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ABSTRACT Recent advances in Internet-of-Things technology have opened the doors to new scenarios for biosensor 

applications. Flexibility, portability, and remote control and access are of utmost importance to move these devices to people's 

homes or in a Point-of-Care context and rapidly share the results with users and their physicians. In this paper, an innovative 

portable device for both quantitative and semi-quantitative electrochemical analysis is presented. This device can operate 

autonomously without the need of relying on other devices (e.g., PC, tablets, or smartphones) thanks to built-in Wi-Fi 

connectivity. The developed hardware is integrated into a cloud-based platform, exploiting the cloud computational power to 

perform innovative algorithms for calibration (e.g., Machine Learning tools). Results and configurations can be accessed 

through a web page without the installation of dedicated APPs or software. The electrical input/output characteristic was 

measured with a dummy cell as a load, achieving excellent linearity. Furthermore, the device response to five different 

concentrations of potassium ferri/ferrocyanide redox probe was compared with a bench-top laboratory instrument. No 

difference in analytical sensitivity was found.  Also, some examples of application-specific tests were set up to demonstrate 

the use in real-case scenarios. In addition, Support Vector Machine algorithm was applied to semi-quantitative analyses to 

classify the input samples into four classes, achieving an average accuracy of 98.23%. Finally, COVID-19 related tests are 

presented and discussed. 

INDEX TERMS Amperometric Sensors, Biosensors, Current Measurement, Remote Monitoring, Health 

Monitoring, Cloud Services, IoT Sensors, Machine Learning Application.

I. INTRODUCTION 

The recent development of Information and 

Communications Technologies (ICT), designed for the 

Internet of Things (IoT) framework, has led to an increased 

interest in the study of new smart, portable, and interconnected 

devices in different application fields [1], [2]. Electrochemical 

analyses and, in particular, biosensing applications are not an 

exception [3]–[5]. Traditionally, the identification of clinically 

relevant biomarkers for disease diagnosis and follow-up is 

carried out with bench-top instrumentation (i.e., potentiostats) 

in a dedicated laboratory [6], [7]. With the advent of IoT 

technologies, it is possible to design new portable potentiostats 

that open the doors to innovative features. The possibility of 

moving these devices to different locations will bring the 

laboratory closer to people's homes, according to a Point-of-

Care (PoC) context, allowing periodic analyses more easily 

(e.g. follow-up of a particular pathology) or the immediate 

sharing of the results with the physicians [8].  

For example, in the recent COVID-19 pandemic scenario, 

the implementation of rapid and delocalized serological or 

salivary/swab tests for the quantification of specific antibodies 

(i.e anti-nucleocapsid and/or anti-spike related to SARS-CoV-

2) or viral antigen (spike protein) would certainly have 

improved and aided the contact tracing management. 

The developed hardware should be adequate for both 

quantitative and semi-quantitative measurements making the 
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device suitable for general purposes. Moreover, regardless of 

the particular kind of analysis, device calibration is often 

necessary: for semi-quantitative tests, a threshold should be set 

to discriminate different classes of samples (e.g., positives or 

negatives) [9]; conversely, for quantitative analyses, a 

calibration function should be assessed to measure the 

concentration of the analyte in the sample under test [10]. In 

this regard, a solution could be the development of edge 

solutions. Research toward IoT edge devices is moving fast 

[11]. However, the possibility of remotely reconfiguring the 

device in a simple and intuitive way, is mandatory in some 

application domains. For example, the calibration process 

could be carried out once in a laboratory environment with the 

resulting parameters stored in a repository located in a cloud 

service. The portable device can be properly configured before 

a testing campaign by downloading the suitable parameters, 

according to a given PoC analysis. It is worth to be noted that 

if different analyses have to be performed with the same 

hardware device, the smart potentiostat can easily reconfigure 

itself by downloading a different set of calibration parameters 

from the cloud. To implement these features, the device must 

be connected to the Internet without relying on other devices 

such as a smartphone.  

Another important aspect is the possibility to perform 

analyses also in locations not covered by an Internet 

connection. Then, the device should have a suitable data 

processing capability to elaborate the acquired data on-board 

and send the results to the cloud when the link is restored. 

