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ABSTRACT

The initiation of replication is an extremely important process in DNA life cycle. 

Given an uncharacterized DNA sequence, can we identify where its origin of replication 

(ORI) is located? It is no doubt a fundamental problem in genome analysis. Particularly, 

with the rapid development of genome sequencing technology that results in a huge 

amount of sequence data, it is highly desired to develop computational methods 

for rapidly and effectively identifying the ORIs in these genomes. Unfortunately, by 

means of the existing computational methods, such as sequence alignment or kmer 

strategies, it could hardly achieve decent success rates. To address this problem, we 

developed a predictor called “iOri-Human”. Rigorous jackknife tests have shown that 

its overall accuracy and stability in identifying human ORIs are over 75% and 50%, 

respectively. In the predictor, it is through the pseudo nucleotide composition (an 

extension of pseudo amino acid composition) that 96 physicochemical properties for 

the 16 possible constituent dinucleotides have been incorporated to reflect the global 
sequence patterns in DNA as well as its local sequence patterns. Moreover, a user-

friendly web-server for iOri-Human has been established at http://lin.uestc.edu.cn/

server/iOri-Human.html, by which users can easily get their desired results without 

the need to through the complicated mathematics involved.

INTRODUCTION

DNA replication is a basic biochemical process 

during cell growth and division [1]. The initiation of DNA 

replication in eukaryotes occurs at specific genomic loci 
called “ORI” (origin of replication) or “RO” (replication 

origin) [2]. Timely duplication of the genome is an essential 

step in the reproduction of any cell [3]. There is only one 

ORI for most of bacterial genomes [4]. In contrast to 

that, eukaryotic genomes contain much more ORI sites 

[5]. Although eukaryotic replication mechanism is quite 

conservative, DNA replication initiator lacks obvious 

consensus sequence or structure between the different 

species [6]. 

The ORI in Saccharomyces cerevisiae (S. cerevisiae) 

is formed by domain A, domain B and domain C [7].  Each 

of the three domains has its special motif and function 

as elaborated in [8–9]. Interestingly, in the S. cerevisiae 

genome there are over 12,000 conservative sequences, of 

which, however, only 400 are of ORI [10].

For the detailed replication process in human DNA, 

see [11–13] as well as Figure 1. 

                  Research Paper



Oncotarget69784www.impactjournals.com/oncotarget

Although Chip (chromatin immunoprecipitation) is 

a very powerful technique to determine the ORI [14], it is 

time-consuming and costly. Therefore, it would be very 

helpful to develop bioinformatics tools in this regard. 

Actually, considerable efforts [15–20] have been 

made for this purpose. Although these methods achieved 

encouraging results, the outcomes were often inconsistent 

and with limited accuracy. Particularly, none of these 

methods had taken into account the physicochemical 

properties of the DNA sequence concerned, one of the 

vitally important factors for conducting genome analysis, 

as indicated by a serious of recent studies (see, e.g.,  

[21–27]).

The current study was devoted to establish a new 

computational method for predicting human ORIs based 

on the DNA’s physicochemical properties. 

According to Chou’s 5-step rule [28], in developing 

a new statistical predictor we should make the following 

five procedures very clear as done in a series of recent 
publications [29–39]: (1) benchmark dataset; (2) sample 

formulation; (3) operation engine or algorithm; (4) 

accuracy evaluation; and (5) web-server. In the rest of 

this paper, we are to address these five steps one-by-one. 
However, to match the style of the Oncotarget journal, 

their order may be somewhat different.

RESULTS AND DISCUSSION

A new predictor as well as its web-server and 

user guide

A new and much more accurate sequence-based 

method, called iOri-Human, was developed for predicting 

the ORI sites in human DNA.  In addition to the predictor’s 

high accuracy, it is also very important to make its web-

server available to the public [40, 41]. Because only with 

this, can it be widely used by most experimental scientists. 

In view of this, the web-server for iOri-Human has also 

been established. Furthermore, a user’s guide is provided 

as follows.

(1)   Click the web server at http://lin.uestc.edu.cn/server/

iOri-Human.html, the top page of iOri-Human will be 

shown on your computer screen, as shown in Figure 2.  

(2)  In the input box at the center of Figure 2, type or copy/

paste the query DNA sequences. The entered DNA 

sequences should be with the FASTA format. If not 

familiar with FASTA, click the button of Example. 

