
Iontronic neuromorphic signalling with conical microfluidic memristors

T. M. Kamsma,1, 2 W. Q. Boon,1 T. ter Rele,1, 3 C. Spitoni,2 and R. van Roij1
1Institute for Theoretical Physics, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands

2Mathematical Institute, Utrecht University, Budapestlaan 6, 3584 CD Utrecht, The Netherlands
3Soft Condensed Matter, Debye Institute for Nanomaterials Science,

Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
(Dated: June 28, 2023)

Experiments have shown that the conductance of conical channels, filled with an aqueous electrolyte, can
strongly depend on the history of the applied voltage. These channels hence have a memory and are promising
elements in brain-inspired (iontronic) circuits. We show here that the memory of such channels stems from
transient concentration polarization over the ionic diffusion time. We derive an analytic approximation for these
dynamics which shows good agreement with full finite-element calculations. Using our analytic approximation,
we propose an experimentally realisable Hodgkin-Huxley iontronic circuit where micrometer cones take on the
role of sodium and potassium channels. Our proposed circuit exhibits key features of neuronal communication
such as all-or-none action potentials upon a pulse stimulus and a spike train upon a sustained stimulus.

Transport phenomena of charged species through channels
in the nanometre and micrometre regime play a key role in a
plethora of applications [1–12]. An exciting emerging direc-
tion of research is that of iontronics, the use of ion transport
for signalling [13], which holds the promise of interfacing
with biological systems [13–16] and processing information
via multiple signal carriers and chemical regulation [17, 18].
In particular conical channels have garnered significant inter-
est for such applications [14, 15, 19–23], as they exhibit cur-
rent rectification thereby acting as ionic diodes [9, 19, 24–26].
This has been extensively studied experimentally [19, 22, 27–
31] as well as numerically [23, 32–35] and several analytic de-
scriptions are available [25, 36–38]. Due to this interest cones
are now comparatively easy to fabricate [39–42]. Recently,
it has been observed that the conductance of cones exhibits
hysteresis when driven by an alternating potential [43–53],
and hence they are memristors (resistors with memory) [54–
57]. Various explanations of this effect have been explored
[43–48], the most recent hypothesis being dynamic concen-
tration polarization [50–53], which we confirm below. Mem-
ristors in general are essential components for neuromorphic
(brain-inspired) circuits, since much of their dynamics is anal-
ogous to the synapses that connect neurons [58–62] and to the
ion channels responsible for electric signaling within neurons
[58, 63]. The popularity of memristors and neuromorphic cir-
cuits has drastically increased [64–66] due to the prospects
of energy-efficient computers [67–69] and bio-compatibility
[59, 70–74]. Solid-state devices received the majority of at-
tention [64–66, 68], while the brain in contrast relies on ion
transport in an aqueous medium [75, 76]. Iontronic circuits,
based on the same signalling medium as the brain, sparked
recent interest as a promising platform for a new generation
of (neuromorphic) computing devices [17, 77–80]. However,
the development of neuromorphic iontronic devices is still in
its infancy [13, 79] and a deeper understanding of underlying
mechanisms and possible end-uses is needed [79, 80].

In this Letter we propose a neuromorphic iontronic circuit
where all-or-none action potentials [75, 76, 81] and neuronal
spiking [76, 82–85] are obtained through micrometer cones
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FIG. 1. Schematic representation of an azimuthally symmetric coni-
cal channel of length L, base radius Rb, and tip radius Rt < Rb, con-
necting two bulk reservoirs of a 1:1 aqueous electrolyte, with bulk
concentrations ρb. The channel wall carries a surface charge den-
sity eσ . An AC electric potential drop V (t) over the channel drives
an ionic charge current I(V (t), t) = g(V (t), t)V (t) with g(V (t), t) the
channel conductance. The AC potential causes transient concentra-
tion polarisation resulting in a volatile conductance memory.