Signal elaboration at the edge limits the amount of data 

transferred and the activation the power-hungry radio 

interface, leading to lower energy consumption in some 

applications.  

This paper presents a smart, portable, and cloud-based 

reconfigurable potentiostat for both semi-quantitative and 

quantitative analyses. The idea is to design a device for 

different types of analyses with an easy-to-use web-based 

interface to simplify the configuration process, easily 

accessible from any PCs, tablets, or smartphones, without the 

need for a custom, application-specific software. This feature 

allows either PoC or home use, even by people with no or poor 

technical skills. The calibration process exploits an analytics 

platform based on a cloud service used to store the evaluated 

parameters for subsequent download. Moreover, the 

computing capacity of the cloud service enables the use of 

advanced techniques such as Machine Learning (ML) to 

improve the classification accuracy of the test results. The 

MATLAB Thingspeak platform for IoT [13] was used in the 

proposed implementation since it enables cloud-based data 

processing with MATLAB routines. Therefore, built-in 

Machine Learning MATLAB functions are exploited to 

demonstrate the advantage of combining cloud-based services 

with smart portable potentiostats. 

 To build a historical record of the analysis results for each 

person and help to share data with physicians (e.g. in the case 

of multiple patients using the same device), an automatic 

association procedure between the user and his/her 

measurements was added.  

The proposed hardware was designed to achieve 

comparable performance to bench-top instruments for 

quantitative and semi-quantitative analyses. In addition, since 

the device is conceived to work also without any network link, 

the on-board data acquisitions processing was considered of 

primary importance.  

The paper is organized as follows: in section II, related 

works are discussed; in section III, the system architecture is 

depicted and both hardware and web components are detailed; 

in section IV, tests are described and the experimental results 

are presented and discussed. Finally, in section V, conclusions 

are drawn. 

 
II. RELATED WORKS 

In general, three main sections can be highlighted in all the 

portable potentiostats already developed and described in the 

literature: hardware, firmware, and connectivity units. A 

schematic example is shown in Fig. 1. The proposed 

approaches differ from each other according to the solutions 

adopted for each unit. 

The hardware section of the potentiostat is interfaced with 

the amperometric sensor based on a three-electrode 

electrochemical cell consisting of a working electrode (WE), 

a counter electrode (CE), and a reference electrode (RE). The 

simplified electrical model is shown in Fig. 2, where RS is the 

solution resistance between CE and RE pins, RCH  and CCH  

represent the faradaic resistance and the double-layer 

capacitance at the WE pin, and IC models the charge generated 

by the electron transfer associated to the faradic reaction 

occurring in the sensor cell [12]. The faradaic resistance and 

the capacitance at the CE pin are not included in the model 

 

 

FIGURE 2.  Simplified equivalent circuit of an electrochemical cell. 
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FIGURE 1.  Typical architecture of a portable potentiostat. 
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since they are usually negligible. The hardware unit sets the 

bias voltage of the cell and senses the current flowing from the 

WE pin. The bias voltage Vbias, corresponding to the voltage 

difference between the WE and the RE terminals, is controlled 

with a feedback circuit driving the CE pin. When a suitable 

Vbias input is applied to the cell, a chemical reaction is induced. 

The output current (flowing from/into the WE pin) is related 

to the concentration of the target analyte and cell bias voltage.  

Focusing on Components-Off-The-Shelf (COTS) 

implementations, some hardware architectures are proposed in 

the literature (Fig. 2). The circuit in Fig. 2(a) is a Single-Ended 

Potentiostat (SEP) with two opamps (SEP-2) [13]–[15]. This 

implementation exhibits the minimum component count and 

power consumption. Therefore, it is the best candidate for 

portable devices. A critical device is the control opamp A1 that 

must exhibit a very low input current to not perturb the voltage 

at the RE pin and a low output resistance to drive the 

equivalent capacitance CCH, which can be in the microfarad 

range in the sensor model in Fig. 2. A further relevant 

specification of this opamp is the maximum output current, 

setting the time required for the initial conditioning of the cell 

[16]. In the triple-opamp configuration (SEP-3) in Fig. 2(b), 

the voltage at the CE pin is controlled with a circuit involving 

two opamps in the loop (i.e. A1 and A3) [12], [17], [18]. This 

solution allows the requirements on amplifier A1 in the SEP-

2 implementation to be split over two different opamps. 