(3)  See the predicted results by clicking on the Submit 

button. If using the three query sequences in the 

Example window, you will see the following 

outcomes on your computer’s screen: the one for 

the first query sequence (with 300-bp long) is ‘Ori’; 
the one for the second query sequence (also with 

300-bp long) is ‘non-Ori’; the one for the third 
query sequence (with 514-bp long) contains 514 – 

300 + 1 = 215 sub-results, where the results for the 

segments from #1 to #134 are of ‘non-Ori’, those 
for the segments from #135 to #204 are of ‘Ori’, 
and those from #205 to #215 are of ‘non-Ori’, fully 
consistent with the experimental observations. The 

computational time is about a few seconds; of course, 

the more the number of query sequences, the longer 

the computational time will be. 

(4)  To get the benchmark dataset, click on the Data button.

(5)  To find out the key relevant publications, click on the 
Citation button.

Caveats. The input query sequences should be 

300 bp or longer, and expressed by DNA’s single-letter 

codes: ‘A’, ‘C’, ‘G’, and ‘T’.

Figure 1: The schematic diagram of origin of replication of human. The process of DNA replication requires two DNA 

polymerase complexes traveling in opposite direction (i.e. two bidirectional replication forks) from the origin.
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The anticipated prediction accuracy

Listed in Table 1 are the success scores achieved by 

the predictor iOri-Human using the jackknife tests on the 

benchmark dataset (Supporting Information S1). Since it 

is the first predictor ever documented for identifying the 
ORI sites in human DNA sequences, it is not possible 

to demonstrate its power by a comparison with its 

published counterparts for exactly the same purpose. 

Nevertheless, it would be instructive to also list in Table 1 

the corresponding optimal scores by the other machine-

learning algorithms. As we can see from the table, the new 

iOri-Human achieved remarkably higher scores than its 

cohorts in almost all the four metrics, indicating clearly 

that the proposed new iOri-Human predictor is really 

very powerful. Note that, of the four metrics in Eq.8, the 

most important are the accuracy (Acc ) and Mathew’s 

correlation coefficient (MCC): the former reflects the 
overall accuracy of a predictor; while the latter, its stability 

in practical applications. The metrics sensitivity (Sn) and 

specificity (Sp) are used to measure a predictor from two 
different angles. When, and only when, both Sn and Sp 

of the predictor A are higher than those of the predictor 

B, can we say A is better than B. Actually, Sn and Sp 

are constrained with each other [42]. Therefore, it is 

meaningless to single out one from the two for making 

comparison. Accordingly, a really meaningful comparison 

in this regard should count the rates of both Sn and Sp, or 

even better the rate of their combination. That is exactly 

what MCC stand for. 

In studying complicated biological systems, 

graphical analysis is a very useful approach [43–52] due to 

Table 1: The success rates obtained by various machine-learning algorithms via jackknife tests on 

the benchmark dataset (Supporting Information S1) 

Algorithm Sna Spa  Acca MCCa AUCb

iOri-Humanc 0.762 0.739 0.75 0.501 0.835

SVMd 0.688 0.544 0.616 0.400 0.651

Naive Bayes 0.379 0.746 0.563 0.286 0.614

KNNe 0.606 0.473 0.54 0.144 0.529

Decision Tree 0.078 0.936 0.508 0.028 0.511

aSee Eq.8 for the definition of the metrics. 
bAUC means the area under the ROC curves in Figure 3; the greater the AUC value is, the better the predictor will be [53, 54].   
cThe proposed predictor in which the number of trees used was 100 with seed equal to 1. 
dThe optimal parameters used for SVM were C = 0.5 and γ = 0.125. 
eThe optimal parameters used for KNN (K nearest neighbor) was K = 1.  

Figure 2: A semi-screenshot for the top-page of the iOri-Human web-server at http://lin.uestc.edu.cn/server/iOri-

Human.html. 
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its intuitivity. Here, let us use the ROC (receiver operating 

characteristic) graph [53, 54] to show the advantage of 

iOri-Human over its cohorts. The red graphic line in Figure 

3 is the ROC curve for the iOri-Human predictor, while 

those of its cohorts are with different colors as directly 

marked on the figure. The area under the ROC curve is 
called AUC (area under the curve). The larger the area, 

the better the corresponding predictor [53, 54]. It can be 

seen from Figure 3, the iOri-Human has the largest AUC 

in comparison with its cohorts, once again indicating its 

power.

