
Research Article

IoT-B&B: Edge-Based NFV for IoT Devices with
CPE Crowdsourcing

He Zhu and Changcheng Huang

Department of Systems and Computer Engineering, Carleton University, Ottawa, ON, Canada

Correspondence should be addressed to He Zhu; hzhu@sce.carleton.ca

Received 23 August 2017; Revised 6 December 2017; Accepted 13 December 2017; Published 4 February 2018

Academic Editor: Kuan Zhang

Copyright © 2018 He Zhu and Changcheng Huang. 	is is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

For embracing the ubiquitous Internet-of-	ings (IoT) devices, edge computing and Network Function Virtualization (NFV) have
been enabled in branch o
ces and homes in the form of virtual Customer-Premises Equipment (vCPE). A Service Provider (SP)
deploys vCPE instances as Virtual Network Functions (VNFs) on top of generic physical Customer-Premises Equipment (pCPE)
to ease administration. Upon a usage surge of IoT devices at a certain part of the network, vCPU, memory, and other resource
limitations of a single pCPE node make it di
cult to add new services handling the high demand. In this paper, we present IoT-
B&B, a novel architecture featuring resource sharing of pCPEnodes.When a pCPEnode has sharable resources available, the SPwill
utilize its free resources as a “bed-and-breakfast” place to deploy vCPE instances in need. A placement algorithm is also presented
to assign vCPE instances to a cost-e
cient pCPE node. By keeping vCPE instances at the network edge, their costs of hosting are
reduced. Meanwhile, the transmission latencies are maintained at acceptable levels for processing real-time data burst from IoT
devices. 	e tra
c load to the remote, centralized cloud can be substantially reduced.

1. Introduction

Customer-premises equipment (CPE) devices, such as rout-
ers, switches, residential gateways, and set-top boxes, have
been deployed at the subscriber’s premises to originate,
route, and terminate communications between the customer
premises and the central o
ce [1]. In the wake of cloud com-
puting and Network Function Virtualization (NFV) [2, 3],
Service Providers (SPs) leverage virtual Customer-Premises
Equipment (vCPE) as Virtual Network Function (VNF)
instances on top of generic physical Customer-Premises
Equipment (pCPE), in search of rebuilding a dynamic rev-
enue stream [4]. 	ere can be enough resources for pCPE to
deploy VNFs locally [5], while pCPE can also coordinate with
the cloud if VNF scale-out is needed to accommodate heavier
usage.

Taking advantage of centralized cloud services in the core
networks has bene
ts [6] because of scalable and �exible
computing capabilities. However, large-number deployments
of Internet-of-	ings (IoT) devices bring challenges to VNFs

running in a centralized cloud, as the network tra
c load
would be drastically increased by transmitting data between
the core and the edge of the network. Such tra
c overhead
can become unacceptable with excessive data transmission,
causing high processing delay or even service outage due to
the congestion of the network. Meanwhile, high usage of the
cloud networks would jack up the price per usage, resulting
in a higher-than-expected operating expense (OPEX).

Recent research has been aware of the explosive growth
of devices in the edge of the networks. 	e concepts of fog
computing [7] and edge computing [8] were proposed to
move the initial handling of raw data to the edge for IoT
devices. Although the fog can mitigate the load of the core
network, the power of the Customer Edge (CE), namely,
the computational capabilities of CPE, is buried. While a
single pCPE node has limited resources and typically serves
a designated location, the aggregated computing capabilities
of pCPE nodes across the edge of a network can be powerful:
pCPE nodes have time-varying resource usage that does not
always reach full workloads. For instance, the home gateways

Hindawi
Wireless Communications and Mobile Computing
Volume 2018, Article ID 3027269, 15 pages
https://doi.org/10.1155/2018/3027269

http://orcid.org/0000-0003-4527-2635
https://doi.org/10.1155/2018/3027269

2 Wireless Communications and Mobile Computing

typically have signi
cantly lower usage in business hours as
their users leave for work, while o
ce gateways become idle
a�er hours. If the spare resources of pCPE can be shared
within the network edge, VNFs will be able to roam around
the edge. Both SP and users will bene
t from the considerable
capabilities of the sharable resources. Meanwhile, the VNFs
deployed on the pCPEnodes keepmost tra
cwithin the edge
and reduce the tra
c to the core network.

It certainly sounds interesting to utilize the time-varying
computational resources. However, CPE resource sharing
faces challenges:

(i) It is unclear how much SP can bene
t from spare
resources of pCPE nodes compared to traditional
virtualization without resource sharing.

(ii) Service availability becomes a concern. A pCPE
node’s availability can be jeopardized if it no longer
has enough resources to host VNFs. It can also be
down due to power outages or user pulling the plugs.
	e availability of o�oadedVNFsmust be ensured by
enforcing proper redundancy.

(iii) 	e users need to be motivated to consent to con-
tributing their pCPE nodes for resource sharing.	ey
would not do so without incentives or discounts.
Incentives returned to users are required in order to
bene
t both the SP and its end users.

In this paper, we propose an architecture to allow sharing
resources of pCPE within the network edge, namely, IoT-
B&B. We discuss the scenario that SP deploys VNFs, which
are vCPE instances, to both the cloud and the available
pCPE nodes participating in the resource sharing program.
As Figure 1 shows, when a sharable pCPE node is not actively
used by its owner, it will be treated as a “bed-and-breakfast”
place for vCPE instances to “stay.” SPwill have the permission
to utilize free resources through the resource manager to
deploy VNFs of other users from the same edge network.	e
following contributions aremade for enabling crowdsourcing
at the network edge by utilizing resources of pCPE nodes:

(i) We propose an architecture extended fromETSINFV
architecture and interfaces [9] to support resource
sharing of pCPE nodes. 	e pCPE nodes at the
network edge are treated as compute hosts which
can have VNF instances deployed. 	ey are grouped
together and abstracted into the NFV Infrastructure
(NFVI) layer. A resource manager is embedded in the
NFVI and can leverage placement algorithms tomake
placement decisions.

(ii) A model is presented to evaluate the cost of assigning
a VNF instance to a pCPE node and to the remote
cloud. Multiple factors are considered to determine
the cost, including remaining resources, network
transmission delay, and availability requirements.

(iii) A placement algorithm called “IoT-B&B Algorithm”
is also presented to assign vCPE instances to pCPE
nodes with the goal of
nding a cost-e
cient pCPE
node for each VNF.

NFV Infrastructure (NFVI)

pCPE-A

VNF-A1

VNF-B3

Virtualized
Infrastructure

Manager
(VIM)

VNF Manager (VNFM)

NFV Orchestrator (NFVO)

Cloud host
servers

VNF-B4

Resource managerVNF-B&B

VM scheduler

pCPE-B

VNF-B1

VNF-B2

Figure 1: 	e system architecture is extended from ETSI NFV
architecture and interfaces [9]. It has a resource manager integrated
with NFVI to schedule VNF placement, leveraging the VNF-B&B
algorithm.	e architecture enables pCPE resources to be part of the
NFVI alongwith cloudhost servers, where each pCPEnode canhave
VNFs deployed for multiple users in the edge network. For instance,
when pCPE-B needs more VNFs to handle its overloaded use, they
can be deployed on both pCPE-A (VNF-B3) and the cloud (VNF-
B4).

(iv) We implement a system with the IoT-B&B architec-
ture with steps to set up the NFVI and the system’s life
cycle. Numerical results are shown to demonstrate the
placement algorithm’s e�ectiveness.

We divide the contents into the following sections. Sec-
tion 2 formulates the problem. Section 3 proposes the IoT-
B&B Algorithm based on the problem formulation. 	en,
Section 4 is presented, covering the actual implementation of
the system, followed by the numerical results in Section 5.	e
relatedwork is illustrated in Section 6. Section 7 concludes the
paper and lists future work items.