Indeed, only the amplifier connected to the RE pin (i.e. A3) 

must exhibit a low input current, whereas a suitable driving 

capability is required to A1. The drawback is the larger 

component count and power consumption.  

In SEP-2 and SEP-3 circuits, a TransImpedance Amplifier 

(TIA) is required to sense the cell current and set the WE 

voltage. The input impedance ZIN-TIA of this amplifier is a 

critical aspect of those architectures since it affects the stability 

margins of the control amplifier A1. Indeed, ZIN-TIA is a part of 

the feedback network of A1 with the equivalent impedance 

network in the electrical model of the amperometric cell, Fig. 

2. Even though this issue is relevant and may lead to instability 

[19], it is often overlooked in COTS-based potentiostat 

implementation. 

Another issue of these circuits is the sensitivity to the 

crosstalk noise due to electrical coupling to the WE pin. 

Indeed, the TIA input impedance exhibits relevant positive 

reactance (i.e., inductive behavior) from a frequency value 

depending on the unity-gain frequency (GBW) of A2 and the 

feedback resistor RT. Thus, the potentiostat is expected to have 

a significant sensitivity to any electrical signal coupled to WE 

in this frequency band and, for this reason, the shielding of the 

wire and Printed Circuit Board (PCB) trace connecting WE to 

the TIA input should be carefully considered [20]. 

The circuit in Fig. 2(c) is a Differential Architecture (DA) 

for COTS implementation [21]. The bias voltage of the cell is 

directly controlled through a feedback loop involving two 

differential amplifiers (based on opamps A4 and A5) and a 

Proportional-Integral (PI) controller. The latter block is 

implemented with an active low-pass filter based on opamp 

A1 with the feedback network including RA, RB, and CB. 

It is worth noting that in the solution of Fig. 2(c) the voltage 

at the WE pin cannot be independently set by a TIA. 

Therefore, a low-value shunt resistance (RSH) is introduced to 

sense the cell current. Thus, this configuration provides a low 

broadband impedance at the WE pin with benefits in terms of 

sensitivity to coupled noise and disturbance. Furthermore, a PI 

controller in the loop ensures a suitable stability margin over 

a large concentration range with different chemical species 

and substrate materials. However, the main disadvantage of 

this implementation is the large component count and, 

consequently, the largest power consumption.  

In all the solutions presented in Fig. 2, the interface between 

the hardware and the firmware section is represented by the 

Analog-to-Digital-Converter (ADC). If the three circuits are 

compared in terms of Root Mean Square (RMS) noise voltage 

at the ADC input, the worst performance is achieved by the 

DA implementation due to the largest number of opamps in 

the controlling loop, each contributing with its own 

input-referred noise voltage. Furthermore, the SEP-3 is 

expected to exhibit a larger noise voltage than the SEP-2, since 

two opamps are in the CE control loop instead of one. 

The choice of the ADC used, together with that of the DAC 

exploited to generate the cell conditioning signals (i.e., Vsig 

and Vref), has a considerable impact on the measurement 

 

 

FIGURE 3.  Potentiostats COTS hardware architectures. 
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accuracy. Exploiting the ADC and DAC, embedded in the 

MicroController Unit (MCU), usually results in a lower 

resolution (e.g. 12 bits ADC/DAC [18], [22]) in respect to 

using a dedicated component (e.g. 20bits [23]). However, this 

solution is usually preferred in portable devices since it 

reduces costs and the number of the involved components. 

Other important aspects of a portable potentiostat are the 

communication protocol to maximize portability, the control 

interface, and the reliance on different devices for the 

operations. All these choices imply the proper design of the 

microcontroller processing and connectivity sections of Fig. 1. 

