
iOS anti-forensics:
How can we securely conceal, delete and insert data?

Christian D’Orazio1 Aswami Ariffin1,2 Kim-Kwang Raymond Choo1

1Information Assurance Research Group, University of South Australia
2CyberSecurity Malaysia, Malaysia

christian.dorazio@cjsoftlab.com, aswamifadillah@gmail.com, raymond.choo@unisa.edu.au

Abstract
With increasing popularity of smart mobile devices

such as iOS devices, security and privacy concerns
have emerged as a salient area of inquiry. A relatively
under-studied area is anti-mobile forensics to prevent
or inhibit forensic investigations. In this paper, we
propose a “Concealment” technique to enhance the
security of non-protected (Class D) data that is at rest
on iOS devices, as well as a “Deletion” technique to
reinforce data deletion from iOS devices. We also
demonstrate how our “Insertion” technique can be
used to insert data into iOS devices surreptitiously that
would be hard to pick up in a forensic investigation.

1. Introduction

With the widespread adoption of ubiquitous smart
mobile devices (e.g. iOS and Android devices) and
their capacity to act as a general purpose computing
platform, they are increasingly seen as a potential
attack vector for cyber criminal activities.

Given the increase in mobile devices in everyday
life, digital forensics is increasingly being used in the
courts. The concept central to mobile (and generally,
digital) forensics is digital evidence [17].

Mobile forensics is the process of gathering
evidence of some type of an incident or crime that has
involved mobile devices. In such circumstances, the
expectation is that there has been some accumulation
or retention of data on the mobile devices which will
need to be identified, preserved and analysed [13][14].
This process can be documented and defined, and be
used to uncover evidence of a crime. There has also
been an increased interest in anti-mobile forensic
techniques by government agencies, the private sector
and criminals to securely conceal or destroy data. For
example, government agencies (especially those
working in national security and intelligence) and the
private sector would not want data stored on misplaced
or stolen mobile devices to be (forensically) recovered

by foreign government agencies, competing
businesses, and other actors with malicious intents; and
criminals would not want incriminating data to be
forensically recovered by law enforcement agencies.
Commonly used anti-forensics (also known as counter
forensics) techniques and methodologies include
secure data deletion, overwriting metadata, avoiding
detection, and trail obfuscation [1],[10][11].

While there is a wide range of smart mobile
devices, three main operating systems dominate the
market, namely Apple iOS, Google Android and RIM
Blackberry [12]. iOS devices will be the focus in this
paper. Using a 4-digit passcode or alphanumeric
password in iOS devices does little to protect a user’s
data on such devices during forensic examinations.
Native iOS applications do not encrypt files such as
photos, videos, SMS messages, and other documents
using passcode derivation. These files are associated
with the non-protection class key (the Class D key
commonly cited as Dkey), and, therefore, can be
decrypted without the knowledge of the passcode or
password of a locked device. When using native iOS
applications, file data protection is not a viable option
to effectively maintain data confidentiality as the data
partition and Class D keys are stored in the Effaceable
Storage. These keys are just designed to be rapidly
erased on demand and render the entire volume
cryptographically inaccessible at once.

There are also known problems in using standard
file deletion techniques. For example, the content of
the journal file can be indexed to search for the
metadata associated with the deleted files [4]. On iOS
devices, the metadata may contain per-files keys. The
technique described by Burghardt and Feldman [4]
requires a certain level of technical expertise and is
complicated by the fact that transactions in the journal
file are rapidly overwritten, which reduces the chances
of data discovery. However, data stored on the iOS
devices may still be recoverable if such recovery or
forensic activities were undertaken soon after the data
has been deleted. To provide a higher level of data

2014 47th Hawaii International Conference on System Science

978-1-4799-2504-9/14 $31.00 © 2014 IEEE

DOI 10.1109/HICSS.2014.594

4838

protection assurance, one could develop customised
applications that associate stored content with data
protection classes A, B, or C (see Table 1) via the
relevant API calls provided by Apple iOS software
development kits (SDKs).

Contribution 1: Instead of developing customised
applications, we propose a “Concealment” technique
that enhances the security of non-protected (Class D)
data that is at rest on iOS devices. This technique,
designed to render the content unreadable without the
corresponding 256-bit secret, is inspired by the one-
time pad (designed by Gilbert Vernam in 1917, see US
Patent 1310719) concept, which performs a binary
XOR operation on a message (in our context, the per-
file key) with a key of the same bit-length (in our
context, the C value).

We also propose a “Deletion” technique to protect
the data on iOS devices, as well as to reinforce data
deletion from iOS devices. As pointed out by one of
the reviewers, the “Deletion” technique may be more
useful to some users than a reversible obfuscation (the
“Concealment” technique). However, the
“Concealment” technique would be of use to data
owner who wants an additional security layer to
prevent unauthorised access to the content.

Both techniques produce results on iOS devices
that are tethered jailbroken1, which are persistent and
undetected when the device is rebooted and recovers
its non-jailbroken state. Neither the iOS device nor the
operating system is functionally degraded or
compromised.