2. Problem Formulation

In this section, we formulate the problem by modeling the
resource properties and constraints of the network edge.
	e resource types we discuss are limited to CPU, memory,
and network bandwidth. We believe these three types of the
resources are most representative for cost estimation and
optimization. Adding consideration of more resource types
will not necessarily change the optimizationmodel.	en, the
properties of the VNF instances are de
ned and annotated.
All notations de
ned and used are also summarized in the
Notations Used in Problem Formulation. Note that the terms
“VNF”; “VNF instance”; and “vCPE instance” in this paper
are interchangeable.

2.1. Connected pCPE at Network Edge. We discuss one par-
ticular network edge, which includes all pCPE nodes under

Wireless Communications and Mobile Computing 3

pCPE
1A

pCPE
1B

pCPE
1C

Network Edge 1

Edge
Network 1

pCPE
2A

pCPE
2B

pCPE
2C

Network Edge 2

Edge
Network 2

Core
network

Resource quota for
Network Edge 1

Resource quota for
Network Edge 2

Cloud

Figure 2: Topologies at network edges. All pCPE nodes can communicate with each other if they are within the same network edge.

it. A network edge is de
ned as the networks connecting
all pCPE nodes under it. We model a network edge to
have a topology such that each pCPE node within it can
communicate with another. An example with two network
edges can be found in Figure 2. 	e nodes of pCPE 1A, 1B,
and 1C group as one network edge connected to each other
via Edge Network 1, while the other one consists of the nodes
2A, 2B, and 2C, connected by Edge Network 2.

Based on the de
nition above, the pCPE nodes and their
links at the network edge can be modeled as a directed graph
� = (�, �). Set � represents all pCPE nodes at the network
edge, while � is the set of all connected links from one vCPE
node to another. A pCPE node in� is denoted by V, and there
is V ∈ �. De
ne the total number of pCPE nodes to be ��. Let
V� be a speci
c pCPE node in �, such that

V� ∈ �, ∀� ∈ [1 ⋅ ⋅ ⋅ ��] . (1)

Since all pCPE nodes are connected to each other, � is
strongly connected. For any data transmitted from one node
V� to another node V� in �, there exists a link ���, such that

��� ∈ �, ∀�,
 ∈ [1 ⋅ ⋅ ⋅ ��] , � ̸=
. (2)

	e network edge is connected to the core network via a
logical link, denoted by ��. 	e capacity of �� is limited due
to budget reasons: the network edge has a certain bandwidth
quota. 	e total bandwidth to the cloud must be kept within
the quota. In reality, �� can be a group of links connecting the
remote cloud.

2.2. VNF Types and Resource Requirement Pro�les (Flavors).
	e network functions serving the IoT networks have been
encapsulated into various types of VNFs. Each type provides
a user with a speci
c service. When the demand increases
for a certain type of VNF to a certain level that it exceeds
the maximum capacity of current VNF instances, the VNF
scales out by increasing the number of VirtualMachine (VM)

1

u1

f1(a1) f1(a2)

2

f2(a2) f3(a2)

3

f4(a2) f5(a2)

Figure 3: An example of VNF instances grouped by �1.

instances, so that more requests can be processed at the same
time. Depending on the purpose, di�erent types of VNF have
di�erent resource requirements. 	e term “�avor” is used
to describe the resource requirements pro
le of an instance
of the VNF, including the number of vCPUs, the amount
of memory, the size of the disk. We use � to de
ne a VNF
instance.

Assign � to identify a speci
c type of network function
and �� to be the number of network function types. A VNF
instance with type “�” can then be represented by �(�). 	e
CPU, memory, and bandwidth requirements of �(�) are then
denoted by �(�(�)),�(�(�)), and �(�(�)).

2.3. �e User of a VNF Instance. Another property of a VNF
instance is the user who owns and uses it. Suppose each pCPE
node has one unique owner. 	is is a valid assumption as the
actual device on customer premise is typically not shared and
belongs to the entity who pays for the service. For a pCPE
node V, its owner � uses a set of VNF instances to satisfy its
needs, regardless of where the instances are deployed. When
referring to a speci
c node V�, � ∈ [1 ⋅ ⋅ ⋅ ��], we represent the
node’s owner by ��, where � ∈ [1 ⋅ ⋅ ⋅ ��].

Figure 3 illustrates an example of VNF instances grouped
by the user �1. 	ere is 1 instance of �(�1) and 5 instances

of �(�1). 	e only instance of �(�1), denoted by �1(�1), is on
V1, along with �1(�2). Instances �2(�2) and �3(�2) are on V2.
Instances�4(�2) and�5(�2) are on V3.	e numbers and types
of VNF instances grouped by their users are determined by

4 Wireless Communications and Mobile Computing

user activities and can change dynamically according to user
demands.

Based on the user of VNF instances, the annotation of �
can be extended from�(�) to�(�, �), where � is the user who
owns and uses �.

2.4. Places to Deploy VNF Instances. Placement decisions
are made based on the �avors, which are the resource
requirement pro
les, of VNF instances and the resource
capacities of pCPEnodes. AVNF instance of a certain user ��,
denoted by �(�, ��), can be deployed at either of the locations
below.

2.4.1. B&B Deployment. For a VNF instance �(�, ��), any
pCPE node within the same network edge can be consid-
ered as a candidate place to deploy, also known as B&B
deployments. A B&B deployment is performed when�(�, ��)
is deployed on a pCPE node V�. For a B&B deployment of
�(�, ��), its notation can be extended to �(�, ��, V�), where V�
is the place to deploy �. We use the set �

V
to de
ne all VNF

instances deployed on the pCPE node V.
Particularly, when there are enough resources on the

pCPEnode V� of��,�(�, ��) can be deployed on V� locally. For a
local deployment of�(�, ��), its notation becomes�(�, ��, V�),
where V� is the place to deploy �.

2.4.2. Cloud Deployment. Besides B&B deployments, the
remote cloud can be chosen as an alternative place to deploy
VNF instances. For a cloud deployment of �(�, ��), its
notation can be extended to �(�, ��, �), where � is the place to
deploy �, and � stands for the remote cloud location. We use
the set �� to de
ne all VNF instances deployed on the cloud.

2.5. Factors to Impact Placement Decisions. 	e following
factors will impact the placement decisions.

2.5.1. pCPE Resource Capacity. Every pCPE node V has its
own resource capacity to host a limited number of VNF
instances. As a compute node, the resources for VNF
instances are as follows: virtual CPUs (vCPUs) and memory.
We assume that there is a plenty of disk space on each pCPE
node for any virtual instances deployed. 	erefore, the disk
space of the pCPE nodes is not in the scope of discussion. Let
�(V) denote the number of vCPUs V can provide. Let �(V)
be the total amount of memory for VNF instances from V.
Figure 4 provides an example of the resource capacity for a
pCPE node with 20 vCPUs and 10GBmemory in total.	ere
are currently 2 instances of VNF �(�1) and 3 instances of
�(�2) deployed on it.

2.5.2. EdgeNetwork TransmissionDelay. Comparingwith the
core network transmission delay to be discussed in the next
section, the transmission delay between pCPE nodes at the
network edge can be ignored as the bandwidth between edge
nodes is considered plenty and the transmission delay is small
enough to be ignored in the discussion.