MATERIALS AND METHODS

Benchmark dataset 

The human ORIs data were collected from OriDB 

[55] (http://tubic.tju.edu.cn/deori/). These sequences 

were derived from Hela cell line. To construct a reliable 

benchmark dataset, the following steps were followed. (1) 

Collected were only experiment-confirmed data; thus we 
obtained 283 human ORIs with 300 bp in length. (2) For 

each of the 283 ORIs, extract a 300 bp segment from its 

upstream region at [-600 bp, -300 bp] as the corresponding 

non-ORI; a total 283 non-ORI samples were obtained. (3) 

Use the CD-HIT software [56] and set 0.75 as the threshold 

to remove redundant samples. Note that using 0.75 for 

the cutoff threshold was a compromise between reducing 

redundancy bias and keeping enough number of samples 

for statistical analysis. If further imposing more stringent 

cutoff, the number of DNA samples left would be too few 

to have statistical significance. Finally, we obtained 283 
human OTI samples and 282 non-ORI samples. 

In literature, the benchmark dataset usually consists 

of a training dataset and a testing dataset: the former is 

constructed for the purpose of training a proposed model, 

while the latter for the purpose of testing it. As pointed out 

by a comprehensive review [57], however, there is no need 

to separate a benchmark dataset into a training dataset and 

a testing dataset for validating a prediction method if it is 

tested by the jackknife or subsampling (K-fold) cross-

validation since the outcome thus obtained is actually from 

a combination of many different independent dataset tests. 
Therefore, the benchmark dataset   for the current study 

can be formulated as

  =
+ −

 
(1)

where the positive subset 
+  contains 283 human ORI 

samples, the negative subset −  contains 282 non-ORI 

samples, and the symbol   represents the union in the set 

theory. The 283 + 282 = 565  DNA samples are each 

consist of 300 bp, as can be generally formulated by

1 2 3 300= N N N N NiD  
 

(2)

For readers’ convenience, their detained sequences 

are given in Supporting Information S1.

Pseudo k-tuple nucleotide composition

With the explosive growth of biological sequences 

generated in the post-genomic age, one of the most 

challenging problems in computational biology is how 

to formulate a biological sequence with a discrete model 

or vector, yet still considerably keep its sequence pattern 

or key feature. This is because almost all the existing 

machine-learning algorithms were developed to handle 

vector but not sequence samples, as elaborated in [40]. But 

a vector defined in a discrete model may completely lose 
this kind of sequence-pattern information. To overcome 

Figure 3: A graphical illustration to show the performances of iOri-Human and its cohorts via the ROC (receiver 

operating characteristic) curves [53, 54]. The area under the ROC curve is called AUC (area under the curve). The greater the AUC 

value is, the better the performance will be. See the text for further explanation. 
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this problem, the “pseudo amino acid composition” 

[58, 59] or Chou’s PseAAC [60–62] was developed to 

deal with protein/peptide sequences. Ever since PseAAC 

was proposed, it has penetrated into many biomedicine/

drug development areas [63, 64] and nearly all the areas 

of computational proteomics (see, e.g., [65–70] as well 

as a long list of references cited in [71, 72]). Encouraged 

by its successes in computational proteomics, the idea of 

PseAAC was recently extended to dealing with DNA/

RNA sequences in many important problems of genome 

analysis [23–27, 33, 35, 38, 73, 74] by introducing the 

pseudo nucleotide composition or PseKNC [75–79].

According to a recent review paper [41], the general 

form of PseKNC for a DNA sequence can be formulated as

[ ]1 2                u Z= φ φ φ φ T
D  

   
(3)

where T is the transpose operator, while Z an integer to 

reflect the vector’s dimension. The value of Z as well as 

the components 
uφ  ( 1, 2, , )u Z=   in Eq.3 will depend on 

how to extract the desired information from the DNA 

sequence. In the current study, we used the type-1 PseKNC 

[41], then the component in Eq.3 are given by
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where kmer

if  is the normalized occurrence frequency of the 

i-th kmer in the DNA sequence of Eq.2, λ  is the 

correlation tier used to reflect the long-range or global 

sequence pattern [41, 58], w is the factor used to adjust the 

weight between the local and global sequence coupling 

effects, and jθ  is the j-th structural correlation factor 

between all the j-th most contiguous dinucleotides as 

given by

1
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where the correlation factor 1 1 ( (N N , N N )+ + + +Θ i i i j i j  is 

given by 

( ) ( ) ( ) 2
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(6)

where Φ  is the number of local DNA structural properties 

considered that is equal to 6 in the current study as will be 

explained below; 1(N N( ))v i iP +  is the numerical value of 

the v-th physicochemical property for the dinucleotide at 

position i. 