Contribution 2: Our “Insertion” technique can be
used to insert data into the devices surreptitiously that
would be hard to pick up in a forensic investigation.

2. Our proposed iOS anti-forensic
technique: Using iPhones as case studies

In order to keep information secure on iOS devices,
Apple designed a complex and hierarchical model
integrated by different security layers. Generally, data
blocks in the user partition are secured with different
encryption keys. The data partition file system key,
commonly referred as the EMF key, protects special
files (catalog file, attributes file, journal file, etc.),
metadata, and the file system structure. The special
files are required to access the file system payload

1 A tethered jailbreak means that the device will need to be
connected to the desktop in order to boot back into a
jailbroken state [9]. Tethered jailbreaking is temporary and
suitable for digital forensic practitioners as no permanent
modifications are made to the OS or user data partition. On
the contrary, an untethered jailbreak means that the
jailbroken state is permanent.

integrated by folders, user files, and attributes. Every
file on the data partition is encrypted with a unique
256-bit key (also known as per-file keys) by the
dedicated AES cryptographic engine using AES CBC
mode [3]. Each per-file key is wrapped with the key
associated with the data protection class (see Table 1)
to which the file belongs and stored in the file’s
metadata.

Table 1. Data protection classes
ID Name
A NSFileProtectionComplete
B NSFileProtectionCompleteUnlessOpen

C NSFileProtectionCompleteUntilFirstUserAuth
entication

D NSFileProtectionNone (No protection)

Figure 1 depicts the process and cryptographic
elements (including data protection classes) that are
relevant to our study and necessary to decrypt file
contents regardless whether the passcode has been
activated (or not). Figure 1 also illustrates how and
where the file decryption is affected by our
concealment and deletion procedures.

� Experiment set-up

In our case studies, we used two models of iPhone,
namely an iPhone 3GS (storage capacity of 8GBytes)
and an iPhone 4 (storage capacity of 16GBytes).
Although the phones we used were not the latest
versions at the time of the research, the latest iOS
version (6.1.2) at the time was installed on both
devices. Due to space constraints, we will only present
our findings from the iPhone 4 case study (and similar
findings were reported in our iPhone 3GS case study).

The iPhone was first reset to factory settings and all
previously stored contents were erased to ensure there
was no remnant data. We took five pictures
(IMG_0001.JPG, IMG_0002.JPG, IMG_0003.JPG,
IMG_0004.JPG and IMG_0005.JPG), three videos
(IMG_0006.MOV, IMG_0007.MOV and
IMG_0008.MOV) using the iPhone’s camera, and four
screenshots (IMG_0009.PNG, IMG_0010.PNG,
IMG_0011.PNG and IMG_0012.PNG) pressing the
Home and Sleep buttons. We then undertook the
“Concealment” and “Deletion” procedures using the
toolkit detailed in Table 2.

Our proposed technique is outlined in Figure 2.

4839

Figure 1. An overview of iOS file decryption process
Source: The first author’s compilation

Table 2. Anti iOS forensic toolkit

No. Item

1. redsn0w 0.9.9b5.

2.

Our command-line applications installed in the custom RAM disk – a block of RAM (primary storage
or volatile memory):
� setkey (our application for data and per-file-key modification)

o ‘-h’ is the input parameter to render file contents unreadable (see subsection 2.4.1), and
o ‘-d’ is the input parameter to render the file contents unrecoverable (see subsection

2.4.2).
� setdate (our application for file-date modification)
� dumpjournal (our application for extraction of the journal file)

3 Shell commands installed in the custom RAM disk: mount_hfs, chmod, chwon, ls, rm.
4. MacBook Pro laptop.

4840

2.1. Step 1: Preparation (Background
knowledge)

This step plays an important role in determining the
location and storage format of the cryptographic keys
in order to conceal (render selected file contents
unreadable), delete (render selected file contents
unrecoverable) and insert data (e.g. to mislead any
forensic investigations). To reduce the chances of
being detected, it is crucial that the individual using
our technique is familiar with the most recent
developments in iOS devices (e.g. up-to-date and in-
depth understanding of how file data is stored and
secured on iOS devices). For instance in the situation
where one would want to insert an image file or video
clip taken with another device, it is important to note
that images or video clips captured by an iOS device’s
camera are converted to the corresponding data format.
The converted data are then formatted in a file
container with a specific codec and encrypted with a
unique 256-bit per-file key. As per RFC 3394
specification [15], the per-file key is then wrapped with
a data protection class key and stored in the
image/video file’s metadata prior to being encrypted
with the file system data partition key (EMF key)
generated from the unique hardware UID [3]. The
encrypted file is then stored in the device’s flash
memory.

It is generally acknowledged that iPhone is a secure
electronic device with various security features that
protect stored information. In addition, accessing any
content can only be done through USB (Universal
Serial Bus).