filled with aqueous electrolyte. First we solve for the dy-
namic competition between ionic diffusion, conduction and
advection, using the Poisson-Nernst-Planck-Stokes equations
and the steady-state results in Ref. [25]. We obtain a differ-
ential equation with no free parameters describing transient
concentration polarization and we surprisingly find that the
inhomogeneous conduction responsible for concentration po-
larization retains memory over slow (diffusive) timescales.
Using this result we construct an experimentally accessible
iontronic circuit of several cones, batteries, and a capacitor
and show that the time-dependent voltage over this circuit
exhibits multiple key features of neuronal communication.
While neuronal behaviour in the form of an emerging volt-
age spike train has been reported in a simulated iontronic cir-
cuit containing quasi two-dimensional nanochannels that con-
nect aqueous electrolytes [86], the defining all-or-none law of
action potentials [75, 76, 81], a phenomenon considered to
be a requirement for artificial neurons [66], has not yet been
reported. Furthermore the circuit in Ref. [86] requires com-
paratively difficult to fabricate two-dimensional channels and
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Nernst potentials that do not directly affect the circuit volt-
age, complicating experimental accessibility. In this Letter
we overcome these issues. As conical pores are a well-known
iontronic model system, we believe our proposed neuromor-
phic circuit is within experimental reach.

We first consider a single conical channel, schematically
illustrated in Fig. 1, that connects two bulk reservoirs of an
incompressible aqueous 1:1 electrolyte with viscosity η =
1.01 mPa · s, mass density ρm = 103 kg ·m−3 and electric per-
mittivity ε = 0.71 nF ·m−1, containing ions with diffusion co-
efficients D± = D = 1.75 µm2ms−1 and charge ±e with e the
proton charge. At the far side of both reservoirs we impose a
fixed pressure P = P0 and fixed ion concentrations ρ± = ρb =
0.1 mM. The reservoirs are connected by an azimuthally sym-
metric conical channel with base radius Rb = 200 nm at x = 0
and tip radius Rt =Rb−∆R= 50 nm at x= L≫Rb, the central
axis being at radial coordinate r = 0. Unless otherwise stated
the channel has length L = 10 µm, hence the geometry is sim-
ilar to cones in Ref. [39]. The channel radius is described
by R(x) = Rb − x∆R/L for x ∈ [0,L]. We assume a uniform
surface charge density eσ = −0.0015 enm−2 on the channel
walls, resulting in a surface potential ψ0 ≈ −10 mV (typical
for PMMA [87]) and an electric double layer that screens the
surface charge with Debye length λD ≈ 30 nm. On the far
side of the reservoir connected to the base we impose an elec-
tric potential V (t), while the far side of the other reservoir is
grounded, which leads to an electric potential profile Ψ(x,r, t),
an electro-osmotic fluid flow with velocity field u(x,r, t) and
ionic fluxes j±(x,r, t) with j+ − j− the charge flux. A rela-
tively low surface potential ψ0 ensures a weak electro-osmotic
flow Q(V ), allowing conductance tuning over a wider voltage
range [25, 49, 88]. We have Q(V )/V =−πRtRbεψ0/(ηL)≈
22.7 µm3s−1V−1 for our standard parameter set [25].

Transport through the conical channel is described by the
Poisson-Nernst-Planck-Stokes (PNPS) Eqs. (1)-(4) given by

∇2Ψ =− e
ε
(ρ+−ρ−), (1)

∂ρ±
∂ t

+∇ · j± = 0, (2)

j± =−D±

(
∇ρ±±ρ±

e∇Ψ
kBT

)
+uρ±, (3)

ρm
∂u
∂ t

= η∇2u−∇P− e(ρ+−ρ−)∇Ψ; ∇ ·u = 0. (4)

Here electrostatics is accounted for by the Poisson Eq. (1), the
conservation of ions by the continuity Eq. (2), the combination
of Fickian diffusion, Ohmic conduction, and Stokesian advec-
tion by the Nernst-Planck Eq. (3), and finally the force balance
on the (incompressible) fluid by the Stokes Eq. (4). This sys-
tem is closed upon imposing no-slip and blocking boundary
conditions on the channel wall, u = 0 and n · j± = 0, respec-
tively, together with Gauss’ law n ·∇Ψ = −eσ/ε , with n the
wall’s inward normal vector.