The spatial arrangements of any two successive base 

pairs could be characterized by six types of local structural 

parameters, of which three are local translational 

parameters (shift, slide and rise) and the other three are 

local angular parameters (twist, tilt and roll) [25, 26]. In 

recent years, more and more researches have demonstrated 

that the six DNA structural properties play important roles 

in many biological processes [80, 81]. There are 24 16=  

different dinucleotides, so the total number of local 

structural parameters is 6 16 96× = . Each of their 

parameter values can be found in Supplementary Table S1.

Before substituting these values into Eq.6, they 

were subjected to a standard conversion according to the 

following equation [82]

1

1

(N N )
(N N )

SD( )

v i i v

v i i

v

P P
P

P

+
+

− < >
⇐

 

(7) 

where the 1(N N )v i iP +  is the original value of the 
v -th DNA physicochemical index for the dinucleotide 

1N Ni i+  at position i; the symbol 〈 〉 means the average 

value of the quantity therein for 16 different indices of 

dinucleotides, and SD denotes the corresponding standard 
deviation. The advantage to carry out the standard 

conversion is that the converted values obtained by Eq.7 

will have a zero mean value over the 16 different indices, 

and will remain unchanged if they go through the same 

conversion procedure again. See Supplementary Table S2 

for the corresponding values converted via Eq.7 from 

Supplementary Table S1. 

Random forest

The random forests (RF) algorithm is a very powerful 

algorithm, widely used in many areas of computational 

biology (see, e.g. [2, 31, 32, 34, 36, 39, 83–89]).  

The idea of RF is based on the ensemble of a large 

number of decision trees, with each giving a classification 
to choose the final outcome via a vote over all the trees 
in the forest. In this study, the number of trees is 100 

and the seed is 1. The detailed procedures of RF and its 

formulation have been very clearly elaborated in [90], and 

hence there is no need to repeat here. 

The predictor obtained via the aforementioned 

procedures is called iOri-Human, where “i” stands for 

“identify”, and “Ori-Human” for “human origin of 

replication”. 

As stated in Introduction, how to objectively evaluate 

its anticipated success rates is an indispensable procedure 

for developing a useful predictor [28]. To realize this, we 

need to consider two issues: one is what metrics should 

be defined to measure the predictor’s quality; the other is 
what kind of test approach should be adopted to derive the 

metrics values. Below, let us address the two issues.
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A set of four intuitive metrics and their 

definitions

As stated in [91], to quantitatively evaluate the 

quality of a predictor in performing binary classification, 
four metrics are usually needed. They are: (1) Acc to 

measure the predictor’s overall accuracy; (2) MCC, the 

stability; (3) Sn, the sensitivity; and (4) Sp, the specificity. 
Unfortunately, the conventional formulations for the four 

metrics are not quite intuitive and most experimental 

scientists feel difficult to understand them, particularly the 
stability of MCC. Fortunately, as elaborated in [22, 92], 

by using the Chou’s symbols and derivation in studying 

signal peptides [93], the conventional metrics can be 

converted into a set of four intuitive equations, as given 

below: 

 

1 0 1

1 0 1

 1 0 1

1

 1 1
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where N +  represents the total number of ORI samples 

investigated, while N +
−  is the number of true ORIs 

incorrectly predicted to be of non-ORI; N −  the total 

number of the non-ORI samples investigated, while N −
+  the 

number of the non-ORIs incorrectly predicted to be of ORI.

According to Eq.8, it is crystal clear to see the 

following. When 0N +
− =  meaning none of the true ORI 

sequences are incorrectly predicted to be of non-ORI, we 
have the sensitivity Sn 1= . When N N+ +

− =  meaning that 

all the ORI samples are incorrectly predicted to be of non-

ORI, we have the sensitivity Sn 0= . Likewise, when 

0N −
+ =  meaning none of the non-ORI samples are 

incorrectly predicted to be of ORI, we have the specificity 
Sp 1= ; whereas N N− −

+ =  meaning that all the non-ORI 

sequences are incorrectly predicted to be of ORI, we have 

the specificity Sp 0= . When 0N N+ −
− += =  meaning 

that none of ORI samples in the positive dataset and none 

of the non-ORI samples in the negative dataset are 

incorrectly predicted, we have the overall accuracy 

Acc 1=  and MCC 1= ; when N N+ +
− =  and 

N N− −
+ =  meaning that all the ORI samples in the 

positive dataset and all the non-ORI samples in the 

negative dataset are incorrectly predicted, we have the 

overall accuracy Acc 0=  and MCC 1= − ; whereas when 

/ 2N N+ +
− =  and / 2N N− −

+ =  we have Acc 0.5=  and 

MCC 0=  meaning no better than random guess. 