In this phase, it is essential to be aware of the
following issues.
� Only iTunes application is natively allowed to

operate via an USB connection on iPhones.
� Every file is encrypted in an iOS device (that

supports encryption) and the encrypted file can
only be decrypted using its per-file key, which is
wrapped with the corresponding class key that the
file is associated with.

� A per-file key is stored as an extended attribute of
a file in its content protection (commonly cited as
cprotect) structure allocated in the Attributes file
of an HFS+ volume (see Figure 5).

� Passcode activation does not limit access to any
types of files (except email messages) created by
native applications. These files are secured with
the non-protection class key, which wraps the per-
file keys.

� No additional encryption derived from passcode
protects either files generated by native
applications or their per-file keys.

� With the exception of Class D data protection
class key, protection class keys are then encrypted
with a passcode-derived algorithm and stored in
the keybag.

� Both the keybag key (BAG1) and the Class D key
are stored in the Effaceable Storage (an area of the
solid state NAND chip inside the device).

� UID (device’s unique ID) is AES 256-bit key
fused into the application processor during
manufacturing.

As per the technique outlined in Figure 1, we
inspected the iPhone and undertook the background
research to have an in-depth understanding of its
technical and complex encryption specifications. Based
on the outcomes of that phase we were able to develop
our own tools capable of running on a tether-jailbroken
iPhone (once rebooted, the device does not maintain its
jailbroken state and all applications no longer remain).
The preliminary research also allowed us to determine
what other necessary tools are to be included.

Adopting the method described by Zdziarski [9], a
custom RAM disk was built to provide access
functionalities, which combined with our iOS anti -
forensic toolkit can then be used to perform the
procedures described in this paper.

The device was then placed in DFU (Device
Firmware Upgrade) mode by holding the Home and
Power buttons. This was detected by redsn0w 0.9.9b52,
which uses the DFU mode to exploit Boot ROM
vulnerabilities, and injects its own code for kernel
patching to bypass the iPhone signature verification.
The patched kernel was not installed on the iPhone’s
flash memory and only operated in the device RAM,
where redsn0w also installed and booted the custom
RAM disk. This technique provides the capability to
physically (block by block) or logically (mounting the
device’s file system) access the iPhone data area via
the USB port and SSH (Secure Shell) connections.
Once the connections are established as ‘root’ user and
the custom RAM disk is booted, a command-line
interface on the MacBook Pro is utilised for execution
of programs on the iPhone.

2 The jailbreaking tool is available for download on
http://cydiahelp.com/redsn0w-0.9.9b5-download-available-
brings-custom-ipsw-option/ [last accessed on 21 Aug
2013].

4841

Step 1: Preparation (Background knowledge)
Conduct research on iOS, HFS+, and iPhone specifications.
Set connections between MacBook Pro and iPhone.
Set iPhone in DFU mode.
Install RAM disk on the iPhone.
Access the phone as 'root' user via SSH connection.

Step 3: Journal file copy
Analyse HFS+ volume header and journal_info_block to

identify journal file location and size.
Extract journal file.

Step 2: Disable file system journaling
Mount the volume with no journaling capabilities.

Step 4: Data manipulation
It might involve any (or more than one) of these procedures:

Concealment: Rendering file contents unreadable. (*)
Deletion: Rendering file contents unrecoverable. (*)
Insertion: Inserting file contents (false evidence).

(*) Calss D key acquisition is first required.

Step 5: Cleaning up
Remove traces that could potentially lead to undo the anti-iOS

device forensics operation or to reveal secured content.

Step 6: Journal file second copy
Extract a second copy of the journal file.
Verify that journal file remains intact.

Step 7: Results verification
Verify non-visualization of files rendered as unreadable or

unrecoverable.
Verify visualization of inserted file contents.

Figure 2. Our proposed iOS anti-forensic technique

2.2. Step 2: Disable file system journaling

Journaling for the HFS+ volume is turned on by
default in iOS devices, which logs all transactions (e.g.
changes to the HFS+ volume). This feature helps to
protect the file system against power outages or
hardware component failures. Previous research has
shown that transactions in the journal file could contain
important metadata [4]. In the case of an iOS file
system, metadata such as file encryption keys, and iOS
anti-forensic activities such as ours would be logged by
the journaling feature. Therefore, by disabling the
journal, we believe that it will significantly reduce the
chances of our technique being detected in a forensic

investigation. For example, in our case study we need
to mount the user data partition on the device’s flash
memory to logically access the extended attributes
where per-file keys are stored. Therefore, to minimise
leaving traces on the file system, we disable the file
system journaling using the mount_hfs command:

mount_hfs -j /dev/disk0s1s2 /mnt2

The execution of the mount_hfs command ensures
that none of our activities generates traceable
transactions in the journal file. The user partition is
represented by the parameter /dev/disk0s1s2, while
/mnt2 indicates the RAM disk directory where the
partition is mounted. Once the mount point provides
access to the volume, cprotect attributes for all files are
automatically decrypted by the OS if accessed – see
Figure 3.

struct cp_xattr_v4 {
u_int16_t xattr_major_version;
u_int16_t xattr_minor_version;
u_int32_t flags;
u_int32_t persistent_class;
u_int32_t key_size;
u_int32_t reserved1;
u_int32_t reserved2;
u_int32_t reserved3;
u_int32_t reserved4;
u_int32_t reserved5;
uint8_t persistent_key[40];

};

Figure 3. Cprotect extended attribute v4

When the volume is mounted, files in the camera
roll can be found in the
‘/mnt2/mobile/Media/DCIM/100APPLE/’ directory.