Some solutions recently proposed by Adams et al. [18], [24], 

even if very compact and embedding promising hardware, 

require a USB connection to transfer data and a PC to control 

the instrument, thus limiting the device portability. Bluetooth 

technology is a solution shared among different devices 

proposed in the literature [22], [25], [26] to enhance 

portability. Due to the low transmission range of the Bluetooth 

technology, these solutions rely on a smartphone for control 

and data recording. Different control APPs were developed 

based on different operating system (OS) versions.  Wi-Fi 

connectivity is exploited in [27]. This solution allows sharing 

data without the need for an external device. However, a 

desktop power supply is adopted, thus effectively preventing 

the device portability. In [28], a  Wi-Fi potentiostat based on 

LMP91000 hardware, which allows only semi-quantitative 

analyses, is presented. In [15], [29], a Wi-Fi solution used to 

transfer analyses results to the cloud is proposed. In this case, 

the developed hardware exhibits a limited versatility since the 

reading range is fixed, i.e. from -210µA to 70µA, even if it is 

capable of quantitative analyses with high accuracy. Device 

configuration is embedded into the device firmware, and the 

cloud service is exploited only for data visualization and 

sharing. A first and very preliminary improvement with a 

programmable reading range is presented in [30]. 

  
III. MATERIALS AND METHODS 

 

The proposed potentiostat is shown in Fig. 4. Differently 

from the implementations reported in the literature, the device 

architecture also includes cloud services (i.e. analytics and 

database), with a web service acting as the interface between 

the cloud and the user devices (e.g. PC, tablet, smartphone). In 

particular, cloud analytics is in charge of evaluating the 

parameters of the calibration function, which are stored in the 

cloud database together with the user ID and the 

corresponding analysis results. 

The calibration function relies on a prediction model to 

assess the unknown concentrations of analytes of interest from 

the device output. Such a model is obtained from a preliminary 

calibration of the device with reference standards at known 

concentrations. Different calibration functions can be used 

depending on the analysis to be performed. The transfer of the 

parameter calculations on an analytic platform allows 

calibration to be performed once, thus enabling easy 

reconfiguration of the device based on the target analysis and, 

consequently, on the parameters of the selected calibration 

function. As a result, the required configuration can be chosen 

among those available online, allowing the device to perform 

different tests without the need for recalibration at each 

configuration change.  

The analyte concentration measurements are performed 

locally on-board (hardware section in Fig. 4). During this 

process, the device first downloads the parameters from the 

Internet through the Wi-Fi connection and then, after data 

processing, uploads the result to the cloud for storage and 

remote retrieval. The parameters download phase is required 

only once at the beginning of the measurement and the Wi-Fi 

connection is no longer required until a result is uploaded. 

However, if the connectivity is lost during the upload, the 

device can store the results in the internal memory and send 

them to the cloud later. This feature increases the device's 

versatility, which retains its full functionalities even in the 

absence of any Wi-Fi networks. 

Moreover, exploiting the computing capability of a cloud 

service for calibration allows the implementation of complex 

functions and improves the whole system features. For 

example, Machine Learning Classification Algorithms can be 

implemented to train the system to discriminate the samples 

among different classes (e.g. positives or negatives). 

The system core is an MCU based on ARM Cortex-M4 with 

built-in support for Wi-Fi protocol (CC3200 [31]). Dedicated 

hardware was designed to allow both semi-quantitative and 

quantitative analyses with good accuracy over a wide range of 

cell currents. In addition, the 12-bit ADC embedded into the 

 
 

FIGURE 4.  Proposed system architecture. 

 
 

FIGURE 5.  TIA with programmable gain. 
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MCU is used for measurement acquisitions, minimizing the 

component count and simplifying the system design.  

A web application with data visualization capability was 

developed for data visualization and to control the system 

calibration and configuration. This application was integrated 

with a cloud service (i.e., MATLAB ThingSpeak [32]) to 

provide an advanced interface to configure the hardware 

device and refer to the measurement data. This results in an 

integrated and flexible platform where different analyses can 

be defined by setting the parameters of the hardware device. 

Results can be presented via the web application to the user or 

to a healthcare professional, who can also access the data 

history of different users and different analyses, obtaining a 

complete overview of the users' status.  The developed 

platform does not require the installation of any specific 

software or app.  

In the following sections, the hardware, web application, 

and cloud services are described in detail. 

A. HARDWARE  

The potentiostat circuit implemented in the proposed portable 

device is based on the SEP-2 architecture in Fig. 3(a) [15]. 

