sepa-
rate these kinds of polyelectrolytes. To investigate a better condition
for separation, the dynamics of DNA electrophoresis has been stud-
ied extensively.100–102 Theoretically, dynamics of DNA or protein is
studied using the anisotropic friction model in three-dimensional
space by projecting the object along a particular axis.103 The hydro-
dynamic Stokes friction is calculated using a sophisticated technique
called the triaxial ellipsoid method developed by Harding.104,105

DNA shows interesting conformational change events in the poly-
mer solution as it migrates through the medium, and this is coupled
to the conformational change in the polymers in the medium by a
transient entanglement coupling mechanism.106,107

Dielectric relaxation of an aqueous DNA solution gives highly
nonexponential frequency or time dependence as evident from the
Cole-Cole plot. This non-Debye behavior has been attributed to
counterion fluctuations around DNA. The fluctuations have fur-
ther been decomposed in terms of correlated motions of positively
charged counterions along the negatively charged DNA phosphate
backbone.108

XVI. CONCENTRATION DEPENDENCE
OF IONIC MOBILITY

Diffusion of individual ions gets profoundly influenced by the
presence of other ions in the liquid because of the long range inte-
rion interactions. The concentration dependence of ion diffusion
has been studied since the pioneering work of Debye, Huckel, and
Onsager (DHO).109–111 These authors introduced the concepts of
ion atmosphere relaxation and electrophoretic effect. The widely
known expression of concentration dependence of ionic mobility is
given by

Λ(c) = Λ0 − (A + BΛ0)√c, (45)

whereA and B are constants that depend onmaterial constants, such
as viscosity, dielectric constants, and universal constants such as the
Avogadro number.

Despite its elegance and beauty, the Debye-Huckel-Onsager
limiting law is valid only at very low concentrations, often less than
0.1M. Turq, Dufreche, and co-workers generalized the DHO law
by using a mean spherical approximation approach which is fairly
successful in providing a quantitative description until about 1M
concentration.112 Chandra and Bagchi developed a quantitative the-
ory inspired by the mode coupling theory of transport processes of
dense liquids.113 The crucial observation in this theory is that the
important slow variables in the dynamics of electrolyte solutions are
the charge and the current densities. This logic runs parallel to the use
of number density and current density in the mode coupling theory
of nonpolar liquids. There are several new inputs in the implemen-
tation of the theory. In addition to the self-consistency discussed
above, a fairly accurate expression for separation dependence of the
ion-pair correlation function, presented by Attard,114 is used in the
numerical work. The required direct correlation function is obtained
by using the Ornstein-Zernike relation. The friction was calculated
by integrating over the wavenumber space and both charge density
contribution, which is the ion atmosphere term in the DHO treat-
ment, and the current density term, which is the electrophoretic
term, are treated at equal footing. In Fig. 19, a comparison between
the experiment, DHO theory, and the MCT prediction is shown.
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FIG. 19. The dependence of total conductance of an aqueous KCl solution on
the square root of ion concentration. The solid curve represents the predictions
of the Chandra-Bagchi mode coupling theory, and the filled squares represent the
experimental results The success of the theory, until approximately 2M solution, is
partly due to the self-consistency and partly due to interion correlations included
(taken from Ref. 113).

In the case of electrolyte solution, the mode coupling theory
with the additional slow variables is, as expected, a bit more involved.
The resulting expressions are complex, but most importantly, they
can all be reduced, under appropriate boundary conditions, exactly
to the respective continuum model expressions.

A. Debye-Falkenhagen theory of frequency
dependent friction

Debye-Falkenhagen (DF) predicted an unusual frequency (or
time) dependence of the electrolyte friction which has indeed been
observed in experiments.115,116 This expression is given by

ς(ω) = 1

1 + 1√
2
[1 − iωτatm]1/2 , (46)

where τatm is the ion atmosphere relaxation time which is inversely
proportional to the ion self-diffusion coefficient. Although the orig-
inal derivation is not readily available, the mode coupling theory
derivation is straightforward. First, one notes that since the elec-
trophoretic effect involves charge current density, the relaxation is
fast and is ignored in DF and one considers only the atmosphere
relaxation term. Second, the peculiar form of the ion atmosphere
relaxation term naturally arises when we use diffusional approxima-
tion for the self- and the collective intermediate scattering function,
as detailed in Ref. 113. When one includes the electrophoretic term,
one finds an initial fast decrease in friction.

Chandra-Wei-Patey pointed out that frequency dependent fric-
tion can contain interesting information about an electrolyte solu-
tion.117 It can capture the coupling between the translational motion
of ion and rotational motion of solvent modes which they termed as
the “dynamical solvent effect.”

B. Onsager-Fuoss expression for concentration
dependence of viscosity

Onsager and Fuoss118 derived the following elegant expression
for the excess viscosity ηexcess(c) due to the presence of the ions:

ηexcess(c) = κDς0
480π

. (47)

Although this expression looks simple, its derivation as presented
by Onsager and Fuoss is highly nontrivial. On the other hand, MCT
provides a simple and elegant derivation of the above expression.
In fact, this derivation and its generalization can be truly regarded a
significant triumph of the mode coupling theory.

As in dense liquids, the viscosity is determined by the transverse
current−current correlation function. In the present case, it is the
charge current density that is involved. The main expression is given
by

ηexcess =
kBT

60π2

∞

∫
0

dt

∞

∫
0

dk k
4
S
′
c(k)2Fc(k, t)2/Sc(k)4 , (48)

where Sc(k) is the charge density structure factor and Fc(k, t) is the
charge intermediate scattering function. In order to obtain the con-
tinuum model expression, we need to replace these functions by
their long wavelength limit. This procedure also serves to bring out
the limitation of the continuum model expression. The full expres-
sion provides a stronger dependence of viscosity on concentration
as indeed has been observed in experiments.