2.3. Step 3: Journal file copy

Although the acquisition of the two copies of the
journal file (before and after our activities) is not
necessary, this allows us to verify whether the file
system journaling had been disabled. For example,
comparing the two different copies (or their hash
values) allow us to determine whether any
modifications have occurred. As the journal file has no
entry in the file system (i.e. the journal file cannot be
located using a file name search), we need to locate the
file using the journal_info_block field of the volume
header. The latter contains the number of the allocation
block where the journal header is stored. Once the
journal file location and size are found from the journal
header, the volume has to be accessed physically and

4842

read block by block in order to copy the journal file
from the iOS device to the MacBook Pro. As a
consequence, Steps 2 and 3 of our proposed technique
could be swapped since the volume does not
necessarily have to be mounted in order to physically
access blocks.

To ensure that the journal file is truly disabled
while undertaking any iOS anti-forensic activities, we
compared the “before” and “later” states that were
copied using our dumpjournal application. The
application allows users to extract the journal file
directly from a volume (instead of extracting from a
physical copy of the partition) and a copy is saved on
the MacBook Pro.

2.4. Step 4: Data manipulation

The procedures presented in subsections 2.4.1 and
2.4.2 enhance the protection of sensitive data that is
currently not protected by the 4-digit passcode or
alphanumeric password in iOS devices, using our
setkey application (see Table 2). The latter internally
calculates the Dkey as described below. Subsection
2.4.3 describes our data insertion procedure.

� Class D key acquisition

The Dkey is stored in the Effaceable Storage but
prior to use, it has to be unwrapped with the Key0x835
(the device key derived from the UID at boot time) as
described in Figure 1. By communicating with the
kernel via specific connection methods provided with
the Apple’s IOKit (IOConnectCallMethod and
IOConnectCallStructMethod), setkey is capable of
reading the Effaceable Storage content (see Figure 4)
and the Key0x835.

6B 4C 34 00 31 47 41 42 31 47 41 42 DD 59 D9 B1
DB 82 04 D5 FA 13 3E 18 49 E2 E7 71 47 54 68 42
57 12 78 AC 28 CD CA DC DF D7 A9 ED 1E 04 E4 FA
5F 82 BD 95 79 D6 54 CA 2F 51 17 2E 6B 4C 50 00
4D 56 77 4C 22 C1 B3 4E 61 D7 C7 B4 09 43 1E FF
19 A2 80 90 74 79 08 14 2D FD DD 78 EF 6A AD 6B
47 5A 55 47 00 AD E5 51 76 C7 3D C0 1B 15 1D 62
3E 37 D5 1A 91 F6 07 C9 36 28 A5 D6 D9 F7 49 72
A8 C7 C3 93 CB 95 44 88 03 C3 E6 AB CF 1F 88 2E
75 B1 61 3E 6B 4C 28 00 79 65 6B C4 7A 79 B7 76
30 9D 41 A9 74 DB 78 8E 2D 3D EA 5B 61 36 13 7B
7E 1C 0E 21 E6 53 53 8B 0D D6 C2 6D D7 16 C4 93
9C B7 C6 CE 6B 4C 00 00 45 4E 4F 44 00 00 00 00

kL4.1GAB1GAB.Y..
......>.I..qGThB
W.x.(...........
_...y.T./Q..kLP.
MVwL"..Na....C..
....ty..-..x.j.k
GZUG...Qv.=....b
>7......6(....Ir
......D.........
u.a>kL(.yek.zy.v
0.A.t.x.-=.[a6.{
~..!.SS....m....
....kL..ENOD....

7A 79 B7 76
30 9D 41 A9 74 DB 78 8E 2D 3D EA 5B 61 36 13 7B
7E 1C 0E 21 E6 53 53 8B 0D D6 C2 6D D7 16 C4 93
9C B7 C6 CE

75 B1 61 3E 6B 4C 28 00 79 65 6B C4

6B 4C 00 00 45 4E 4F 44 00 00 00 00

79 65 6B yek28 00

Key tagKey length Wrapped Dkey

Figure 4. Wrapped Dkey in effaceable storage

Both Key0x835 and Class D key (DKey) are
calculated in accordance to the functions presented in
Table 3 and the AES key unwrapping specifications
(RFC 3394). However, the Key0x835 is computed and
returned by the kernel as the UID is a hardware key
embedded in the AES engine.

