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Abstract Ebola is a deadly infectious virus that spreads

very quickly through human-to-human transmission and

sometimes death. The continuous detection and remote

monitoring of infected patients are required in order to

prevent the spread of Ebola virus disease (EVD). Health-

care services based on Internet of Things (IoT) and cloud

computing technologies are emerging as a more effective

and proactive solution which provides remote continuous

monitoring of patients. A novel architecture based on

Radio Frequency Identification Device (RFID), wearable

sensor technology, and cloud computing infrastructure is

proposed for the detection and monitoring of Ebola infec-

ted patients. The aim of this work is to prevent the

spreading of the infection at the early stage of the outbreak.

The J48 decision tree is used to evaluate the level of

infection in a user depending on his symptoms. RFID is

used to automatically sense the close proximity interactions

(CPIs) between users. Temporal Network Analysis (TNA)

is applied to describe and monitor the current state of the

outbreak using the CPI data. The performance and accu-

racy of our proposed model are evaluated on Amazon EC2

cloud using synthetic data of two million users. Our pro-

posed model provided 94 % accuracy for the classification

and 92 % of the resource utilization.

Keywords Ebola virus � Sensor � Cloud computing �
Temporal network analysis � IoT

1 Introduction

In recent years, the prevalence of airborne infectious dis-

eases such as SARS-CoV, influenza, and many others are

one of the major challenges faced by our present-day

society due to rise in the population density and social

interactions. The future of global healthcare systems should

depend on early detection of such diseases rather than

depending on delayed intervention and costly treatments.

1.1 Ebola virus disease

Ebola is one of the deadliest and infectious virus which

spreads rapidly and affects a large volume of the popula-

tion. The Ebola virus (EboV) spreads among people

through contacts with an infected person and causes a

severe viral hemorrhagic fever along with other symptoms

such as nausea, anorexia, abdominal pain, headache,

myalgia, and sore throat (Sureau 1989). The incubation

period of EVD varies from 2 to 21 days and in severe forms

of the disease, death may occur within 5–10 days after

onset of illness (Tseng and Chan 2015). According to the

World Health Organization (WHO 2016), a total of 28,601

Ebola cases has been detected in Liberia, Guinea, and
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Sierra Leone and out of them, 11,300 cases reported death

by January 2016. Healthcare professionals who are

engaged in the treatment of EVD patients unknowingly

contracted the virus from such patients and then further

facilitate infection transmission (William et al. 2014). In a

study conducted by Lehmann et al. (2016) observed that

the healthcare professionals hesitate to associate with EVD

patients due to high risk of infection. In 2014, EVD out-

breaks in West Africa is the largest episodes having a

fatality rate of 76.4 % (Fasina et al. 2015). The EVD has

the large epidemic potential of the outbreak, which results

in the rise in the number of EVD cases and might be

transmitted from one country to another. The EVD patients

can be cured by proper educational campaigns and treat-

ment as in the case of the French nurse cured from EboV

(Rachah and Torres 2016). The continuous monitoring of

outbreak moves the attention from disease to prediction

and prevention of the virus from spreading. Hence, there is

a need of using both antiviral drugs or vaccines as well as

IT-based strategies to reduce its harmful effects.

1.2 Cloud computing and wireless body area

networks

In the modern era, remote detection and continuous long-

term monitoring of patients with infectious diseases is an

escalating requirement. The existing healthcare systems are

unable to control and monitor such diseases efficiently

accompanying with minimal cost. So, an intelligent and

efficient system is required to provide ubiquitous health-

care support services in real time using IT infrastructure. A

major challenge in any nationwide healthcare systems is

the acquisition of health-related information from the

patient in real time and requirement of huge storage

capacity and high computational power to store and pro-

cess the data respectively. Recent advances in sensing and

distributed technologies such as Internet of Things (IoT)

and cloud computing makes it possible to design a smart

healthcare system that enables remote continuous moni-

toring of patients in an unobtrusive and seamless manner.

Using such technologies, it not only reduces consumed

manpower of health workers but also reduce the cost of

medical healthcare services.

Cloud computing along with wireless body area network

(WBAN) can be efficiently employed for the prevention

and monitoring of the patient. WBAN consists of a group

of small and lightweight body sensors attached to the

patient’s body to collect vital parameters of the body that

can be used for long-term monitoring of chronic diseases

efficiently (Sareen et al. 2016a, b; Andreu-Perez et al.