Gain programmability is introduced in the TIA to enable a 

large reading range of the output current. This aspect is 

fundamental to ensure a wide measurement range, particularly 

when the concentration of the biomarker under study ranges 

over different orders of magnitude.  As shown in Fig. 5, the 

TIA is interfaced to the ADC with a resistive attenuator (6-dB 

gain-loss) and a buffer. The capacitor CF is added to limit the 

bandwidth on the circuit and, thus, the integrated noise. The 

attenuator limits the maximum ADC input voltage below the 

absolute maximum rating of 1.8 V [31]. 

Eight gain levels are obtained by combining a pair of solid-

state multiplexers (MUX) with four channels [33]. The enable 

pin of each MUX allows selecting a set of four resistors (i.e. 

either R1L-R4L or R1H-R4H), thus obtaining a programmable 

gain from 10 mV/A to 1.04 V/A. 

The gain range is selected at the beginning of the 

measurement procedure. Then, the MCU sets the highest 

available resistor, i.e. the highest gain, and starts the analysis. 

Next, the MCU monitors the ADC output during the input 

signal VSig sweep. As soon as the converter approaches the 

output saturation condition, the MCU lowers the TIA gain by 

changing the SEL<1:2> bus data. Therefore, the potentiostat 

always works with the maximum possible TIA gain, thus 

maximizing the Signal-to-Quantization Noise ratio (SQNR) at 

the ADC input. 

However, the variation of the feedback resistance in the TIA 

is expected to affect the input impedance that, as discussed in 

the previous section, is a part of the feedback network of the 

control amplifier, as shown in the circuit schematic of Fig. 6. 

In the figure, the TIA was replaced with its equivalent input 

impedance, i.e. ZIN-TIA = RIN-TIA + jXIN-TIA. Thus, the stability 

margin must be evaluated over the range of the TIA gain and 

the expected range of the faradaic resistance RCH and the 

equivalent capacitance CCH. In the proposed implementation, 

the AD8608 [34] is used as the control opamp (A1) and the 

OPA170 [35] as the TIA opamp.  

Finally, an optical barcode scanner (Newland EM3080-W 

[36]) was introduced and interfaced with the MCU through its 

UART port. This feature allows the biosensor output to be 

associated with a particular user through his/her ID card, thus 

discriminating different tests for different users and building a 

historical record for each person. 

B. CLOUD ANALYTICS AND WEB APPLICATION  

Remote configuration and user interaction rely on an 

integrated web application and MATLAB ThingSpeak cloud 

service.  

The ThingSpeak platform is used as a database for data 

storage and processing. The storage is achieved by using 

ThingSpeak Channels and Channel Fields as the equivalent of 

database tables and tables columns, respectively. For data 

processing, the MATLAB Analysis and React functionalities 

of ThingSpeak were exploited. The first one allows  

MATLAB code to be executed on the cloud to perform 

analyses on data stored inside Channels, while the latter can 

be used as a trigger to start the desired MATLAB Analysis 

script when a condition is met inside a Channel (e.g., a Field 

is equal to a given value). 

The web interface relies on static web pages hosted on a 

remote server for the frontend and user interaction. The 

technology used exploits HTML and CSS for the graphical 

architecture and styling, and JavaScript (along with the jQuery 

framework) for the functionalities. Moreover, the interface is 

built on top of the Bootstrap framework, which combines the 

basic HTML, CSS, and JavaScript elements to provide 

flexibility to the final application. The application 

communicates with the cloud platform through the HTTP 

 
 

FIGURE 6.  CE control amplifier with equivalent load. 

A1

VSig

IW

VRE

VCE

RS

RCHCCH

RIN-TIA

XIN-TIA
VWE

PS

TR TP

PA



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3120022, IEEE Access

 

6 
VOLUME XX, 2017 

REST APIs provided by ThingSpeak, enabling uploading and 

downloading data from the Channels. 

On the first page, the user is asked to select a login mode. 

As shown in Fig. 7, depending on the operation to perform on 

the system, one out of two types of profiles can be selected: 

Administrator or User. These profiles are detailed in the 

following paragraphs. 