Table 3. Notations and functions

AES K(D) Encrypt D using the AES codebook
with key K

AES K
-1(W) Decrypt W using the AES codebook

with key K
K The encryption / decryption key

W Data to be unwrapped (a wrapped
key for this case study)

D Data to be wrapped (a per-file key
for this case study)

B1 B2 The bitwise exclusive or (XOR) of
B1 and B2

� Key0x835 = AES UID
(‘01010101010101010101010101010101’)

Key0x835 = [56 E5 D9 57 39 A1 5C 95 65 A7 9F 00 4B AC CF 6A]

� Dkey = AES Key0x835
-1 (Wrapped Dkey)

Dkey = [6B 17 C3 53 59 15 84 7E 6A 13 8D 6A 1C 9F 65 61
B4 DA 9D 35 EA 5A E1 4F E5 A7 35 55 14 F3 A2 EE]

The Class D key is then used to unwrap the per-file
key associated with the targeted file.

In our concealment and deletion procedures, we
will respectively modify the per-file key either using a
reversible algorithm or wiping with zeros prior to
wrapping the modified per-file key with the Class D
key. We will then store the wrapped modified per-file
key in the cprotect attribute, which will replace the
original wrapped per-file key – see subsections 2.4.1
and 2.4.2.

2.4.1. Concealment: Rendering file contents
unreadable. In this section, we demonstrate how we
can conceal the image file IMG_0001 using our setkey
application:

./setkey -h /mnt2/mobile/Media/DCIM/100APPLE/IMG_0001.JPG

This indicates that the per-file key stored in the
IMG_0001.JPG’s cprotect extended attribute will be
modified by applying a reversible mathematical
calculation as described in this subsection. This
procedure can be used, for example, to prevent non-
authorised access to a file or to circumvent digital
forensic investigations. The technique is carried out
through system calls that Apple provides in order to get
and set extended attribute values such as the cprotect
attribute. These system calls are getxattr and setxattr
(for more information, refer to [5] and [7]).

4843

When processing IMG_0001.JPG, setkey reads its
‘com.apple.system.cprotect’ attribute data into a buffer
containing the cprotect structure (see Figure 3)
described in section 2.2. For our case study, the values
obtained are outlined in Figure 5.

04 00 00 00 08 00 00 00 04 00 00 00 28 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 90 6B 77 EB 0B A4 D6 CC 63 2A 96 CB
92 76 39 53 55 17 7A 7B 0B AB 30 86 E0 CD 8E 86
A0 2A D9 AD 49 53 98 E6 BE 06 AE 73

00 00 00 00 90 6B 77 EB 0B A4 D6 CC 63 2A 96 CB
92 76 39 53 55 17 7A 7B 0B AB 30 86 E0 CD 8E 86
A0 2A D9 AD 49 53 98 E6 BE 06 AE 73

00 00 00 00

28 0004 00 00 00 04 00 00 00

 Class IDMajor version

 Wrapped per-file keyMinor version

 Key length

Figure 5. IMG_0001’s cprotect attribute data

To reduce the risk of the device going in recovery
mode, we do not directly modify the wrapped per-file
key. Instead, the wrapped per-file key that is contained
in the cprotect attribute (see Figure 5) is unwrapped,
and the resulting per-file key is then modified. As
IMG_0001.JPG belongs to Class ID #4 (non-protection
Class D), the per-file key is unwrapped with the Dkey,
as we have described in section 2.4, and we obtain the
per-file key, K1:

K1 = AES Dkey
-1 (Wrapped per-file key)

K
1
 = [53 42 C2 C9 5F 73 3A C5 58 B4 AC 21 B2 CE 81 A2
 53 A9 29 09 AC 2B 97 B2 48 B3 E2 55 6D 7B D7 86]

The modification of K1 will prevent
IMG_0001.JPG from being read. Since this operation
is intended to be reversible, the original key has to be
recoverable. Therefore we use bitwise exclusive OR
(XOR) with a 256-bit secret constant C3 to modify K1.

C = [89 F7 AB 7A BF 4B 77 DD 7B AB 7F CA C8 FD 57 E8
 8A 04 09 7B B8 F8 15 22 EA 6E B2 85 5C 1B 39 06]

The resulting per-file key is named K2.

K2 = K1 C

K
2
 = [DA B5 69 B3 E0 38 4D 18 23 1F D3 EB 7A 33 D6 4A

D9 AD 20 72 14 D3 82 90 A2 DD 50 D0 31 60 EE 80]

Since the constant C is only known to us (i.e. stored
in our tool on the RAM disk), reversing this

3 For simplicity, we use a secret constant, C, in our case
study. In real life deployment, this value should be a
random 256-bit string. For our “Concealment” procedure,
the random 256-bit string would need to be stored in some
databases to facilitate recovery at a later stage.

computation would not be possible by a third party
(e.g. forensic practitioners working on the case) unless
they are able to break the symmetric 256-bit key (e.g. a
brute force attack is currently computationally hard).

In order to adhere to Apple specifications, the
modified per-file key, K2, is wrapped with the Dkey
and the result (WK2) written in the IMG_0001.JPG’s
cprotect attribute (see Figure 6).