When an electric potential V (t) is applied, the ionic concen-
trations ρ±(x,r, t) will deviate from their equilibrium profiles,
thereby changing the channel conductance [25]. In Ref. [25]
the stationary state version of the PNPS equations (1)-(4) is
solved for a static potential V , which gives rise to the sta-

tionary charge current I = g∞(V )V , where the static con-
ductivity g∞(V ) was found to be governed by the (voltage-
dependent) radially averaged salt concentration ρs(x,V ) =

2
∫ R(x)

0 rρs(x,V,r)dr/R(x)2, with ρs = ρ+ + ρ− (see Supple-
mental Material for full expression). For small potentials
e|V |/kBT ≪ |w|(Rb/Rt), with w = eDη/(kBT εψ0) ≃ −9.5
the ratio of ionic to electro-osmotic mobility [88], the pore
concentration equals the bulk concentration ρs(x,V ) = 2ρb,
yielding g∞(V ) = g0, with the Ohmic cone conductance g0 =
(πRtRb/L)(2ρbe2D/kBT ), and the resulting current follows
Ohm’s law I = g0V [25]. For large static potential drops the
cone exhibits diodic behaviour due to concentration polarisa-
tion, with the cone conductance determined by the salt con-
centration profiles according to

g∞(V )

g0
=
∫ L

0
ρs(x,V )dx/(2ρbL)

=1+∆g
∫ L

0


 x

L
Rt

R(x)
− e

Pe(V ) x
L

R2
t

RbR(x) −1

ePe(V )
Rt
Rb −1


dx/L,

(5)

where an approximation is made compared to the more ac-
curate dependence on L/

∫ L
0 (ρs(x,V ))−1dx to reduce compu-

tational complexity [25]. The static conductance g∞(V ) de-
pends on V through the Péclet number at the narrow end
Pe(V ) = Q(V )L/(DπR2

t ) = −(eV/kBT )(Rb/Rt)w−1, where
for our standard parameters Pe(V )/V ≈ 16.5 V−1, and ∆g ≡
−2w(∆R/Rb)Du ≈ −3.6 with the tip Dukhin number Du =
σ/(2ρbRt) ≈ −0.25. In our case of σ < 0, V > 0 depletes
the channel of ions such that g∞(V )/g0 < 1 whereas V < 0
results in ion accumulation such that g∞(V )/g0 > 1, which is
responsible for the static diode behaviour of the cone [25].

Voltage driven accumulation or depletion of ions from the
pore is not instantaneous, as it takes time for the ions to move
into or out of the channel. In the Supplemental Material (SM)
[89] we derive from the PNPS equations (1)-(4) that the typi-
cal timescale for this process is not given by an RC-like time
as suggested in Ref. [46], but rather by a diffusion-like time

τ =
L2

12D
, (6)

which for our standard parameter set yields τ = 4.8 ms. To
obtain an analytic approximation for the time-dependent con-
ductance g(V (t), t) we assume a single exponential relaxation
of the salt-concentration with timescale τ towards the steady-
state concentration profile. This natural approach has been
successfully applied to investigate memristor dynamics before
[78, 90] and is verified for conical channels in Fig. 2. Using
Eq. (5), this approach yields the following expressions for the
time-dependent conductance g(V (t), t) and current I(V (t), t)

∂g(V (t), t)
∂ t

=
g∞(V (t))−g(V (t), t)

τ
, (7)

I(V (t), t) = g(V (t), t)V (t). (8)
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(a)                                                                          (b)                                                                     (c)

~τ ~τ

FIG. 2. Comparisons of finite-element calculations (FE, blue) of the full PNPS equations (1)-(4) and our analytic approximation Eqs. (5)-(8)
(AA, red) when a periodic triangle potential V (t) (green in (a)) with amplitudes ±1 V and frequency f = 40 Hz is applied. In (a) we show two
periods of the time-dependent laterally averaged salt concentration ⟨ρs⟩(V (t), t)≡ ∫ L

0 ρs(x,V (t), t)dx/L, in (b) the corresponding conductance-
voltage diagram as per Eqs. (5) and (7), and in (c) the corresponding current-voltage diagram with a clear pinched hysteresis loop. The left
inset of (c) shows the dependence of the enclosed area in I-V hysteresis loop on the (dimensionless) triangle potential frequency f τ with a
maximum at fmaxτ ≈ 0.19 for L = 10 µm. The right inset of (c) shows the dependence of 1/ fmax (blue) and of the characteristic time τ from
Eq. (6) (red) on the channel length L, satisfying fmaxτ ≈ 0.19 for all L considered.