2.5.3. Core Network Transmission Delay. 	e core network
transmission delay of a VNF instance� o�oaded to the cloud

Free memory

2 2 4 4 4
Free vCPU

vCPU capacity = 20

Memory capacity = 10 GB

f1(a1) f2(a1) f1(a2) f2(a2) f3(a2)

f1(a1) f2(a1) f1(a2) f2(a2) f3(a2)

1GB 1GB 1GB2GB 2GB

Figure 4: Capacities of the number of vCPUs and the amount of
memory of a pCPE node. At the moment, there are 2 instances of
VNF �(�1) and 3 instances of VNF �(�2).

is de
ned as the time consumed by o�oading the VNF
instance to the cloud and is denoted by �(�), while �max(�)
is the maximum allowed network delay for a speci
c network
function instance.	e actual delaymust not exceed this limit,
or the requests would eventually over�ow the bu�er and
cause malfunction of the VNF.

	ere are many factors that may a�ect the core network
transmission delay. As stated in [10], the transmission delay
to the cloud can be calculated by

Transmission delay = Message size

Network bandwidth
. (3)

For the same message, the less available bandwidth le� from
the network edge to the cloud, the longer transmission delay
will be. During the peak hours, more VNF instances are
requested by users concurrently across the network and
would congest ��. 	e severity of direct oversubscription is
re�ected by the residue bandwidth of the link from the edge
switch to the cloud, denoted by �(��), which is the link’s total
bandwidth�(��) less themean bandwidth usage for all remote
VNF instances. 	e smaller residue bandwidth �(��) there is,
the bigger core network transmission delay �(��) we should
expect.

Because all network function instances o�oaded to a
remote cloud share the same link �� that connects the edge
network to the remote cloud and the same cloud environ-
ment, we assume the core network transmission delay is the
same for all o�oaded network function instances to simplify
the modeling process. Let �(��) be the total bandwidth of ��
and �(��) be the transmission delay of ��. VNF instances take
up the bandwidth of �� to communicate with the pCPE nodes.
	e latency of the core network is therefore highly correlated
to the bandwidth consumption of ��.

Let �� denote the set of VNF instances deployed in the
remote cloud. �(��) can be calculated by

� (��) = � (��) − ∑
�∈	�

� (�) , ∀� ∈ ��. (4)

Even if �� is not congested, the remote cloud environment
may be degraded by other sources. For example, overloaded
VNFs fromother users or applications of a shared cloud could
a�ect other VNFs on the same host because of overcommit-
ting. To better utilize the resources on a host, overcommitting
is enabled by default [11]. However, the performance could be
jeopardized if some VNFs are taking up most of the resource

Wireless Communications and Mobile Computing 5

[12]. We de
ne the delay not directly caused by the network
edge as a �
, where the value of �
 changes according to the
load of the cloud environment.

Oversubscription will result in a higher core network
delay �(��). For all VNF instances o�oaded to the cloud, there
must be

� (��) ≤ �max (�) , ∀� ∈ ��. (5)

	e equation above ensures the functionality of all
VNFs o�oaded to the cloud with the existence of �(��). It
draws a limit of how much VNF o�oading can be done,
since an oversubscribed cloud environment would increase
�(��). Based on the calculation of transmission delay, we
further model �(��) to be inversely proportional to �(��) + �
and proportional to �
 with � as a constant scoping the
maximum core network delay when the bandwidth of �� is
depleted:

� (��) =
�

� (��) + � , 0 ≤ � (��) ≤ � (��) . (6)

Combining (5) with (6), we have

�

� (��) + � ≤ �max (�) , ∀� ∈ ��. (7)

When �
 gets higher or �(��) becomes lower, the value
of �(��) would exceed �max(�) of one or more o�oaded VNF
instances.

2.6. Cost of O
oading to Edge Network. By enabling the
resource sharing of pCPE nodes across the network edge,
SP bene
ts from extended containers hosting the VNFs. 	e
costs of leveraging these resources include the following.

2.6.1. Incentives Returned to End Users. By encouraging the
users to participate in the resource sharing program and to
consent to share, it is necessary to give incentives to the
users based on the amount of resource shared. We denote
the unit incentive of CPU, memory, and bandwidth usage
for pCPE node V as ��(V), ��(V), and �
(V), respectively.
One exception is that when the pCPE node is hosting
VNF instances used by its own user, the incentives do not
apply.

2.6.2. Extra Redundancy. Since the availability of the pCPE
nodes is lower than the cloud, more standby VNF instances
are needed. We de
ne the redundancy factor to be the
mean number of standby VNF instances needed for one VNF
instance on B&B nodes.

Based on the two factors above, the cost of o�oading a
VNF instance� to any of the pCPE nodes, denoted by !(�, V),
is calculated as below:

! (�, V) = (1 +)

⋅ [�� (V) � (�) + �� (V)� (�) + �
 (V) � (�)] .
(8)

2.7. Cost of O
oading to Cloud. As de
ned earlier, we use
� to represent the remote cloud in general to deploy VNF
instances, to make it distinct from B&B deployments.
Although the resources in the cloud, especially in the public
cloud, can be considered in
nite [13] due to the elasticity of
the amount of resources available, for a speci
c edge network,
there are budgets for resources assigned to it. 	erefore,
resources in the cloud to an edge network are limited when
we model them.

	e total amounts of vCPUs, memory, and network
bandwidth assigned to the edge network we discuss in the
cloud are denoted by �(�), �(�), and �(�), respectively.
	e cost of o�oading to the cloud depends on its usage.
In general, the less resources le� in the cloud for the edge
network, the higher unit price our model gives, because the
cloud needs to be available as an alternative place to host
vCPE instances. Allowing the cloud resources to be drained
too early will jeopardize the �exibility of placement and do
harm to the service availability.

Let��(�) stand for the unit cost for consuming the cloud’s
CPU resource. We model ��(�) to be inversely proportional
to the cloud’s remaining vCPUs with the constant of propor-
tionality"�. 	e remaining number of vCPUs is denoted by
��(�). 	e total cost of vCPUs for a VNF instance � to be
o�oaded to the cloud, denoted by !�(�, �), is then

!� (�, �) = �� (�) � (�) = "�
�� (�) + #� (�)

= "�� (�)
� (�) − ∑��∈	� � (��) + # .

(9)

In (9), # is a small positive number to avoid dividing by zero.
Also, let ��(�) represent the unit cost of the memory

resource in the cloud. Like vCPUs, ��(�) is modeled to be
inversely proportional to the cloud’s residue memory with
the constant of proportionality "�. 	e residue memory
resource of the cloud is denoted by ��(�). Similar to the
induction of (9), we have the total cost of cloud memory for
a VNF instance � denoted by !�(�, �), where # is a small
positive number to avoid dividing by zero:

!� (�, �) = �� (�)� (�) = "�
�� (�) + #�(�)

= "��(�)
� (�) − ∑��∈	��(��) + # .

(10)

Let �
(�) denote the unit cost of the remote cloud’s
network bandwidth. 	e variable �
(�) is de
ned to be
proportional to the core network delay �(��)with the constant
of proportionality"
. We de
ne the total cost of bandwidth
used between theVNF instance� and the cloud as !
(�, �). As
de
ned previously, � is a constant representing themaximum

6 Wireless Communications and Mobile Computing

core network delaywhen the bandwidth of �� is depleted.	en
we have

!
 (�, �) = �
 (�) � (�) = "
� (��) � (�)

= "

�

� (��) + �� (�)

= "
�
� (�)
� (��) − ∑��∈	� � (��) + � .

(11)

From (9), (10), and (11), the cost of o�oading a VNF
instance � to the cloud, denoted by !(�, �), is then calculated
as

! (�, �) = !� (�, �) + !� (�, �) + !
 (�, �)

= "��(�)
� (�) − ∑��∈	� �(��) + #

+ "��(�)
� (�) − ∑��∈	��(��) + #

+ "
�
� (�)
� (��) − ∑��∈	� � (��) + � .