2015). These sensors produce a vast amount of data that

needs to be stored and processed in real time. Cloud

computing can offer virtually unlimited resources for the

remote storage and computation of such big data collecting

from WBANs of the patients. Through the use the cloud

computing, the physiological data generated by WBANs

can be shared by doctors, healthcare agencies, and gov-

ernment agencies.

In the healthcare domain, the most challenging area is

not only the continuous monitoring of an outbreak of any

infectious disease but also to intervene in real time. To

control the spread of the disease, the close proximity

interactions between infected and uninfected users needs to

be prevented. For this purpose, RFID technology is used to

sense the CPIs between users. To store and process such

huge sensor data from a large number of affected popula-

tion in a specific region such as city, state or country in real

time, dedicated and scalable resources are required to save

millions of lives. Cloud computing provides massive

computing power, high scalability, and immense storage.

Hence, the integration of WBAN, RFID, and cloud

infrastructure can provide highly reliable healthcare system

for monitoring and detection of EboV at its initial stages.

1.3 Cloud computing and WBAN in EVD diagnosis

and monitoring

The objective this work is to design a cloud-based model

for predicting and monitoring of EboV outbreak efficiently

and in real time using WBAN-based data collection. The

proposed system will keep track of the current status of the

outbreak and identify the infected users responsible for the

spread of the disease. To achieve these objectives, real time

Ebola diagnosis and monitoring system is proposed based

on IoT, RFID, mobile phone, and cloud computing

infrastructure is proposed. Initially, each patient is regis-

tered through a mobile application by entering personal and

contact information. The system automatically generates a

unique identification number (UID) and is allocated to each

registered patient. The UID is used for all the future

communications between patients, doctors, and the hospi-

tals. The data of EVD symptoms from body sensors in

digital form is collected through patient’s mobile phone

using the Bluetooth technology. The stream data is con-

tinuously collected and stored in the cloud database for in-

depth analysis. Data is classified using J48 decision tree

which categorizes the users into six categories based on

their respective symptoms. Once the users are classified

into different categories, they are monitored continuously

using WBAN and RFID. RFID senses the close proximity

interaction between infected and uninfected patients and an

alert message is generated and sent to the uninfected

patient to avoid such contacts with infected patients. Sev-

eral outbreak metrics such as clustering coefficient, cen-

trality, and temporal path length are computed using

Temporal Network Analysis (TNA).
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1.4 Contributions

The contributions of this paper are summarized as follows:

• We introduced cloud-based scalable and cost-effective

computing model designed for monitoring and control-

ling EboV outbreak.This model has integrated the

WBANs system and RFID with cloud computing to

capture and process the massive data generated by the

sensors in real time.

• We provided an automatic categorization of patients

into different categories using a J48 decision tree. This

algorithm is applied periodically for the monitoring of

any change in the categories of the users.

• We proposed the use of a RFID technology for

capturing the close proximity interactions between

users. An alert message is generated by the system and

is sent to the mobile phone of an uninfected user to

avoid his contact with the infected user.

• We proposed a Temporal Network Analysis (TNA) to

generate a graph showing the contacts between infected

and uninfected users. Using TNA metrics, the infected

users or regions are identified that are involved in the

spread of the disease.

• We provided a detailed experimental testing of the

proposed model on Amazon EC2 cloud in order to

evaluate its performance and accuracy. Our model

provides 94 % classification accuracy and 92 %

utilization of cloud resources.

The remainder of the paper is organized as follows: Sect. 2

reviews related work on EboV infection and use of sensor

technology and cloud computing in the detection and

monitoring of EVD patients. A model to monitor and

detect the EboV is proposed in Sect. 3. Section 4 presents

RFID-based prevention of EVD outbreak. In Sect. 5, we

present and analyze the experimental results of our pro-

posed model. Section 6 offers conclusions coming out of

this model and possibilities for future work.

2 Related work

Related work is divided into three Sections which are

pandemic EboV infection, mathematical and network

models in Ebola epidemic, and integration of IoT and cloud

computing in healthcare services. First Section relates to

characteristics, causes, and results of Ebola outbreaks.