Eq. (7) shows that the conductance g(V (t), t) depends on
the entire timetrace of the potential V (t). This conductance
memory is the key feature of a memristor [57], in fact Eqs. (7)
and (8) indeed fit the mathematical definition of a generic
voltage-driven memristor [56–58]. From now on we will refer
to Eqs. (5)-(8) as the approximate analytical (AA) solution of
the PNPS equations [25]. To verify the AA we also numeri-
cally solve the full PNPS equations (1)-(4) in the geometry of
a conical channel using the finite-element (FE) analysis pack-
age COMSOL [91, 92].

In Fig. 2(a) we compare the time-dependent laterally aver-
aged salt concentrations ⟨ρs⟩(V (t), t) ≡ ∫ L

0 ρs(x,V (t), t)dx/L
from FE calculations (blue) and the AA (red), which for the
AA is equivalent to g(V (t), t)/g0. In both cases V (t) is a pe-
riodic triangle potential (green) with amplitudes ±1 V and
a period of 25 ms. The features of the AA and FE calcu-
lations essentially agree, not only the typical amplitude of
⟨ρs⟩(V (t), t), but also the time lag ∼ τ (Eq. (6)) between V (t)
and ⟨ρs⟩(V (t), t), as indicated by the two pairs of dashed ver-
tical lines. This time lag results in a hysteretic conductance-
voltage diagram, shown in Fig. 2(b). Here the AA and FE cal-
culations agree with each other again, verifying the proposed
relation of ⟨ρs⟩(V (t), t) with the conductance g(V (t), t).

Translating the results of Fig. 2(b) to the current with
Eq. (8) we obtain the current-voltage (I-V) plot of Fig. 2(c),
which shows the memristor hallmark of a pinched hystere-
sis loop [56]. We again find agreement between the AA and
FE calculations and the I-V loop resembles previously re-
ported experimental results from comparable systems [43–
45, 49, 52]. The shape of the hysteresis loop depends on
the frequency f of the applied triangle potential V (t). The
enclosed area inside the loop shrinks to 0 for f τ ≪ 1 and
f τ ≫ 1 and shows a maximum at fmaxτ ≈ 0.19 for the stan-
dard parameter set, as shown in the left inset of Fig. 2(c). In
the right inset of Fig. 2(c) we see that the one-to-one relation
fmaxτ ≈ 0.19 also holds for various lengths L, further sup-
porting the validity of Eq. (6). Excitingly, the quadratic de-

pendence of τ on the channel length L offers strong control
over the channel memory retention time, a desirable trait [61].

Having derived Eqs. (6)-(8) for the memristive effect in a
single conical channel, we now turn our attention to modelling
a brain-inspired iontronic circuit. Electric signalling within
a neuron is facilitated by an action potential (AP), a propa-
gating voltage spike over the cell membrane [75]. APs obey
the all-or-none law, i.e. an AP either fails to initiate upon a
subcritical stimulus or completely occurs for a supercritical
stimulus, with no gradual transition in between [75, 76, 81],
and can be sequentially generated, resulting in a spike train
[76, 82–85]. These neuronal features of electric activity over
the membrane have been successfully modelled by an equiva-
lent circuit as in Fig. 3(a), first quantitatively characterised by
Hodgkin and Huxley [93], which has formed an extensively
used basis to mathematically model neuronal signalling [94–
100]. Interestingly, the mathematical descriptions of the bi-
ological potassium and sodium channel conductances gK and
gNa in the Hodgkin-Huxley (HH) model were later identified
to be descriptions of memristors [63]. Therefore we expect
similar spontaneous neuronal features by assembling conical
channels in a HH-like circuit, where the micrometer channels
take on the role of the potassium and sodium channels.