(12)

2.8. Objective and 0-1 Integer Programming Formulation. SP
would like to reduce the total cost of deploying and running
VNF instances for all users across the network edge. 	e
VNF instances can be deployed either to the remote cloud
location � or to the pCPE location V. Based on where the
VNF instances are o�oaded, we identify two portions of costs
o�oading the VNF instances: (1) to the cloud and (2) to B&B
nodes. 	e objective of the optimization is to minimize the
total o�oading cost of the SP.

Variables

(i) %(�, V): a group of Boolean variables representing if
each VNF instance � is deployed on the B&B node V.

(ii) %(�, �): a group of Boolean variables representing if
each VNF instance� is deployed on the remote cloud
�

% (�, V) =
{
{
{

0, � not deployed on V;
1, � deployed on V.

% (�, �) =
{
{
{

0, � not deployed on cloud;
1, � deployed on cloud.

(13)

Objective

Minimize ∑
�∈	

∑
V∈�

! (�, �)% (�, �) + ! (�, V)% (�, V) (14)

Constraints

%(�, �) + ∑
V∈�

%(�, V) = 1, ∀� ∈ �, (15)

� (�) − ∑
�∈	�

�(�) ≥ 0, (16)

�(�) − ∑
�∈	�

�(�) ≥ 0, (17)

�

� (��) + � ≤ �max (�) , ∀� ∈ ��, (18)

� (V) − ∑
�∈	

V

�(�) ≥ 0, ∀V ∈ �, (19)

�(V) − ∑
�∈	

V

�(�) ≥ 0, ∀V ∈ �. (20)

Remarks

(i) Function (14) is the objective function. It minimizes
the total cost of o�oading VNFs instances to the
cloud and to B&B nodes.

(ii) Constraint (15) ensures that every VNF instance � ∈
� is only deployed at one place.

(iii) Constraints (16) and (17) are the capacity bounds of
the CPU and memory of the cloud. Each type of
the three resources leveraged by all VNF instances
o�oaded to the cloud must not exceed the cloud’s
allocated resource capacity for the network edge.

(iv) Constraint (18) sets the bottom line of the residue
bandwidth for �� between the network edge and the
cloud, which is essentially setting a limit for the
number of VNFs o�oaded to the cloud.

(v) Constraints (19) and (20) are the capacity bounds for
CPU and memory of every pCPE node. Each type of
the resources used by all VNFs o�oaded to the vCPEs
must not exceed these bounds.

3. IoT-B&B Heuristic Placement Algorithm

From the 0-1 integer programming in the previous section,
we design a heuristic algorithm to achieve a lower cost
by choosing the
rst valid candidate place to deploy new
VNF instances, a�er the candidate places are sorted by the
remaining resources.

3.1. Preliminary Resource Check. For every request of deploy-
ing a new VNF instance, we
rst use Algorithm 1 to check
the placement eligibility of every pCPE node, as well as the
remote cloud. If the place does not meet the resource con-
straints of the instance, it will be excluded from the list of can-
didate places. By calling the function GetCandidates(�), a
list of candidate places will be returned from the input of a
speci
c VNF instance � and the current resource level. 	e
list will be sorted by considering the lowest percentage of

Wireless Communications and Mobile Computing 7

(1) function GetSortedCandidates(�)
(2) create an empty list candidates
(3) for all V ∈ � do

(4) if IsResourceEnough(V, �) then
(5) add V to candidates

(6) end if

(7) end for

(8) sort candidates by remaining resources descending
(9) if IsResourceEnough(�, �) then
(10) add � to candidates

(11) end if

(12) return candidates

(13) end function

(14) function IsResourceEnough(V, �)
(15) if V is � then ⊳ Check delay for cloud
(16) link bw left ← �(��) + �
(17) for all �� ∈ �� do
(18) link bw left ← link bw left − �(��)
(19) end for

(20) delay ← �
/ link bw left

(21) if delay < �
max

(�) then
(22) return false ⊳ Too much delay
(23) end if

(24) end if

(25) if ��(V) < �(�) then
(26) return false ⊳ vCPU not enough
(27) end if

(28) if ��(V) < �(�) then
(29) return false ⊳memory not enough
(30) end if

(31) if �
(V) < �(�) then
(32) return false ⊳ bandwidth not enough
(33) end if

(34) return true ⊳ validation passes
(35) end function

Algorithm 1: IoT-B&B resource eligibility check algorithm.

remaining resource type, in a descending order. For example,
if a pCPE node has 90% of vCPU le� but only 20% ofmemory
le�, then the remaining memory will be used for sorting.

3.2. Cost Estimation. With the list of eligible candidate places
for a VNF instance �, we can further estimate the cost of �
deployed at each place. Algorithms 2 and 3 provide imple-
mentation of the cost model from Section 2. Algorithm 3
de
nes the function to choose the place for VNF instance �
at the lowest cost, namely, ChoosePlace(�). 	e function

rst calls GetCandidates(�) in Algorithm 1 to get the places
eligible for deploying �. 	en, for each eligible place, the
cost is checked based on the type of the place based on
Algorithm 2. If the place is the cloud, CloudCost(�) is
invoked for cost; if the place is a pCPE node, the function
BnbCost(�, V) is called instead. A�er iterating all eligible
places, the place with the lowest cost is selected and returned.

3.3. Time Complexity. Algorithm 1 has the time complexity of
?(� log(�)) because of sorting the pCPE nodes by remaining

resources (assuming merge sort is used). Algorithm 2 has
time complexity of ?(1). Algorithm 3 will always compare
the
rst candidate pCPE node with the cloud and choose
the destination with the lower cost, which has the time
complexity of?(1). Combining the three algorithms, the time
complexity of IoT-B&B Algorithm is ?(� log(�)).

If the exhaustive algorithm is used, which does not
sort the candidate pCPE nodes, it would have to check
all candidates and
nd out the one with the lowest cost.
Such algorithm would increase the time complexity to?(�2).
Figure 5 shows the time consumed using the two di�erent
algorithms (Algorithms 2 and 3) with up to 50 pCPE nodes.
From the results, we can see that VNF-B&B algorithm scales
well compared to the exhaustive algorithm, where the time
consumed is less than 1000ms for 50 nodes, while the
exhaustive algorithm takes more than 9000ms.

3.4. Access to IoT-B&BAlgorithms. Wehave implemented the
Java version of the IoT-B&B Algorithm library. 	e library
source code is published under the MIT License and is

8 Wireless Communications and Mobile Computing

(1) function CloudCost(�)
(2) cpu left ← �(�) + #
(3) memory left ← �(�) + #
(4) link bw left ← �(��) + �
(5) cost ← 0
(6) for all �� ∈ �� do
(7) cpu left ← cpu left − �(��)
(8) memory left ← memory left − �(��)
(9) link bw left ← link bw left − �(��)
(10) end for

(11) cost ← cost + "��(�)/cpu left

(12) cost ← cost + "��(�)/memory left

(13) cost ← cost + "
�
�(�)/link bw left

(14) return cost
(15) end function

(16) function BnbCost(�, V)
(17) cost ← 0
(18) if user of � does not own V then

(19) cost ← cost + ��(V)�(�)
(20) cost ← cost + ��(V)�(�)
(21) cost ← cost + �
(V)�(�)
(22) cost ← cost × (1 +)
(23) end if

(24) return cost

(25) end function

Algorithm 2: IoT-B&B cost estimation algorithm.

downloadable from the following URL: https://github.com/
zhuheec/iot-bnb.

4. System Implementation

We have implemented a system following the architecture
illustrated in the previous section. 	e system provides a
platform to practice and evaluate the IoT-B&B algorithm.