WK2 = AES Dkey (K2)

Once the phone is rebooted after this procedure, the
image file (IMG_0001.JPG) will no longer be
displayed. To recover IMG_0001.JPG, we would need
to run our setkey application that would restore the
original per-file key, and hence rendering the file
content readable again as the XOR operation is self-
inverse.

04 00 00 00 08 00 00 00 04 00 00 00 28 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 90 6B 77 EB 0B A4 D6 CC 63 2A 96 CB
92 76 39 53 55 17 7A 7B 0B AB 30 86 E0 CD 8E 86
A0 2A D9 AD 49 53 98 E6 BE 06 AE 73

00 00 00 00 3D 5E A3 27 18 BE A5 78 51 FB 9E 6B
C3 3B 4D 6F C1 12 B4 81 AA 68 EE 0A 2A 58 89 F1
37 20 A7 72 DA D7 57 E3 97 2A 49 91

00 00 00 00

28 0004 00 00 00 04 00 00 00

 Class IDMajor version

 Wrapped concealed-per-file key
 (WK2)

Minor version

 Key length

Figure 6. IMG_0001’s cprotect attribute data
containing WK2

2.4.2. Deletion: Rendering file contents
unrecoverable. Similar to the concealment procedure
in the preceding subsection, we use the setkey
application to delete per-file keys associated with the
selected file contents (instead of modifying the per-file
keys). The only difference is that IMG_0001.JPG’s
per-file key (K1) is being wiped with zeros rather than
being concealed with a constant C.

For key deletion, we input the ‘-d’ parameter in the
command line when running the setkey application:

./setkey -d /mnt2/mobile/Media/DCIM/100APPLE/IMG_0001.JPG

After reading IMG_0001.JPG’s cprotect attribute
data, the wrapped per-file key is replaced by WKz – the
result of wrapping a zeroed 256-bit key with the Dkey.

WKz = AES Dkey (Kz)

WKz = [2C 21 91 AB 63 85 F8 A1 2B 77 D0 48 0B 51 1F 98
 C1 75 D2 04 65 7A 69 BE F8 F7 76 8E BD 5D C3 4C

7F 1F 5A 41 70 8B 29 DE]

4844

The wrapped zeroed-per-file key (WKz) is then
copied to IMG_0001.JPG’s cprotect attribute to ensure
that the modification is irreversible (see Figure 7).
Even though the particular file still exists in the data
partition, it can no longer be decrypted as its original
per-file key was zeroed.

04 00 00 00 08 00 00 00 04 00 00 00 28 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 90 6B 77 EB 0B A4 D6 CC 63 2A 96 CB
92 76 39 53 55 17 7A 7B 0B AB 30 86 E0 CD 8E 86
A0 2A D9 AD 49 53 98 E6 BE 06 AE 73

00 00 00 00 2C 21 91 AB 63 85 F8 A1 2B 77 D0 48
0B 51 1F 98 C1 75 D2 04 65 7A 69 BE F8 F7 76 8E
BD 5D C3 4C 7F 1F 5A 41 70 8B 29 DE

00 00 00 00

28 0004 00 00 00 04 00 00 00

 Class IDMajor version

 Wrapped zeroed-per-file key (WKz)Minor version

 Key length

Figure 7. IMG_0001’s cprotect attribute data
containing WKz

This procedure will prevent forensic practitioners
from recovering the selected content or the relevant
per-file key.

2.4.3. Insertion: Inserting file contents (false
evidence). This procedure is independent from the
procedures described in subsections 2.4.1 and 2.4.2.
The aim is to insert false evidence that could
potentially mislead a forensic investigation.

Inserting file created with another iOS device into
the target iOS device without any tell-tale sign is a
delicate procedure. For example, to insert a photo in
the camera roll of our case study iPhone and to
minimise the risk of this procedure being detected
during forensic examination, we have to consider the
following:

� The file naming convention and location
where such files are saved;

� The file encoding;
� Modifying the file system metadata once the

photo is inserted into the HFS+ volume.

� File name and location
As explained in subsection 2.2, photos and videos

captured with the iPhone’s camera as well as
screenshots are saved in the
‘/mobile/Media/DCIM/100APPLE/’ directory where
filenames are in the ‘IMG_XXXX.EXT’ nomenclature.
‘XXXX’ is a sequential number and ‘EXT’ is the file
extension (JGP, MOV, or PNG). Understanding the
file naming convention is essential when inserting file
contents into the selected iOS device. For example,
inserting a file ‘0013.JPG’ (instead of IMG_0013.JPG)
would be a tell-tale sign that the device has been
tampered with. In our case study, we named the
inserted file IMG_0005.JPG and replaced the existing

file in order to show the importance of modifying dates
(see next subsection).