Second Section provides the use of mathematical and

network models in EboV infections. Lastly, integration of

IoT and cloud computing in the field of health services has

been presented.

2.1 Pandemic Ebola virus infection

EboV outbreak was first occurred in 1976 in the region of

the Equateur province of Zaire during which 318 persons

were infected, and 280 persons died. Many authors studied

the cause, effect and precaution measures of the 1976

attack. The history, epidemiology and infection cycle of the

EboV has been analyzed in Guenno and Galabru (1997).

They identified the initial symptoms and effects on the

human body. Takada and Kawaoka (2001) examined the

pathogenesis of EboV infection and the available vaccines

and effective therapies. Park et al. (2015) performed an

evaluation of sequences from 232 EboV infected patients

in Sierra Leona and analyzed viral evolution during pro-

longed transmission between users. Matua et al. (2015)

performed in-depth analysis on strategies used to control

the spread of the outbreak and proposed new techniques to

improve the management and control of EboV during

future outbreaks. Edelsburg and Shir-Raz (2015) examined

the role of media in the spread of disease in such a crisis

situation. Moghadam et al. (2015) conducted another

review of the different species and structures of the EboV.

Liu et al. (2015a, b) reviewed the techniques that were

used to deal with plague epidemic occurred in Northeast

China. The authors made an effort to highlight the valuable

experience that can be used to fight the current Ebola

epidemic in West Africa. Passerini et al. (2016) studied the

effect of EboV in males and females. They also evaluated

the difference in the case fatality rate, incubation period,

duration of hospitalization, clinical signs, and symptoms

among males and females.

2.2 Mathematical and network models in Ebola

epidemic

Mathematical and network model have been extensively

used for the monitoring and early prevention of this deadly

epidemic. Althaus (2014) proposed a SEIR model to pre-

dict and analyze the spread of EboV by estimating the basic

and effective reproduction numbers of EBOV during the

2014 outbreak in West Africa. The model provides real

time estimates of EboV transmission parameters during an

ongoing outbreak. Nsoesie et al. (2014) proposed a

Dirichlet process model for forecasting and classifying

epidemic which is based on the matching of current

influenza activities with historical patterns. Lamma et al.

(2006) proposed a knowledge-based expert model for

monitoring and analysis of dangerous infections using data

mining techniques. Burkhead and Hawkins (2015) pro-

posed an agent-based model for monitoring the spread of

EboV. Browne et al. (2015) proposed SEIR model of
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contact tracing for the monitoring of Ebola outbreaks using

effective reproduction number. Ivorra et al. (2015)

designed a model to analyze the spread of infectious dis-

eases within and between countries. They used the deter-

ministic spatial-temporal and SEIHRDB methods to

predict and control the Ebola outbreak.

Various social network based systems have been pro-

posed by authors for preventing Ebola outbreaks. Salathe

et al. (2010) performed an analysis of infectious disease

transmission using human contact network. Data is col-

lected from the wearable proximity sensors that are used to

detect the close proximity interaction between individuals

and dynamic time-varying graph is created and updated

regularly. Bansal et al. (2010) explored the recent research

efforts to study the effect of dynamic contact networks to

monitor infectious disease transmission. Rizzo et al. (2016)

proposed a model for monitoring the spreading of Ebola

virus disease based on activity driven network of contacts

that varies with time. Takaguchi (2015) analyzed dynam-

ical social interactions using temporal networks used for

monitoring disease spreading. Smith et al. (2009) analyzed

different kinds of social media networks for developing

additional network metrics and analytical tools. Tang et al.

(2013) studied the use of TNA metrics to real-world net-

works. The authors demonstrated that metrics from tem-

poral network analysis provide a more accurate

information about dynamic contact networks. Isella et al.

(2011) analyzed the behavioral networks of close proxim-

ity and interactions in the context of the static and dynamic

process.