4.1. Hardware Con�guration of pCPE Nodes. For �exibility
and scalability, we use VMs instead of bare metal machines
as pCPE nodes. Up to 99 VMs are deployed, and each acts
as a pCPE node with 8 Cores of CPU, 16GB of memory, and
40GB of disk space. Every pCPE node can communicate with
any other one via a private virtual network, to mimic that
these pCPE nodes are at the same network edge.

4.2.NFVI Setup. EachpCPEnodehasCentOS 7 [14] installed
as its operating system. It has its essential functionalities
running as CPE. We use the OpenStack Kolla Project [15]
to deploy OpenStack services across multiple pCPE nodes as
well as PE, such that

(a) the OpenStack services on a pCPE node runs as
Docker containers. 	ey can be spun up and torn
down with minimal overhead;

(b) with container-based OpenStack services, a pCPE
node can be converted into an OpenStack compute

10 20 30 40 500

Number of pCPE nodes

0

2000

4000

6000

8000

T
im

e
co

n
su

m
ed

 (
m

s)

Exhaustive algorithm

VNF-B&B algorithm

Figure 5: Time complexity comparison between IoT-B&B heuristic
algorithm and the exhaustive algorithm checking all pCPE candi-
date nodes.

node and then register to the controller to be one of
the available hosts;

(c) when the pCPE is no longer available to be a compute
node due to high usage, the OpenStack services on it
can be stopped to free up resources.

Figure 6 re�ects the architecturewe use to provision IoT-B&B
service upon container-based OpenStack.

4.3. IoT-B&B Algorithm as Filter Scheduler. To leverage the
proposed IoT-B&B algorithm in the system, we implement
it as a �lter scheduler used by nova service, with the
name VnfBnbFilter. 	e IoT-B&B algorithm matches the

ltering-weighting mechanism of the �lter scheduler.

Figure 7 shows how IoT-B&B algorithm works as a

lter scheduler to rank places to deploy. Suppose there are
four places to choose: V1, V2, V3, and �. Algorithm 1 is
rst
invoked to
lter out ineligible places that do not have enough
resources. In the example, V2 is
ltered out as a result of
resource shortage.	en, Algorithms 2 and 3 are used to rank
the places according to the cost to deploy the VNF instance.
	ey determine that V3 has the lowest cost to deploy the
instance.

4.4. System Life Cycle. We de
ne a set of system states and
events for IoT-B&B. 	e system transitions its state based on
the events according to the actual demand, in order to adjust
the scaling of the VNF. As Figure 8 shows, the states and
events are listed as follows.

4.4.1. Up State. 	e state indicates the system is up and
running as expected. System load level is acceptable to satisfy
the needs.	e system is expected to stay in this state if it runs
properly.

https://github.com/zhuheec/iot-bnb
https://github.com/zhuheec/iot-bnb

Wireless Communications and Mobile Computing 9

(1) function ChoosePlace(�)
(2) candidates ← GetSortedCandidates(�)
(3) for all candidate in candidates do

(4) if candidate is � then
(5) current cost ← CloudCost(�)
(6) else

(7) current cost ← BnbCost(�, candidate)
(8) end if

(9) if current cost < cost then

(10) return place

(11) end if

(12) end for

(13) return none

(14) end function

Algorithm 3: IoT-B&B place selection algorithm.

PE cloud host serverpCPE-A

Host operating system

Docker engine daemon

Nova compute container

IoT-B&B

Nova controller container

Host operating system

Docker engine daemon

Keystone container

Nova compute container

Remote cloud

Glance container

CPE-speci�c processes

VNF-
A1

VNF-
B3

VNF-
B4

Figure 6: IoT-B&B service backed by container-based OpenStack.

4.4.2. Load Check Event. 	is is the event to update the
system load level. If the updated load level triggers a change,
the system may enter Overloaded or Underloaded state or
remain in Up state, depending on the threshold to determine
them.

4.4.3. Overloaded State. 	e state indicates the system is
overloaded by a higher volume of requests. A scale-out
is pending. 	e placement scheduler will be invoked to
determine the place to scale out: B&B or the cloud and then
triggers the actual event to scale out.

4.4.4. Scale-out to B&B Event. 	is is the event to trigger a
newVM to be deployed on a B&B, that is, a CPE deployment.

4.4.5. Scale-out to Cloud Event. 	is is the event to trigger a
new VM to be scaled out in the remote cloud environment.

4.4.6. Underloaded State. 	e state indicates the system is
underloaded because of a lower volume of requests. A scale-
in is pending. If the number of the VMs has already reached

Algorithm 1 Algorithms 2, 3

rank1

rank2

rank3

1

2

3

1

1

2

3

3

c c

c

Figure 7: IoT-B&B algorithm in OpenStack as a �lter scheduler.

Under-
loaded

Over-
loaded

Load
check

Scale
out to
cloud

Scale
out to
B&B

Scale
in

Up Migrate
pCPE

availability

change

State

Event

Load
 O

K
Decreased loadIncreased load

Figure 8: IoT-B&B service system life cycle.

the minimum number required, then the system would not
enter this state.

4.4.7. Scale-in Event. 	is is the event to trigger an existing
VM to be scaled in from either the B&B or the remote cloud.

4.4.8. Migration Event. 	is is the event that is triggered by
pCPE availability changes.When a pCPE is no longer capable
of hosting a VM because of higher usage from its user, it will
cease to be a B&B and be removed from the list of available

10 Wireless Communications and Mobile Computing

Table 1: Constant con
gurations.

Constant Value

�
 50000ms

"� 1000

"� 1000

"
 1000

1

� 1

 1

hosts. Meanwhile, the migration event will be added to the
system to move the existing VMs deployed.

4.5. Typical Use Cases. With the de
nition of the system life
cycle, we describe typical uses cases leveraging the IoT-B&B
algorithm.

4.5.1. Launch of NewApplication. 	edynamic nature of IoT-
based services allows the user to launch new applications
which are processed by new VNF instances. A new VNF
instance does not automatically get deployed on-site, that is,
the pCPE node of its user. 	e reason can range from lack of
enough resources to higher cost being deployed on-site. 	e
IoT-B&B algorithm will be called to determine the place to
deploy the new VNF instances.

4.5.2. Scaling out due to Higher Load. When the user appli-
cations have more signi
cant activities, resulting in a higher
load of the existing instances, the system’s periodical load
check daemon will detect the load increase. If the load is
above the threshold raising �ags of performance, extra VNF
instances are needed for processing the larger amount of
requests. 	e IoT-B&B algorithm will be called to determine
the place to scale out new VNF instances.

4.5.3. Migration for Lower Cost. 	e VNF instances in the
cloud may start with low cost. However, it does not last
forever. As more VNF instances are deployed to the remote
cloud, fewer resources are available and the unit resource
becomes more expensive. At some point, a migration from
the cloud to B&B nodes, or vice versa, is reasonable to lower
considerable cost.

5. Numerical Results

	e numerical results based on simulations are shown in
this section. From the numerical results, our goals are to
verify the bene
ts of leveraging B&B nodes, compared to
using a centralized cloud alone. Table 1 lists the values of the
constants used in the algorithms.

5.1. Host Nodes Setup. Wecreate 99 pCPEnodeswith random
levels of initial resources. As all pCPE nodes and the cloud
are used to deploy VNF instances, in our con
guration,
there is a total of 100 nodes for deployments. As seen in

0 987654321 10

Row index of the node

0

1

2

3

4

5

6

7

8

9

10

C
o

lu
m

n
 i

n
d

ex
 o

f
th

e
n

o
d

e

0

20

Cloud

2

4

6

8

10

12

14

16

18

Figure 9: Initial resource levels of the 100 nodes used for experi-
ments. 	e nodes are arranged as a 10 × 10 matrix, where the last
element represents the cloud.