� Internal encoding of the inserted file
Metadata of a JPEG file includes information about

the camera model and brand, timestamp, Exif
(Exchangeable image file format) and software
version, Exif byte order, image and thumbnail size,
resolution, etc. Therefore, to insert a file into another
device requires an in-depth understanding of the file
type and its metadata, as modifying certain values
might result in the file not been able to be read by the
device. Therefore, to minimise the risks of the inserted
file being detected by a forensic practitioner, we
recommend that the file to be inserted is created using
hardware with a similar specification. In our case
study, we inserted a photo taken with another iPhone 4
with a similar specification.

� False evidence implantation
Using an SSH connection via the USB port, the

external IMG_0005.JPG was copied from the
MacBook Pro to the camera roll directory in the
mounted HFS+ volume of the iPhone’s user data
partition (/mnt2/mobile/Media/DCIM/100APPLE/).
Although doing so replaces the previous file, this
activity was picked up in the console terminal – see
Figure 8:

Permission Owner Mod. Date
-rw-r--r-- 1 mobile 501 1058500 Apr 1 17:45 IMG_0001.JPG
-rw-r--r-- 1 mobile 501 1128977 Apr 1 17:45 IMG_0002.JPG
-rw-r--r-- 1 mobile 501 1059246 Apr 1 17:45 IMG_0003.JPG
-rw-r--r-- 1 mobile 501 1028021 Apr 1 17:46 IMG_0004.JPG
-rwxr-xr-x 1 root 501 1045582 Apr 2 19:42 IMG_0005.JPG
-rw-r--r-- 1 mobile 501 6973292 Apr 1 17:47 IMG_0006.MOV
-rw-r--r-- 1 mobile 501 5318097 Apr 1 17:48 IMG_0007.MOV
-rw-r--r-- 1 mobile 501 4456170 Apr 1 17:48 IMG_0008.MOV
-rw-r--r-- 1 mobile 501 164873 Apr 1 17:50 IMG_0009.PNG
-rw-r--r-- 1 mobile 501 291029 Apr 1 17:50 IMG_0010.PNG
-rw-r--r-- 1 mobile 501 46584 Apr 1 17:50 IMG_0011.PNG
-rw-r--r-- 1 mobile 501 30595 Apr 1 17:50 IMG_0012.PNG

Figure 8. Detailed view of files in the camera roll

We would now need to modify IMG_0005.JPG’s
file system metadata – access permissions, owner
name, and creation, modification, and file access
dates/times.

Access permissions
File access permissions for the inserted

IMG_0005.JPG (-rwxr-xr-x) were changed to -rw-r--
r—(the same as they were set for other files) using the
Unix-like chmod command (on our RAM disk):

chmod 644 /mnt2/mobile/Media/DCIM/100APPLE/IMG_0005.JPG

4845

Owner name
Since the iPhone was booted as ‘root’ user, the

owner name for the inserted file needs to be modified
to ‘mobile’ (default name used by iPhone), which was
achieved by using the chown command:

chown mobile /mnt2/mobile/Media/DCIM/100APPLE/IMG_0005.JPG

File date/time
We used our setdate application (that executes

Apple’s system calls – getattrlist [6] and setattrlist [8])
to modify the creation, insertion and modification dates
and times of the inserted IMG_0005.JPG. The
timestamp of the inserted IMG_0005.JPG is now
consistent with the other image files on the iPhone:

-rw-r--r-- 1 mobile 501 1028021 Apr 1 17:46 IMG_0004.JPG
-rw-r--r-- 1 mobile 501 1045582 Apr 1 17:47 IMG_0005.JPG
-rw-r--r-- 1 mobile 501 6973292 Apr 1 17:47 IMG_0006.MOV

2.5. Step 5: Cleaning up

Once any of the procedures in subsections 2.4.1 to
2.4.3 have been completed, we would need to remove
any remnants that could reveal traces of our technique.

In our case study involving image files, it is
important to note that thumbnails (reduced-size
versions) of images are separately stored on the device.
Therefore modifying a per-file key would only render
the corresponding file content unreadable or
unrecoverable. Since the image file still exists in the
file system, the thumbnail will remain in the camera
roll (120x120 and 158x158 pixels for iPhone 4).

The thumbnail located in the ‘/mnt2/
/mobile/Media/PhotoData/Thumbnails/’ directory is
then deleted using the rm command.

rm /mnt2/mobile/Media/PhotoData/Thumbnails/*

2.6. Step 6: Journal file second copy

We now execute the dumpjournal application again
to obtain a second copy of the journal file. Both copies
of the journal file (or their hash values) obtained from
Step 3 and this step corroborate that all three of our
procedures were not captured by the journaling feature
(i.e. both journal files have the same hash values, as no
transactions were recorded since the journaling feature
was disabled in Step 2 – see Section 2.2).

2.7. Step 7: Results verification

In this step, we disconnect, turn off and reboot the
iPhone. The file system journaling will automatically
be enabled when the iPhone is rebooted.

3. Findings

As shown in Figure 9, after applying the
concealment or the deletion technique to all files in the
camera roll, the rebooted iPhone did not display the
images and video files whose per-file keys had been
modified. Only the default image indicating the file
type was displayed (and the thumbnails for the 12
images and video files were not available).