Inspired by HH circuits we present the circuit shown in
Fig. 3(b). This circuit consists of a capacitor with capacitance
C = 5 fF (corresponding to the typical capacitance of a biolog-
ical neuronal membrane of area ∼ 1 µm2 [101]), connected
in parallel with three oriented conical channels, with conduc-
tances g+, g− and gs and lengths L± = 1 µm and Ls = 25 µm.
As per Eq. (6), the timescales τ± ≈ 0.048 ms of the two fast
channels are identical, while the timescale τs ≈ 30 ms ≫ τ±
is much slower. The conical channels are connected in series
to batteries with potentials E± = ±0.975 V for the two fast
channels and Es =−0.5 V for the slow channel. The imposed
stimulus current I(t) is the control parameter and determines
whether spiking occurs. The electric potential Vm(t) over the
circuit shown in Fig. 3(b) is equivalent to the membrane po-
tential over a neuronal membrane [93].
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FIG. 3. (a) The Hodgkin-Huxley circuit model with Na+, K+ and leak channels, a capacitor and batteries corresponding to the Na+ and K+

Nernst potentials [93]. (b) Schematic representation of our proposed circuit containing three oriented conical channels, connected in series
to individual batteries and in parallel to a capacitor. The electric potential difference Vm(t) over the capacitor can be driven by an imposed
stimulus current I(t). (c) The imposed subcritical (red) and supercritical (blue) current pulse I(t), and (d) the resulting Vm(t) from Eq. (9),
displaying an all-or-none action potential, as can be seen by the jump in spike amplitude around IAP as shown in the inset. (e) The imposed
subcritical (red) and supercritical (blue) sustained currents I(t), and (f) the resulting Vm(t), where a spike train emerges for I(t)> Itrain.

Invoking Kirchoff’s law, the potential Vm(t) will evolve
according to

C
dVm(t)

dt
= I(t)− ∑

i∈{+,−,s}
gi(Vi(t), t)(Vm(t)−Ei) , (9)

where the conductances gi(Vi(t), t), determined by their in-
dividual laterally averaged salt concentrations as per Eq. (5),
each evolve according to Eq. (7), however with arguments Vi
of gi,∞(Vi) given by V−(t)=Vm(t)−E−, V+(t)=−Vm(t)+E+

and Vs(t) = −Vm(t)+Es. The differences in signs of the po-
tentials reflect the different orientations of the channels as de-
picted in Fig. 3(b). Eqs. (6), (7) and (9) form a closed set of
equations, which we numerically solve with initial conditions
V (0) =−0.5 V and gi(Vi(0),0) = g0,i.

Fig. 3(c) shows a subcritical pulse current I < IAP (red)
and supercritical pulse current I > IAP (blue), both of dura-
tion 70 ms, and Fig. 3(d) shows the two resulting membrane
potentials Vm(t). For the supercritical stimulus Vm(t) fully de-
polarises and an AP emerges, while it fails to properly de-
polarise for the subcritical stimulus. The inset of Fig. 3(d)
shows that the amplitude of the voltage spike undergoes a
sharp step increase at the pulse strength I = IAP, i.e. the cir-
cuit exhibits the defining all-or-none law found in biological
neurons [75, 76, 81], a feature considered to be a requirement
for artificial neurons [66].

For a slightly increased and sustained stimulus strength (as
shown in Fig. 3(e)), the spike train of Fig. 3(f) emerges for
a supercritical input I > Itrain, while just a single AP appears

for a subcritical input I < Itrain. Spike trains are another unique
feature of neuromorphic behaviour and play a vital role in neu-
ronal communication [76, 82–85]. In the SM [89] we show
that the frequency of the spike train can be tuned by alter-
ing the capacitance and cone lengths. In Ref. [86] a spike
train emerging from a simulated iontronic circuit containing
quasi two-dimensional nanochannels was presented. How-
ever, the defining all-or-none law of APs [66, 75, 76, 81]
was not reported in Ref. [86]. Additionally, in biological
neurons the battery potentials stem from Nernst potentials,
which are not considered to affect the voltage-gated channel
conductances, hence |Vi| = |Vm| in typical HH studies [93–
100]. However, in an experimental realisation of a microflu-
idic HH-like circuit with electric batteries the voltages Vi(t)
over the channels will be affected by the battery potentials
Ei, i.e. |Vi(t)| = |Vm(t)−Ei|. This detail is not considered in
Ref. [86] and hence it is not immediately clear how this circuit
could be experimentally realized.