1) ADMINISTRATOR PROFILE 

The Administrator profile is conceived for the device 

configuration. New types of analysis can be defined, varying 

the electrical parameters (i.e. the VWE and VRE voltages 

applied to the cell), and the associated calibration process as 

shown in Fig. 8. Once defined, the analysis parameters are sent 

and stored in the cloud service. In the next operations, they can 

be reviewed and selected (Fig. 9). 

Each set of analyses must be preceded by a calibration 

process by which a set of parameters characterizing the chosen 

analytical method, i.e. semi-quantitative or quantitative, are 

specified (Fig. 10). Generally speaking, if a quantitative 

analysis is selected, a four parameters logistic regression is 

required to measure the analyte concentration associated with 

the analysis. The calibration process can be either manual or 

automatic. In the first case, a text box allows for manually 

typing the parameter values. Instead, the automatic calibration 

is carried out starting from some measurement data 

corresponding to known concentration values. Once all the 

necessary measurements have been acquired from the 

hardware device and uploaded to the cloud service, the 

selected calibration algorithm can be triggered on the cloud.  

Different calibration algorithms can be implemented on the 

cloud service. Since it is possible to exploit an higher 

computational power than that of a MCU, even complex 

algorithms such as those of ML can be performed, obtaining a 

more powerful and innovative platform.  Once the calibration 

parameters have been computed, they are stored in the 

database and visualized both in the Parameters field of the 

calibration page and in the table of the overview page (Fig. 9). 

2) USER PROFILE 

In the user profile section, the results of the analyses can be 

reviewed and evaluated. Each time a new test is performed, 

the hardware device downloads from the cloud the parameters 

previously computed during the calibration procedure. The 

user has to insert the screen-printed electrode before starting 

the acquisition. Moreover, to associate the data with the user, 

he/she has to scan his/her personal ID number using the 

 

FIGURE 7.  Web application login page. 

 

FIGURE 8.  Definition of a new analysis. 

 

 

FIGURE 10.  Calibration page. 

 

FIGURE 9.  Overview of stored analyses. 
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barcode scanner. Data processing is carried out on-board 

thanks to the core section, and results are sent to the cloud for 

storage and visualization. If a known Wi-Fi connection is not 

available, the device will store the data into its internal 

memory: when the connection is restored, the data are 

uploaded. This choice improves the device power 

consumption and battery management.  

Results can be reviewed by the user on the web page (Fig. 

11). Furthermore, thanks to the possibility of pairing each user 

with his/her tests, a Historical Record can be built (Fig. 12). 

Here, all the results of a single person can be shown for the 

user's personal information.  In the case of a healthcare 

professional, the results of different people can be aggregated 

to give an overview of all the situations of each patient.  

III. RESULTS AND DISCUSSION 

A. ELECTRICAL CHARACTERIZATION  

The electrical Input/Output (I/O) characteristic of the 

potentiostat in the proposed system was measured using a 

dummy cell as load [18], [22]. The circuit of this cell 

corresponds to the electrical model in Fig. 2, without the 

internal current generator and with RS=100  and CCH=1F. 

Three values of faradaic-equivalent resistance RCH were 

considered (i.e. 10 k, 100 k, and 1 M),corresponding to 

the case of a high, intermediate and low output current. All the 

tests were carried out with VRef set to 1.2 V and a VSig span 

from -0.6 to 0.6 V. In each measurement, the TIA gain was set 

to the maximum value available in the system but still 

compatible with the out-of-saturation operation of the ADC in 

Fig. 5.  

Thus, with the lowest, intermediate, and highest value of 

RCH, the selected TIA feedback resistance is, respectively, 

10 k, 102 k, and 1.04 M  
The DC VSig voltage was externally generated by an 

accurate Source and Measurement Unit (SMU), whereas the 

dedicated DAC provided the VRef reference voltage. The 

output voltage VOUTF in Fig. 5 was measured with a 6.5 digits 

voltmeter. The results in Fig. 13 show excellent linearity and 

R2 values for the linear fitting that are always close to one over 

the whole range of faradaic resistance and TIA gain. 

The system was also tested with five different 

concentrations of potassium ferri/ferrocyanide redox probe in 

aqueous 100 mM KCl as the supporting electrolyte (0.05mM, 

0.2mM, 1mM, 2mM, 3mM) to compare the device output with 

 
 

FIGURE 11. User Interface. 