Figure 9, the nodes are arranged as a 10 × 10 matrix. Each
node is represented by a cell, and is given a horizontal and
a vertical coordinate from 1 to 10. 	e last element, which
has the coordinates (10, 10), represents the remote cloud.	e
colors of the cells re�ect the remaining resource levels of the
nodes. For the ease of demonstration, the CPU, memory, and
bandwidth resources are all broken into 20 levels ranging
from 1 to 20. Deploying VNF instances on a pCPE node
follows the Law of the Minimum [16], meaning that the
capacity of a pCPE node to host instances is determined by
its scarcest resource. 	erefore, we color the cells according
to the resource type of the lowest level of a node. For example,
if the remaining CPU level of a node is 20, while the memory
level is 3, the cell representing the node will be colored at
Level 3. From the initial resource levels, it can be learned that
the pCPE nodes have various levels of resources available.
Meanwhile, the cloud starts with the maximum level of
resources for deployment.

5.2. VNF Resource Requirement Pro�le (Flavor) Types. We
prede
ne 10 types of VNF resource requirement pro
les
(�avors), as shown in Table 2, with di�erent requirements
of resources and max delays allowed. A VNF instance to
be deployed will have a �avor from the 10 prede
ned ones.
Templating VNF �avors is based on the real use cases as users
will need VNF instances from limited kinds of images for
serving known functionalities.

5.3. Placement Con�guration Modes. In order to compare
the e�ectiveness of the IoT-B&B algorithm, we con
gure the
simulated system to keep deploying new VNF instances of a
speci
c �avor with one of the three modes below, until the
resources are depleted:

(i) Local mode: deploying only on the pCPE node the
user owns.	e cloud and B&B nodes are not allowed.

Wireless Communications and Mobile Computing 11

Table 2: Prede
ned �avor types for simulation. Resource requirements in units.

Name CPU Memory Bandwidth Max delay

F1 1 1 1 1000ms

F2 2 2 2 100ms

F3 2 2 2 1000ms

F4 2 2 2 10000ms

F5 4 4 4 100ms

F6 4 4 4 1000ms

F7 4 4 4 10000ms

F8 8 8 8 100ms

F9 8 8 8 1000ms

F10 8 8 8 10000ms

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

VNF �avors

0

200

400

600

800

1000

1200

1400

N
u

m
b

er
 o

f
V

N
F

 i
n

st
an

ce
s

d
ep

lo
ye

d

Local

Local + Cloud + B&B

Local + Cloud

Figure 10: Total number of VNF instances deployed for the network
edge with various �avors and placement con
guration modes.

(ii) Local + cloud mode: deploying locally on the pCPE
node the user owns, as well as on the remote cloud.

(iii) Local + cloud + B&B mode: local, cloud, and B&B
deployments.

5.4. Extended VNF Instance Capacity. Figure 10 shows the
numbers of instances of deploying each of the 10 prede
ned
�avors with the 3 modes. From the results of Figure 10,
we learn that the numbers of instances deployed for all 10
�avors have dramatically increased. Taking F3 as an example,
in Local Mode, only 9 instances are deployed. When using
Local + Cloud Mode, the number jumps to 85. For Local +
Cloud + B&BMode, the number skyrockets to 550.	erefore,
the most bene
cial part of the system is to extend the total
capacity of hosting VNF instances. If using the remote cloud
alone, the capacity of the cloud for VNF instances is limited
by the core network delay, even if other resources are assumed
to be unlimited.	is bottleneck is greatly relieved by the B&B

10 20 30 40 50 60 70 800

Number of VNF instances deployed

0

20

40

60

80

100

120

140

160

C
o

st

F3

F6

F9

Figure 11: Cost hikes when the cloud load increases: Local + Cloud
Mode.

10 20 30 40 50 60 70 800

Number of VNF instances deployed

F3

F6

F9

0
20
40
60
80

100
120
140
160
180
200

C
o

st

Figure 12: Cost hikes when the cloud load increases: Local + Cloud
+ B&B Mode.

nodes hosting instances, because the instances on B&B nodes
do not put extra tra
c to the core network.

5.5. Cost Hike by Cloud Load Increase. We pick the three
�avors: F3, F6, and F9, to investigate the trends of cost
increase as more VNF instances are deployed in the system.
Figures 11 and 12 demonstrate the changes of costs to deploy

12 Wireless Communications and Mobile Computing

a new VNF instance on the cloud in two di�erent modes, as
the numbers of deployed instances go up.

Using Local + Cloud Mode, the cost is
rst 0 as the
instances are deployed on the local pCPE nodes. As the loads
increase, the remote cloud starts to be picked and the cost
to deploy an instance increases as the numbers of deployed
instances climb. For F6 and F9, the numbers of deployedVNF
instances stop at 42 and 21, respectively.

Comparing Figure 12 with Figure 11, in Local + Cloud
+ B&B Mode, the costs are lower when deploying the same
numbers of instances in the system. For instance, when
deploying 20 instances with �avor F9, the cost using Local
+ Cloud Mode is about 140. Meanwhile, when deploying the
samenumber of instanceswith the same �avor, the cost under
Local + Cloud + B&B Mode is only around 50.

	e results above have demonstrated the ability of the
B&B nodes to redirect the load o� the cloud and to reduce
the overall cost, even if o�ering incentives to the users.

5.6. Impact from outside the Network Edge. As discussed in
Section 2, when the cloud load fromoutside the network edge
gets higher, that is, the value of �
 is higher, the ability of the
cloud hosting VNF instances may be reduced. To verify how
much the impact will be, under Local + Cloud + B&B Mode
and for the three �avors F3, F6, and F9, we increase the level of
�
 by 1 each time and repeat the deployment for 10 times.	e
numbers of VNF instances deployed are shown in Figure 13.
From the results, the capacity of the system is a�ected by the
increase of �
. However, the impact becomes less signi
cant
as the level of �
 increases. With the considerable bu�er of
the B&B nodes, the impact from �
 is reduced.

5.7. Remaining Resource Levels. In Local + Cloud + B&B
Mode, all B&B nodes participate in hosting VNF instances.
We examine the resource levels a�er the system resources are
depleted. When all VNF instances deployed are of �avor F1,
the resource levels a�er the maximum number of instances is
deployed are displayed in Figure 14.

	e dark colors of all cells indicate that the remaining
resource levels are low across all pCPE nodes. 	e cloud
resource levels are also low because of the link/delay bottle-
neck from the network edge to the core network. 	e results
have demonstrated the ability of the IoT-B&B algorithm to
extract the resources to deploy more instances following the
best-e�ort basis.

6. Related Work

NFV has been a key role to accelerate usage-based changes
and to reduce OPEX by both SPs and vendor. Much of
the recent NFV research relies on cloud computing as the
underlying infrastructure [17].

By leveraging generic cloud computing Infrastructure-
as-a-Service (IaaS) frameworks, such as OpenStack [18] and
VMWare [19], research on cloud-based NFV has been done
to ensure that VNFs run at optimum levels in the cloud
[20]. Soares et al. presented a platform for VNFs called
Cloud4NFV [3], which is compliant with the ETSI [9] NFV

F3

F6

F9

0

100

200

300

400

500

600

N
u

m
b

er
 o

f
V

N
F

 i
n

st
an

ce
s

d
ep

lo
ye

d

987654321 10

Level of cloud load from outside the network edge (Td)

Figure 13: Cost changes when the cloud load increases due to tasks
outside the target network edge.