In summary, we derived a theoretical model with no free
parameters, starting from the Poisson-Nernst-Planck-Stokes
equations (1)-(4), that explains how dynamic concentration
polarization in conical pores facilitates a volatile conductance
memory. Our theory agrees quantitatively with the mem-
ristive conductance of conical channels observed in finite-
element calculations and we surprisingly find that the conduc-
tive memory retention process is governed by a slow diffusive
timescale. By assembling multiple conical channels in an ex-
perimentally accessible iontronic Hodgkin-Huxley circuit we
find emerging neuronal behaviour. The circuit exhibits all-or-
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none action potentials upon pulse stimulation, a fundamental
requirement for artificial neurons [66], and spike trains under
a sustained stimulus, thereby displaying hallmark features of
neuronal communication [76, 81–85]. Our work promises to
accelerate the targeted development of iontronic circuits and a
more effortless scanning of possible applications thereof, be-
yond what is presented in this Letter.

This work is part of the D-ITP consortium, a program of the
Netherlands Organisation for Scientific Research (NWO) that
is funded by the Dutch Ministry of Education, Culture and
Science (OCW). T.M.K. performed the calculations; W.Q.B.
conceptualized the work; T.M.K. and W.Q.B. developed the
theory under supervision of C.S. and R.v.R. All authors dis-
cussed the results and contributed to the manuscript.
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I. CHANNEL MEMORY TIMESCALE AND RANGE OF
VALIDITY

To derive the memory retention timescale τ of a conical
channel from the PNPS equations, we consider two quanti-
ties, the change of total number of ions in the channel and
the net salt flux. The total number of ions in the channel
N = π

∫ L
0 R2(x)ρs(x,V )dx changes when a voltage is applied

over the channel. Using results from Ref. [1] for the radially
averaged steady-state salt concentration at a static voltage V ,

ρs(x,V )= 2ρb+2ρb∆g


 x

L
Rt

R(x)
− e

Pe(V ) x
L

R2
t

RbR(x) −1

ePe(V )
Rt
Rb −1


 , (S1)

we find that the change in N upon a small voltage perturbation
V ′ around V = 0 yields

∂N
∂V

∣∣∣∣
V=0

V ′ =
(

π
∫ L

0
R2(x)

∂ρs(x,V )

∂V
dx
)

V ′

=
π
6

L∆R
eσ
kBT

V ′ ≡ αV ′,
(S2)

where α < 0 for our parameter choice of σ < 0 and ∆R > 0,
in agreement with the enhanced (reduced) conductance of a
negative (positive) potential V ′.

We can find the time it takes to add αV ′ ions to the chan-
nel by considering the salt current J. For the net total influx
of salt into the channel due to a change in the static electric
potential we use the expression for the total salt flux, i.e. the
x-component of J, given in Ref. [1] by

Jx(x) =−D
(

πR2(x)∂xρs(x,V )+2πσ
eV

kBT
RtRb

R(x)L

)

+Q(V )ρs(x,V )

(S3)

which represents the diffusive, conductive and advective com-
ponents, respectively and where Q(V ) = −V

L πRtRb
εψ0
η is the

electro-osmotic volume flow. The net total number of ions
entering the channels is given by the difference in salt flux
between the tip and base Jx(L)− Jx(0). Since we consider
a small voltage perturbation V ′ around V = 0, we consider an
initially homogeneous state ρ̄s(x)= 2ρb where ∂xρs(x,V )= 0.
In this case the first term in Eq. (S3) vanishes and also the
third term vanishes as Q is laterally constant and ρs(0,V ) =
ρs(L,V ). The resulting net salt flux at a small static potential
V ′ is then purely given by the conductive terms

Jx(0)− Jx(L) = 2π
D∆R

L
eσ

kBT
V ′ ≡ γV ′, (S4)

where γ < 0 for our parameter choice of σ < 0 and ∆R > 0.
With α and γ defined in Eqs. (S2) and (S4), respectively, we
obtain the timescale τ of interest as

τ =
α
γ
=

1
12

L2

D
, (S5)

via which we see that the timescale is dictated by the char-
acteristic diffusion time of the channel. This is a surprising
result as the γV ′ of Eq. S3 term is purely conductive. Eq. (S5)
is plotted in the right inset of Fig. 2, where we compare τ with
the reciprocal frequencies 1/ fmax from full finite-element for
which the enclosed area in the I-V hysteresis loop is maximal
for various lengths, for all L they are related via fmaxτ ≈ 0.19.