 

 
 

FIGURE 12. Historical records. 

FIGURE 13. Blue circles: Measured potentiostat I/O characteristics with 

analog input voltage  and 10 mV/A (a), 102 mV/A (b), and 1.04 V/A (c) 

TIA gain. Solid red lines: best-fitting lines. 
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that obtained with a commercial bench-top instrument 

(Autolab PGSTAT 204). Three replicated acquisitions were 

carried out for each concentration level with both the bench-

top instrument and our smart potentiostat (Fig. 14). The 

regression functions calculated with the proposed device and 

the Autolab do not show significantly different slope values 

(p>0.05), thus highlighting no differences in analytical 

sensitivity. As for goodness of fit, the same value of R2 was 

obtained in both cases.  

B. APPLICATION-SPECIFIC TESTS: MACHINE 

LEARNING APPLIED TO SEMI-QUANTITATIVE 

ANALYSES  

Thanks to the features enabled by the cloud service, 

advanced algorithms can be applied to the calibration of the 

device. In the case of semi-quantitative analysis, ML 

approaches can be exploited to train the system and classify 

the samples according to a predefined rule (e.g. positives, 

negatives, weak positives, etc.). Different algorithms can be 

applied to this task and they can be classified according to 

whether they need labeled input data for training (supervised 

learning algorithms) or not (unsupervised learning 

algorithms). Support Vector Machines (SVM) are a class of 

supervised algorithms that return an optimal decision 

boundary (i.e., separating hyperplane) dividing input train 

samples. The data points closest to the hyperplane are known 

as Support Vectors and are exploited to characterize new input 

samples in the test phase.  The SVM model was proposed in 

[37], [38]. In the original conceptualization, the SVM 

algorithm constructs a linear decision boundary that 

maximizes the separation in two classes of a dataset in the 2-

dimensional space. In its generalization [39], the SVM finds a 

hyperplane that maximizes the separation of the data points 

into their potential k-classes in an n-dimensional space. Since 

the data are usually non-linearly distributed, complex data 

transformations must be performed using appropriate Kernel 

Functions operating on the training data to transform a non-

linear decision surface into a linear equation in a higher 

number of dimensions space. 

In this work, an SVM algorithm has been applied to a semi-

quantitative analysis to classify the input samples into four 

different classes. Usually, in the semi-quantitative analysis, 

the goal is to discriminate between samples above or below a 

reference value, i.e., a threshold. The threshold identification 

is not an easy task, and the SVM can be adopted to classify the 

acquired data properly.  

Four different concentrations (i.e., 0.05, 0.2, 1, and 5mM) 

levels of potassium ferri/ferrocyanide redox probe in aqueous 

100 mM KCl as the supporting electrolyte have been analyzed.  

Fifty acquisitions have been carried out for each concentration 

for a total of 200 values acquired. Twenty of them have been 

selected for the training set, leaving the remaining for the test 

set. The splitting data process has been repeated 100 times, and 

for each resulting training set, a linear SVM model was 

trained. A linear kernel was used since it is the least 

demanding from a computational power point of view. Since 

the cloud platform chosen is MATLAB ThingSpeak, 

MATLAB SVM functions were exploited for this purpose.  In 

particular, the fitcecoc function was selected to build the 

multiclass model. Since this test aims to demonstrate the 

feasibility of the approach made available by the new smart 

potentiostat architecture, no hyperparameters optimization 

was set up at this stage and the default one-versus-one coding 

design was used.  The model was validated with 10-fold cross-

validation against the training set. The accuracy was estimated 

starting from the kfoldLoss MATLAB function, returning the 

loss obtained from the cross-validated classification model.  

‘ClassifError’ option was selected for the loss function. Then 

the accuracy of the training set TrainAcc was evaluated as: 

 𝑇𝑟𝑎𝑖𝑛𝐴𝑐𝑐 = (1 −   𝑘𝑓𝑜𝑙𝑑𝐿𝑜𝑠𝑠) ∗ 100          (1) 

 

An average accuracy of 98.5% was obtained over the 100 

train sets generated. 