As shown in Figure 10, we have successfully
replaced the original IMG_0005.JPG with another
image using our file insertion procedure.

Figure 9. Camera roll before (left) and after (right)
the modification of per-file keys

Figure 10. Camera roll before (left) and after (right)
the file insertion procedure

4846

Our procedures were not captured in the journal file
and no information was recoverable from the iPhone
that could be used to recover the respective per-file
keys to reverse our procedures. This supports our
observation that disabling file system journaling plays
a vital role in reducing traceable trails.

4. Conclusions and future work

In this paper, we demonstrated that our
concealment technique can be used to prevent the
disclosure of contents currently not protected by iOS
passcode/password activation. In addition to non-
protected (Class D) data, our concealment and deletion
techniques4 can be used to secure data associated with
protection classes A, B, and C (including data on iOS
devices vulnerable to the lock screen bypass flaw [16]).
Our techniques can be used to complement Apple’s
existing data protection mechanisms to protect data
stored on iOS devices.

We also demonstrated that the insertion of an
external file in the file system structure is feasible, and
disabling file system journaling is important in anti-
forensic procedures. It is also important to note that
when inserting file contents in an iOS device, one
would have to pay attention to the file metadata and
make the necessary modifications to minimise the risks
of such activities being detected during forensic
examinations.

Future research includes improving the
“Concealment” and “Deletion” techniques to better
obfuscate activities such as per-file key modification
and deletion, and examining how we can manipulate
cp_xattr_v4 structure without setting the iOS device
into recovery mode.

5. References

[1] Azadegan, S., Yu, W., Liu, H., Sistani, M. & Acharya,
S. 2012. Novel anti-forensics approaches for smart phones.
In Proceedings of HICSS 2012, pp. 5424–5431.

[2] Apple. 2004. Hfs plus volume format. Technical Note
TN1150.
DOI=http://developer.apple.com/legacy/mac/library/#technot
es/tn/tn1150.html

[3] Apple.2012. iOS security (Oct. 2012).
DOI=http://images.apple.com/iphone/business/docs/iOS_Sec
urity_Oct12.pdf

4 Both procedures would only need to be slightly modified to
wrap a concealed (or wiped) per-file key with the
corresponding protection class key (instead of the Class D
key).

[4] Burghardt, A. & Feldman, A. 2008. Using the HFS+
journal for deleted file recovery. Digital Investigations, 5
(Supplement), pp. S76–S82.

[5] MAC Developer Library. getxattr(2) OS developer tools
manual page. DOI=
https://developer.apple.com/library/mac/#documentation/Dar
win/Reference/ManPages/man2/getxattr.2.html

[6] MAC Developer Library. getattrlist(2) OS developer
tools manual page. DOI=
https://developer.apple.com/library/mac/#documentation/Dar
win/Reference/ManPages/man2/getattrlist.2.html

[7] MAC Developer Library. setxattr(2) OS developer tools
manual page. DOI=
https://developer.apple.com/library/mac/#documentation/Dar
win/Reference/ManPages/man2/setxattr.2.html

[8] MAC Developer Library. setattrlist(2) OS developer
tools manual page. DOI=
https://developer.apple.com/library/mac/#documentation/Dar
win/Reference/ManPages/man2/setattrlist.2.html

[9] Zdziarski, J. 2012. Hacking and securing iOS
applications. Sebastopol: O'Reilly Media, Inc.

[10] Distefano, A., Mea, G. & Pace, F. 2010. Android anti-
forensics through a local paradigm. Digital Investigation,
7(Supplement), pp. S83–S94.

[11] Hilley, S. 2007. Anti-forensics with a small army of
exploits. Digital Investigation, 4(1), pp. 13–15.

[12] Kianas, A., Restivo, K., & Shirer, M. 2012. Android
and iOS surge to new smartphone OS record in second
quarter, according to IDC. Press release 8 August.
http://www.idc.com/getdoc.jsp?containerId=prUS23638712

[13] Quick, D. & Choo, KKR. 2013a. Dropbox analysis:
Data remnants on user machines. Digital Investigation, 10(1),
pp. 3–18.

[14] Quick, D. & Choo, KKR. 2013b. Digital droplets:
Microsoft SkyDrive forensic data remnants. Future
Generation Computer Systems, 29(6), pp. 1378–1394.

[15] Schaad, J. & Housley, R. 2002. RFC 3394: Advanced
encryption standard (AES) key wrap algorithm, September.
http://www.ietf.org/rfc/rfc3394.txt

[16] Whittaker, Z. 2013. Apple iOS 6.1.3 fix contains
another lock screen bypass flaw. ZDNet, 20 March.
http://www.zdnet.com/apple-ios-6-1-3-fix-contains-another-
lock-screen-bypass-flaw-7000012912/

[17] Tassone, C., Martini, B., Choo, KKR., Slay, J. 2013.
Mobile device forensics: A snapshot. Trends & Issues in
Crime and Criminal Justice, 460, pp. 1–7.

4847