To arrive at Eq. (S4), through which Eq. (S1) is obtained
in Ref. [1], the assumption is made that λD ≪ R(x), which
we mildly violate around the tip of the channel for our stan-
dard parameter set. Nevertheless, we still obtain good agree-
ment with finite element calculations, however we note that
our analytical approximation is not necessarily universally ap-
plicable to all parameter sets. We remark that in our work the
emergence of neuromorphic behaviour was rather sensitive to
changes in the parameters. Although we obtained spiking for
numerous different parameter sets, this sensitivity suggests
that explorations of the parameter space would be required
in experiments.

II. EXPLANATION OF SPIKE TRAIN AND FREQUENCY
MODULATION

Eqs. (7) and (9) form a dynamical system of equations,
which we can analyse in some more detail to gain a deeper
understanding of the spiking behaviour presented in Fig. 3.
Firstly, since τ± ≪ τs we can assume instantaneity of the g±
channels, i.e. g±(V (t), t) = g∞,±(V (t)). With this assumption
the current contribution in the circuit in Fig. 3(b) through the
fast channels is determined directly by Eq. (5), i.e.

grF(Vm(t))≡−g∞,+(−Vm(t)+E+)(Vm(t)−E+)

−g∞,−(Vm(t)−E−)(Vm(t)−E−) ,
(S6)

representing the total current from the fast channels and which
we denote by grF(Vm(t)) where gr is a characteristic effective
conductance of the fast channels. By expanding Eq. (S6) in
Vm(t), we find that F(Vm(t)) is well-approximated by

grF(Vm(t))≈ GVm(t)−
(GVm(t))3

3V 2
r

, (S7)
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where the characteristic effective conductance of the fast
channels gr = 1 pS, a reference voltage Vr = 1 V and a di-
mensionless parameter G = 3.5 are determined by expanding
F(Vm(t)) around Vm(t) = 0.

This assumption reduces the dynamical system to a set of
only two ordinary differential equations, given by

τm
dVm(t)

dt
=

I(t)
gr

− gs(t)
gr

(Vm(t)−Es)+F(Vm(t)), (S8)

τs
dgs(t)

dt
=g∞,s(−Vm(t)+Es)−gs(t), (S9)

where we defined a membrane response RC time of τm =
C/gr = 5 ms, for the parameter set used in Fig. 3. With
Eqs. (S8) and (S9) we obtain results that are essentially in-
distinguishable from those in Fig. 3.

Eqs. (S8) and (S9) suggest that it is possible to modulate the
spike train frequency by altering the two timescales τm and τs.
Physically this could be achieved by tuning the capacitance C
and the slow channel length Ls, respectively. If we scale both
τm and τs by the same factor n∗, i.e. τm → n∗τm and τs → n∗τs,
we indeed see in Fig. S1 that the spike train period depends
essentially linearly on this factor n∗, where we again solved
the full system of Eqs. (7) and (9).
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Figure S1. The spike train period from the circuit presented in
Fig. 3(b) as a result of the full system of Eqs. (7) and (9) when the
timescales τm and τs are rescaled by a factor n∗, i.e. τm → n∗τm and
τs → n∗τs.

We observe that Eqs. (S8) and (S9) are very similar
to the FitzHugh-Nagumo (FN) model (also known as the
Bonhoeffer-van der Pol model), which is of no surprise since
these models serve as simplified versions of the HH model
[2, 3]. In particular, Eqs. (S8) and (S9) are formulated similar
to the system investigated in Ref. [4]. Although the FN model
is not identical to Eqs. (S8) and (S9), we do believe that both
the all-or-none behaviour and the spike train behaviour can be
understood through the FN model, an approach that was used
to understand the original HH model results as well [2–6].