The test set was used to check whether the model correctly 

classifies even unseen data. The model capability to correctly 

classify new samples was evaluated with the following 

accuracy function: 

 𝑇𝑒𝑠𝑡𝐴𝑐𝑐 = 100 −  (𝑡𝑜𝑡𝑎𝑙 𝑒𝑟𝑟𝑜𝑟𝑠)/(𝑡𝑜𝑡𝑎𝑙 𝑜𝑓 𝑑𝑎𝑡𝑎) ∗ 100          (2) 

 

  Average classification accuracy of 98.23% was  obtained 

over the 100 considered test sets. 

In Fig. 15, the worst-case confusion matrix is shown. Each 

row of the matrix represents the instances in the true class, 

while each column represents the instances in the predicted 

class. The green squares represent the number of the instances 

correctly classified. The most misclassified classes are those 

related to 0.05mM and 0.2mM concentration, which exhibit 

similar current responses. As shown, the results fully confirm 

the good capability to discriminate each class even in the 

worst-case scenario. Moreover, this test demonstrates the 

 
 

FIGURE 14. Linear regression models for calibration of potassium 

ferri/ferrocyanide redox probe determined by the portable IoT-based and 
commercial Autolab potentiostat. Mean values and standard deviation 

(error bars) are reported in parentheses (n=3) 
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feasibility of this approach and the advantages that smart 

potentiostats can achieve with the proposed architecture. 

 

C. APPLICATION-SPECIFIC TESTS: HYDROQUINONE 

PROBE APPLIED TO PoC BIOSENSORS FOR COVID-19 

 

Finally, to prove that the device is fully configurable for a 

different application, an acquisition with hydroquinone (HQ) 

was carried out. In fact, HQ is the enzyme reaction product of 

hydroquinone diphosphate (HQDP), i.e, the typical enzyme 

substrate used for the readout of signals generated by 

biosensors intended for PoC applications, exploiting alkaline 

phosphatase (ALP) as enzyme label [19], [20]. For example, 

specific human antibodies directed against SARS-CoV-2 viral 

proteins are usually discriminated in terms of IgG or IgM 

isotypes and detected/quantified in the context of serological 

tests by means of ALP-labelled anti-human secondary 

antibodies. The result shown in Fig. 16 proves that the 

developed portable potentiostat could provide fast data 

acquisition, exhibiting the potential as a smart PoCT device to 

reduce the dependence on bulky instrumentation for 

diagnostic purposes. Efforts are being made to integrate the 

portable IoT-based device with sensing platforms to allow 

easy operation and data management for COVID-19 

diagnosis. 

IV. CONCLUSION 

In this paper, an innovative platform for electrochemical 

analyses in biosensor applications is presented. The proposed 

approach relies on a custom hardware designed to be 

competitive with commercial bench-top instruments, the 

ThingSpeak cloud service for data storage and analytics, and 

a custom web application for remote access and control. This 

smart potentiostat was designed to ensure maximum 

flexibility and reconfigurability. Excellent linearity was 

obtained, considering three different faradaic resistance values 

corresponding to different output current levels. Moreover, by 

comparing the portable device with a commercial bench-top 

instrument, a good correlation between the two potentiostats 

for the ferri/ferrocyanide redox probe was achieved.  

The device was also tested in some application examples to 

demonstrate the advantages of the proposed approach. The 

feasibility of applying an SVM model to semi-quantitative 

analyses for the classification among four concentration 

classes was proved. In addition, the suitability of the smart 

device for PoC applications for COVID-19 diagnosis was 

demonstrated.   

Future research directions will be aimed at investigating 

other architectural solutions, especially in the presence of a 

high number of devices on the same IoT network [40].  

Furthermore, it could be interesting to assess the ability to 

classify the input sample in semi-quantitative analyses in the 

case of low analytical sensitivity, also investigating the use of 

ML techniques.  

The suitability of the developed system is being tested for 

the acquisition and processing of data from serological or 

antigenic diagnostic testing related to SARS-CoV-2 viral 

infection exploiting the immobilization of specific 

bioreceptors  on disposable screen-printed electrodes.  For this 

purpose, the biosensing devices will be validated in biological 

fluids of diagnostic concern to assess their sensitivity and 

specificity.  
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