C. Concentration dependence of ion diffusion:
Resolution of an anomaly

Several different experimental techniques have been used to
measure the diffusion coefficient of an ion in an electrolyte solu-
tion. Two such experiments are NMR and quasi-elastic neutron
scattering (QENS). Experiments, however, uncovered an interest-
ing anomaly. When the diffusion coefficient of an ion was mea-
sured, it was found that the diffusion coefficient values reported by
QENS were about 20% larger than those reported by NMR exper-
iments. The puzzle was solved by using the mode coupling the-
ory which allowed a calculation of the time dependent diffusion

FIG. 20. Time dependent self-diffusion coefficient of Cl− ions at 0.5M and 1M KCl
solutions. A comparison between MCT (solid line) and Brownian dynamics
(dashed line) is shown. Note that there is almost a 20% decrease in the mag-
nitude of the self-diffusion coefficient in the long time from the initial value of D(t)
(taken from Ref. 9).
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coefficient, D(t) (Fig. 20). One needs to observe that QENS is a
short time measurement, while NMR is a long time measurement.
Thus, diffusion measured by QENS probes friction effectively at
short times which in this case is smaller than that measured by
NMR. Thus, the difference is essentially a consequence of the time
dependent response (or, viscoelasticity) of the electrolyte solution.9

If we delve a little deeper, it was due to the difference in time scales
between the ion atmosphere relaxation and electrophoretic effect.

XVII. CONCLUSION

Although the journey of electrochemistry began as early as
in the nineteenth century with Arrhenius, Nernst, Ostwald, and
many others and was developed further by Debye, Huckel, Onsager,
and others, many aspects of the dynamical features are yet to be
unraveled even today. As many electrolytes with complex structures
are routinely used in chemical industry, biology, and environmen-
tal processes, their structural and dynamical features are crucially
important to understand.

In this Perspective article, we have attempted to summarize the-
oretical and computational advances in our understanding of the
motion of ions in water. In the study of ion motion, a central role
is played by ion diffusion as the ionic conductivity is closely related
to this quantity which is the primary observable in an electrolyte
solution. Theoretical study of diffusion proceeds through evalua-
tion of the friction on an ion. The physics and chemistry behind
the structural and dynamical features of monatomic ions are fairly
well understood and well-studied. The same, however, is not true for
diatomic and polyatomic ions where self-rotational jump motions
of both the ions play an important role in the course of their over-
all dynamics. The situation becomes particularly intriguing because
water molecules themselves are known to exhibit large amplitude
jumps. For molecular ions, the jump motions of the solute and the
solvent become coupled to give rise to new features. For exam-
ple, a recent study by Banerjee et al. demonstrated that the cou-
pled rotational jump of water and polyatomic solutes along with the
translational-rotational coupling gives rise to a noticeably faster dif-
fusion of symmetric ions (such as the nitrate ions) than the same for
the asymmetric ions.13

A valuable insight is obtained by studying the entropy of the
ionic solutes. These ions cause an entropic cost to the system due
to enhanced orientational ordering that gives rise to a “tetrahe-
dral ordering” of water molecules that cage the ions. The rotational
jumps of the symmetric polyatomic ions contribute to the total
entropy of the system and increase their translational diffusion; on
the other hand, slower rotational jump motion of the asymmetric
ions reduces the translational motion of the ion. The jumps help
realize the configuration space otherwise not easily attainable by the
ions caged by the surrounding water molecules.

In order to develop a deeper, long-term perspective, we have
discussed both the continuum model approaches and the micro-
scopic theories, along with experimental and computer simulation
results. Because of the long-range nature of ion-dipole and dipole-
dipole interactions, a continuummodel was initially thought appro-
priate. The continuum model theories developed by Boyd, Zwanzig,
Onsager, and Hubbard provide elegant, nontrivial but closed form
expressions that succeed in giving a semiquantitatively accurate
description, in the sense that they all capture the nonmonotonic

dependence of diffusion on ion size but fails at a quantitative level.
We have discussed three essential aspects that get neglected in the
continuum model theories but captured in a microscopic theory.
First, it ignores the significant contribution of ion-solvent corre-
lations at molecular length scales to the friction. This leads to
an underestimation of the dielectric friction. Second, the memory
function that is responsible for the ultrafast, sub-100 fs solvation
dynamics in water, and also involved here to lower the value of the
dielectric friction, is approximated by an overdamped slow diffusive
kernel. This approximation leads to an overestimation of the fric-
tion. Third, the role of the translational modes of the solvent
molecules in hastening the decay of ion-solvent correlations at
molecular length scales. These are the same modes that give rise to
the breakdown of the Onsager’s “inverse snow-ball picture.”119–122

This leads again to an overestimation of the friction. The sum result
is an incomplete description of the ion size dependence of the
observed result.

For polyatomic ions with distributed charges, implementation
of either the continuum model or the mode coupling theory is non-
trivial. However, the area has seen some progress recently. This
progress in analytical theoretical approaches has been driven by
computer simulation results. We attempted to provide perspective
into the rich dynamical features exhibited by these ions during their
motion in water.

Still there remain a large number of systems in this classical area
that deserve further study. An interesting class of systems that have
scantly been explored is the binary mixture where the structure and
dynamics of the ion-solvent system remain to be studied. Depending
on the interaction between two different components and their cou-
pling to different ions, i.e., monatomic, diatomic, and polyatomic,
it is expected to possess a wide range of interesting structural and
dynamical properties which are yet to be understood both by exper-
iments and computations. Another area that remains neglected is
the time or frequency dependent properties of electrolyte solutions
involving polyatomic ions. They can provide valuable insight into
the structure and dynamics of this class of systems.
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