Therefore, Eq.8 has made the meanings of sensitivity, 

specificity, overall accuracy, and stability much more 

intuitive and easier-to-understand, particularly for the 

meaning of MCC, as concurred recently by many 

investigators (see, e.g., [24, 25, 27, 33, 38, 73, 86, 87, 89, 

94–101]).

Note that, however, the set of equations defined 
in Eq.8 is valid only for the single-label systems. For 

the multi-label systems whose emergence has become 

more frequent in system biology [102–104] and system 

medicine [105] or biomedicine [39], a completely different 

set of metrics are needed as elaborated in [106].

Jackknife cross validation

With a set of intuitive metrics to measure the quality 

of a predictor, the next issue is what kind of validation 

method should be utilized to score these metrics. In 

statistics, the following three cross-validation methods are 

often used: (1) independent dataset test, (2) subsampling 

(or K-fold cross-validation) test, and (3) jackknife test 

[107]. Of these three, however, the jackknife test is 

deemed the least arbitrary that can always yield a unique 

outcome for a given benchmark dataset as elucidated 

in [28]. Accordingly, the jackknife test has been widely 

recognized and increasingly used by investigators to 

examine the quality of various predictors (see, e.g.,  

[65–68, 70, 108–119]). 

In view of this, here we also used the jackknife test 

to examine the quality of iOri-Human predictor. During 

the jackknifing process, both the training dataset and 
testing dataset are actually open, and each sample will 

be in turn moved between the two. The jackknife test 

can exclude the “memory” effect. Also, the arbitrariness 

problem as mentioned in [28] with the independent dataset 

and subsampling tests can be completely avoided because 

the outcome obtained by the jackknife cross-validation is 

always unique for a given benchmark dataset.

Optimize parameters

As we can see from Eqs.4–5, the new predictor 

contains three parameters: one is k , the number of the 

nearest nucleotides considered to reflect the short-range or 
local pattern; one is λ, the number of the correlation tiers 

considered to reflect the long-range or global pattern; and 
one is w , the weight factor considered to adjust the 

effects between k  and λ. Their values will be determined 
via an optimization procedure according to various 

concrete problems. For the current study, the grid search 

for the optimal values of the three parameters was 

conducted within the scope given below
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( )

( )

1 4          with step 1           

1 10        (with step 1)         

0.1 1.0   with step 0.1      

k k

w w

λ
≤ ≤ ∆ =

 ≤ ≤ ∆λ =
 ≤ ≤ ∆ =

 

(9)

Where k∆ , λ∆ , and w∆  represent the step gaps for k, 

λ , and w, respectively. The reason why the search scope 

for k  is limited under 4 is because the possible number of 

k-mers ( 4k ) would be too large to be covered by the 

current benchmark dataset. As for the parameter λ ,  
generally speaking the greater it is, the more global 
sequence-order information the model will contain. 
However, if λ  is too large, it would reduce the cluster-

tolerant capacity [120] so as to lower down the cross-

validation accuracy due to overfitting or “high dimension 
disaster” problem [121]. 

From Eq. 9, a total of 4 10 10 400 × × =   individual 

combinations were investigated for finding the optimal 
parameter combination. To reduce the computational time, 

the 10-fold cross-validation approach was used to assess 

the performances of the 400 combinations. Once the 

optimal values of the three parameters were determined, 

the rigorous jackknife test was adopted to calculate the 

scores for the four metrics defined in Eq.8 as well as the 
AUC in Figure 3. The final values thus obtained are given 
below

Sn 0.762      

Sp 0.739      

Acc 0.750            ( 4, 7, 0.9)

MCC 0.501  

AUC 0.835   

k w

=
 = = = λ = =
 =

=  (10) 

Also, see the results listed in Table 1, where the 

corresponding optimal parameters for various operation 

engines are also given.

CONCLUSIONS

One of the most important and fundamental 

processes in human cells is of the DNA replication. 

Knowledge of ORIs is crucial for in-depth understanding 

such a biological process, and hence computational 

method is highly demanded in this area. Unfortunately, 

it was very difficult to achieve decent success rates by 
computational approach. In the current model, both the 

local and global sequence patterns of DNA can be reflected 
via its physicochemical properties. That is why the iOri-

Human predictor can yield remarkably high success 

rates. We anticipate that it will become a very useful high 

throughput tool for genome analysis.   
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