A mathematical understanding of the spiking behaviour
through the FN model has been broadly investigated [2–6].
Additionally we offer here a heuristic explanation of why we
see emerging neuromorphic behaviour from our specific ion-
tronic circuit. If we consider the circuit in Fig. 3(b) without

the slow channel and with I(t) = 0, then we find two stable
stationary points at Vm ≈±0.5 V. These stationary points cor-
respond to the non-trivial roots of F(Vm). This bistability is a
precursor of the all-or-none law we find. For a sufficiently
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Figure S2. The spike train frequency from the circuit presented in
Fig. 3(b) as a result of the full system of Eqs. (7) and (9) when the
timescales τm is changed while τs is kept constant. The spike train
only emerges if τm < 0.55τs.

strong imposed stimulus current I(t) = I > 0, the negative
stationary state vanishes and only a positive stable station-
ary state Vm > 0 remains. The Vm < 0 state for I(t) = 0 also
emerges in the full circuit with the slow channel (Fig. 3(b)),
which we observe as the initial resting state as seen in Figs.
3(d) and 3(f). A Vm > 0 state is not present here because
the slow channel becomes more conductive for Vm > 0 and
pushes Vm(t) to the battery potential Es < 0. Now assume the
full system is at rest with I(t) = 0 at Vm(t) = V ∗

m < 0 and we
increase I(t) at time t ′ from 0 to some I > IAP. Then after
some time ∆t ≪ τs, such that gs(t ′+∆t)≈ gs(t ′) = g∞,s(V ∗

m),
the slow channel is still in a low conducting state. If Vm(t)
is able to significantly change over a time period ∆t, then the
system can transition to the Vm > 0 stationary state before the
slow channel becomes conductive enough to make this state
vanish. Note that this requires that the RC-like membrane
voltage response time τm is much shorter that the slow chan-
nel timescale, i.e. τm ≪ τs. In Fig. S2, which shows the spike
train frequency as a function of τm/τs, we show that this re-
quirement actually also holds for the full circuit presented in
Fig. 3(b). A spike train only emerges when τm < 0.55τs and
for τm > 0.55τs the spike train does not emerge, correspond-
ing to a frequency of 0 in Fig. S2. This fast-slow relation is
characteristic for FN models [2] and this requirement is also
found in Ref. [4].

The all-or-none behaviour can now be explained by the ob-
servation that the Vm < 0 stationary state either remains in
place for I < IAP (thus no action potential) or vanishes tem-
porarily for I > IAP, resulting in a complete action potential.
For a stimulus current IAP < I < Itrain ≈ 1.28 pA there is still
a stable stationary point, which can be seen in the subcritical
voltage trace in Fig. 3(f, red). At I = Itrain ≈ 1.28 pA , this
stable point undergoes a Hopf bifurcation [7] and the trace
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shows a periodic solution, as shown in Fig. 3(f, blue). After
the Hopf bifurcation two more stationary points appear inside
the stable limit cycle which are both also unstable, thus it is a
supercritical Hopf bifurcation [8].

With the identification that the relevant dynamical variables
are Vm(t) and gs(t) we can alternatively display the results
from Figs. 3(d) and 3(f) in a phase portrait of Vm(t) and gs(t).
In Fig. S3 we show the trajectories of Vm(t) and gs(t) which
start out from a resting state with I = 0, after which sustained
currents of I = 1.16 pA < IAP, IAP < I = 1.27 pA < Itrain and
I = 1.28 pA > Itrain are imposed, resulting in the green, red
and blue trajectories, respectively. The green trajectory set-
tles to a new stationary state rather directly, while the red tra-
jectory first traverses a single orbit through the (Vm(t),gs(t))
space, which is visible as the single action potential shown
in Fig. 3(d). The supercritical Hopf bifurcation at I = 1.28 pA
translates to the blue periodic orbit, corresponding to the spike
train shown in Fig. 3(f).

I < IAP

IAP < I < Itrain

I > Itrain

-0.5 -0.25 0 0.25 0.5

1

1.25

1.5

Vm [V]

g s
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Figure S3. The phase portrait of Vm(t) and gs(t), obtained by solving
the two-dimensional set of equations (S8) and (S9). The trajectories
of Vm(t) and gs(t) start out from a resting state with I = 0, after
which sustained currents of I = 1.16 pA < IAP, IAP < I = 1.27 pA <
Itrain and I = 1.28 pA > Itrain resulting in the green, red and blue
trajectories, respectively.
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