0 987654321 10

Row index of the node

0

1

2

3

4

5

6

7

8

9

10

C
o

lu
m

n
 i

n
d

ex
 o

f
th

e
n

o
d

e

2

4

6

8

10

12

14

16

18

20

Cloud

Figure 14: Remaining resource levels a�er all B&B nodes have been
used.

architectural speci
cation. Two approaches were discussed
to virtualize NF: full virtualization moved all control and
user plane functional entities to the cloud, while partial
virtualization still forwarded user tra
c to physical hardware.
With the implementation of service provisioning and end-to-
end inventory management, vConductor [21] was presented
by Shen et al. that enabled users to plan the virtual network
services using its data model. 	e systems and architectures
above focus on deploying VNF instances into the generic
cloud infrastructure, rather than the edge of the network.

Due to the nature of varying cost of resources in the
cloud, cloud-based resource allocation problems have been
studied to reduce the cost and to help evenly distribute the
workload. We have analyzed vulnerability of mobile apps in
[22] to keep sensitive information in local mobile device,
while o�oading secured computing-intensive modules to
the cloud. Xiao et al. [23] presented a system leveraging
virtualization to dynamically allocate resources in datacenter
and to optimize the number of servers in use. While these

Wireless Communications and Mobile Computing 13

solutions did help better use cloud resources, they keep the
computing remotely in the cloud and will not move it to the
edge of the network.

	e concept of fog computing was proposed in [7] and
was anticipated to become an essential part of cloud com-
puting with the volume of Internet-of-	ings (IoT) growing
explosively. Vaquero and Rodero-Merino [24] proposed a
comprehensive de
nition of the fog covering its features
and impact, including device ubiquity, challenges on ser-
vice and fog-based network management, levels of device
connectivity, and privacy. Edge clouds were presented as
entry points for IoT, which could be parts of the Enhanced
Packet Core (EPC).	e scenarios of fog computing in several
domains were discussed in [25], including Smart Grid, IoT,
and SDN, with topics about security, privacy, trust, and
service migration. 	e work above has pointed the research
direction of leveraging the edge of the network from high
levels. Based on fog computing, crowdsourcing becomes an
option as fog nodes can be updated dynamically with the
participation of the third party.	e security and privacy chal-
lenges were illustrated in [26], where a general architecture
was presented to model crowdsourcing networks, including
crowdsourcing sensing and crowdsourcing computing. 	e
security concerns were captured from the characteristics of
the architecture.

Virtualization in edge networks as a form of fog comput-
ing, including NFV, have been given a close look. Manzalini
et al. visioned potential value chain shi�s and business
opportunities in [27] by emerging paradigms such as SDN
andNFV.	e paper pictured amassive number of virtualized
network and service functions running at the edge of the
network, making the processing power more distributed
globally. 	e service chaining in the cloud-based edge net-
works was analyzed in [28] by programming actions into
OpenFlow switches to achieve dynamic service chaining. A
platform called Network Functions At 	e Edge (NetFATE)
was proposed in [29] as a proof of concept (PoC) of an NFV
framework at the edge of a telco operator networks. EachCPE
node was realized with a generic-purpose computer installed
with a hypervisor and virtual switches. 	is made the CPE
node capable of deploying VNFs on itself. 	e focus of this
paper was to prove that deploying VNFs on the edge of the
network is feasible. However, the bene
ts of resource sharing
across di�erent CPE nodes are not mentioned.

7. Conclusions

In this paper, we have presented the architecture and the
algorithms to share resources of pCPE nodes across the
network edge. When a sharable pCPE node has enough
resources, SP will utilize its free resources as a bed-and-
breakfast place to deploy VNFs of other users from the same
network edge for a certain period.	eusers can get incentives
by allowing SP to leverage the free resources.

By applying the VNF-B&B architecture, the capacity of
VNF instances for the network edge is greatly increased. 	e
cost of o�oading to the centralized cloud is reduced. By
keeping the VNFs at the network edge, the delay is reduced
for better processing of real-time data burst from IoT devices.

Meanwhile, the tra
c load to the core network is substantially
reduced with the same number of VNF instances deployed.

Making better use of the network edge is an interesting
topic and has a massive potential. While the paper ends here,
we are continuing to beef up the architecture, including the
following:

(i) Explore the availability to factor in the service up
and down of B&B nodes. 	is paper has used a
constant factor to model the backup VNF instances.
	e modeling can be improved so that it is closer to
the real-world scenario.

(ii) Consider more factors impacting the deployment
placement besides vCPUs, memory, and network
bandwidth. Also, consider detailed factors that can
indirectly impact the cost and the core network delay
of the remote cloud.

Future work of this paper will consider the items listed
above with the aim of obtaining a practical and e�ective
framework of virtualizing and utilizing the network edge.

Notations Used in Problem Formulation

V, V�, ��: V is a pCPE node. V� is a speci
c
pCPE node by its index, where
� ∈ [1 ⋅ ⋅ ⋅ ��]. �� is the total
number of pCPE nodes in the
network edge

�: 	e remote cloud location to
deploy

�, ��: � is a user. Each user owns one
pCPE node. �� is a speci
c user by
the pCPE index, where
� ∈ [1 ⋅ ⋅ ⋅ ��]

���, ��, �(��): ��� is the link between pCPE nodes
V� and V�, where �,
 ∈ [1 ⋅ ⋅ ⋅ ��],
� ̸=
. �� is the link between the
network edge and the core
network. �(��) is the remaining
network bandwidth of ��

�, ��: � is a VNF type/�avor. �� is the
total number of VNF types

�, �(��): � is a VNF instance. �(��) is an
instance of type ��, @ ∈ [1 ⋅ ⋅ ⋅ ��]

�(��, ��): A VNF instance of type �� and
user ��, @ ∈ [1 ⋅ ⋅ ⋅ ��], � ∈ [1 ⋅ ⋅ ⋅ ��]

�(��, ��, V�): A VNF instance of type ��, user
��, and deployed on pCPE node
V�, @ ∈ [1 ⋅ ⋅ ⋅ ��], �,
 ∈ [1 ⋅ ⋅ ⋅ ��]

�
V
, ��: �

V
is the set of all VNF instances

deployed on pCPE node V. �� is
the set of all VNF instances
deployed on the cloud

�(V),�(V), �(V): 	e number of vCPUs, the
amount of memory, and the
network bandwidth capacity that
can be provided by the pCPE
node V, respectively

14 Wireless Communications and Mobile Computing

�(�),�(�), �(�): 	e number of vCPUs, the
amount of memory, and the
network bandwidth required by
�, respectively

�(�), �max(�), �
: �(�) is the core network delay by
o�oading � to the cloud. �max(�)
is the maximum delay allowed by
�. �
 is the core network delay
not caused by the network edge

�, #: � is the maximum core network
delay when the bandwidth of �� is
depleted. # is a very small positive
number used as part of the
denominators in (9), (10), and (12)
to avoid dividing by 0

!(�, �), !(�, V): Cost of � deployed on the cloud �
and the pCPE node V, respectively

%(�, �), %(�, V): 	ey equal 1 if � is on �/V and 0 if
not.

Conflicts of Interest

	e authors declare that there are no con�icts of interest
regarding the publication of this article.

Acknowledgments

	e authors would like to thank Yiwen Wang who kindly
reviewed themanuscript of this paper and shared comments.

References

[1] Customer premises equipment (CPE), 2017, http://www.thenet-
workencyclopedia.com/entry/customer-premises-equipment-
cpe/.

[2] S. Beereddy and K. Sirupa, “NFV use case—delivering virtual
CPE with multi-vendor VNF orchestration,” in Proceedings
of the IEEE Conference on Network Function Virtualization
and So�ware De�ned Network (NFV-SDN ’15), pp. 25–27, San
Francisco, Claif, USA, November 2015.

[3] J. Soares, M. Dias, J. Carapinha, B. Parreira, and S. Sargento,
“Cloud4NFV: a platform for Virtual Network Functions,” in
Proceedings of the 3rd IEEE International Conference on Cloud
Networking (CloudNet ’14), pp. 288–293, Luxembourg, Luxem-
bourg, October 2014.

[4] E. Telecom, White Paper: 	e De
nitive Guide to vCPE,
2017, https://www.ecitele.com/media/1703/white-paper-the-
de
nitive-guide-to-vcpe.pdf.

[5] T. Taleb, M. Corici, C. Parada et al., “EASE: EPC as a service
to ease mobile core network deployment over cloud,” IEEE
Network, vol. 29, no. 2, pp. 78–88, 2015.

[6] N. Herbaut, D. Negru, G. Xilouris, and Y. Chen, “Migrating
to a NFV-based Home Gateway: Introducing a Surrogate vNF
approach,” in Proceedings of the 6th International Conference on
the Network of the Future (NOF ’15), pp. 1–7, Montreal, Canada,
October 2015.

[7] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing
and its role in the internet of things,” in Proceedings of the 1st
Mobile Cloud ComputingWorkshop onMobile Cloud Computing
(MCC ’12), pp. 13–16, Helsinki, Finland, August 2012.

[8] M. Satyanarayanan, “	e emergence of edge computing,” �e
Computer Journal, vol. 50, no. 1, pp. 30–39, 2017.

[9] ETSI Industry Speci
cation Group (ISG) NFV, ETSI GS NFV
002 V1.2.1: Network Functions Virtualisation (NFV): Architec-
tural Framework, 2014.

[10] K. Jang, J. Sherry,H. Ballani, andT.Moncaster, “Silo: predictable
message latency in the cloud,” in Proceedings of the ACM
Conference on Special Interest Group on Data Communication
(SIGCOMM ’15), pp. 435–448, London, UK, August 2015.

[11] OpenStack: Overcommitting CPU and RAM, 2017, https://docs
.openstack.org/arch-design/design-compute/design-compute-
overcommit.html.

[12] S. A. Baset, L. Wang, and C. Tang, “Towards an understanding
of oversubscription in cloud,” in Proceedings of the 2nd USENIX
Conference on Hot Topics inManagement of Internet, Cloud, and
Enterprise Networks and Services (Hot-ICE ’12), San Jose, Claif,
USA, 2012.

[13] Amazon EC2, 2017, https://aws.amazon.com/ec2/.

[14] 	e CentOS Project, 2017, https://www.centos.org/.

[15] OpenStack Kolla Project, 2017, https://wiki.openstack.org/
wiki/Kolla/.

[16] A. N. Gorban, L. I. Pokidysheva, E. V. Smirnova, and T.
A. Tyukina, “Law of the minimum paradoxes,” Bulletin of
Mathematical Biology, vol. 73, no. 9, pp. 2013–2044, 2011.

[17] R. Jain and S. Paul, “Network virtualization and so�ware
de
ned networking for cloud computing: a survey,” IEEE
Communications Magazine, vol. 51, no. 11, pp. 24–31, 2013.

[18] OpenStack, 2017, http://www.openstack.org/.

[19] VMWare, 2017, http://www.vmware.com/.

[20] R. Mijumbi, J. Serrat, J. Gorricho, N. Bouten, F. De Turck,
and R. Boutaba, “Network function virtualization: state-of-the-
art and research challenges,” IEEE Communications Surveys &
Tutorials, vol. 18, no. 1, pp. 236–262, 2016.

[21] W. Shen, M. Yoshida, T. Kawabata, K. Minato, and W. Imajuku,
“VConductor: an NFVmanagement solution for realizing end-
to-end virtual network services,” in Proceedings of the 16th
Asia-Paci�c Network Operations and Management Symposium
(APNOMS ’14), pp. 1–6, Hsinchu, Taiwan, September 2014.

[22] H. Zhu, C. Huang, and J. Yan, “Vulnerability evaluation for
securely o�oading mobile apps in the cloud,” in Proceedings
of the IEEE 2nd International Conference on Cloud Networking
(CloudNet ’13), pp. 108–116, San Francisco, Claif, USA, Novem-
ber 2013.

[23] Z. Xiao, W. Song, and Q. Chen, “Dynamic resource allocation
using virtual machines for cloud computing environment,”
IEEE Transactions on Parallel and Distributed Systems, vol. 24,
no. 6, pp. 1107–1117, 2013.

[24] L. M. Vaquero and L. Rodero-Merino, “Finding your way in
the fog: towards a comprehensive de
nition of fog computing,”
ACM SIGCOMM Computer Communication Review Archive,
vol. 44, no. 5, pp. 27–32, 2014.

[25] I. Stojmenovic and S. Wen, “	e fog computing paradigm:
scenarios and security issues,” in Proceedings of the Federated
Conference on Computer Science and Information Systems (Fed-
CSIS ’14), pp. 1–8, IEEE, Warsaw, Poland, September 2014.

[26] K. Yang, K. Zhang, J. Ren, and X. Shen, “Security and privacy in
mobile crowdsourcing networks: challenges and opportunities,”
IEEE Communications Magazine, vol. 53, no. 8, pp. 75–81, 2015.

[27] A. Manzalini, R. Minerva, F. Callegati, W. Cerroni, and A.
Campi, “Clouds of virtual machines in edge networks,” IEEE
Communications Magazine, vol. 51, no. 7, pp. 63–70, 2013.

http://www.thenetworkencyclopedia.com/entry/customer-premises-equipment-cpe/
http://www.thenetworkencyclopedia.com/entry/customer-premises-equipment-cpe/
http://www.thenetworkencyclopedia.com/entry/customer-premises-equipment-cpe/
https://www.ecitele.com/media/1703/white-paper-the-definitive-guide-to-vcpe.pdf
https://www.ecitele.com/media/1703/white-paper-the-definitive-guide-to-vcpe.pdf
https://docs.openstack.org/arch-design/design-compute/design-compute-overcommit.html
https://docs.openstack.org/arch-design/design-compute/design-compute-overcommit.html
https://docs.openstack.org/arch-design/design-compute/design-compute-overcommit.html
https://aws.amazon.com/ec2/
https://www.centos.org/
https://wiki.openstack.org/wiki/Kolla/
https://wiki.openstack.org/wiki/Kolla/
http://www.openstack.org/
http://www.vmware.com/

Wireless Communications and Mobile Computing 15

[28] F. Callegati, W. Cerroni, C. Contoli, and G. Santandrea,
“Dynamic chaining of virtual network functions in cloud-based
edge networks,” in Proceedings of the 1st IEEE Conference on
Network So�warization (NETSOFT ’15), IEEE, London, UK,
April 2015.

[29] A. Lombardo, A. Manzalini, G. Schembra, G. Faraci, C. Ram-
etta, and V. Riccobene, “An open framework to enable NetFATE
(Network Functions at the edge),” in Proceedings of the 1st IEEE
Conference on Network So�warization (NETSOFT ’15), pp. 1–6,
London, UK, April 2015.

International Journal of

Aerospace
Engineering
Hindawi
www.hindawi.com Volume 2018

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Active and Passive
Electronic Components

VLSI Design

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Shock and Vibration

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer
Engineering

Journal of

Advances in

OptoElectronics

Hindawi

www.hindawi.com

Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Control Science
and Engineering

Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi

www.hindawi.com

 Journal of

Engineering
Volume 2018

Sensors
Journal of

Hindawi
www.hindawi.com Volume 2018

International Journal of

Rotating
Machinery

Hindawi

www.hindawi.com Volume 2018

Modelling &
Simulation
in Engineering
Hindawi

www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Navigation and
 Observation

International Journal of

Hindawi

www.hindawi.com Volume 2018

 Advances in

Multimedia

Submit your manuscripts at

www.hindawi.com

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