2.3 Integration of IoT and cloud computing

in healthcare services

Mukhopadhyay (2015) reviewed the different human

activity monitoring systems using wearable sensors. Zheng

et al. (2014) reviewed the different sensing and wearable

technologies that can be used to develop efficient pervasive

healthcare systems. Liu et al. (2015a, b) proposed an

architecture for smart urban sensing. In this framework,

they provide service APIs that perform the functions of

data collection, processing, and transmission with the help

of service APIs. Different urban sensing applications

deployed on the cloud customizes its data acquisition,

transmission, and processing functions through the service

APIs and reduces its complexity. Kaushik et al. (2016)

explored different strategies to control transmission of

EboV as well as diagnostic tools to detect the virus accu-

rately and rapidly. The authors also demonstrated the use

of miniaturized sensing technology to achieve a point of

care EboV detection. Barbosa et al. (2016) demonstrated

the use of sensing technologies, smartphones and networks,

cloud computing, and Internet of Things (IoT) to develop a

point of care testing devices used to diagnose the patients

accurately and in real time. Sarangan et al. (2008) pro-

posed a framework to increase the speed of reading RFID

tags. Ma et al. (2015) proposed personal communication

system using a mobile phone, RFID, and cloud computing

technologies. The position of the mobile device is moni-

tored using RFID and session initiation protocol establish a

Voice over Internet Protocol (VoIP) connection for the

mobile phone.

Laskowski et al. (2011) proposed an architecture to

examine the spread of influenza virus for the emergency

department in Winnipeg, Canada. They proposed agent-

based modeling in which the systems are modeled as a

collection of people and objects. Kumar et al. (2016) pro-

posed RFID-enabled authentication scheme for cloud-

based healthcare systems using Petri Nets-based authenti-

cation model. Chen et al. (2010) proposed a system that

incorporates coded information which is dynamically

stored in the RFID tag using mobile agents. It enables other

applications to perform on-demand activities for different

objects in different situations and can be useful in health-

care applications. Zhang and Liu (2016) reviewed the use

of biosensors and bioelectronics on a smartphone for bio-

chemical detection. Gope and Hwang (2016) proposed a

secure IoT-based healthcare system using body sensor

networks. They used authenticated encryption scheme off-

set codebook that provides expeditious and secure data

communication. Hassan et al. (2017) proposed a network

model using wireless body area network and cloud com-

puting used to manage the data of patients in the form of

text, image, and voice on the cloud. Quwaider and Jarar-

weh (2016) proposed a model for public health awareness

using body sensors and cloud computing. The big data

generated by sensors are processed using MapReduce

infrastructure and detect the abnormality in the data in real

time. Mamun et al. (2017) proposed a framework for

detecting and monitoring Parkison’s patients using cloud

computing. Such patients can be monitored remotely by

doctors by diagnosing their voice signals over the cloud.

Patients can send their voice samples through their mobile

phones regardless of their location. Zhang et al. (2015)

proposed a cluster-based framework for the monitoring and

controlling of epidemics using smartphone-based body area

networks. In this model, the population is grouped into

clusters and epidemic control strategies are applied at

cluster level based on social contact networks. Fabian et al.

(2014) proposed a framework for secure sharing of patient

data among different organizations. In this model, secret

sharing scheme is used to decompose data across multiple

clouds. Abbas et al. (2016) proposed a cloud-based model

for disease risk assessment of different types of diseases

using social network analysis techniques. The framework

also incorporated the facility to users seek advice from the
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health experts available on Twitter. Chen et al. (2015)

proposed an intelligent emotion interactive system using

wearable sensors and cloud infrastructure which is used to

provide healthcare services in both physiological and

psychological aspects. Botta et al. (2016) reviewed on the

integration of cloud computing and IoT. They explored

various application scenarios in which the combination of

these technologies can be effectively used.

3 Proposed model

The proposed model to detect and monitor the spread of

EboV is shown in Fig. 1. Our model is mainly based on the

continuous remote monitoring of infected patients in real

time using cloud computing. Table 1 lists the abbreviations

that are used in the proposed model definition and con-

struction. Table 2 represents the various tasks that will be

performed by our proposed model.

3.1 Data collection component

The data collection component is used to collect personal

information, vital body symptoms, and social contact

information simultaneously. Each user is first registered

with the system by entering the mobile number and other

personal details through users’ mobile phone. A UID is

generated for each user that will be used in the future

communications. The personal information of the users that

is stored in (EVD) database as shown in Table 3.

The primary symptoms such as body temperature, blood

pressure are captured through WBAN and is transmitted to

the mobile phone via Bluetooth, from where the data is

forwarded to the cloud server using WiFi 3G/4G in real

time. At the same time, users can enter their secondary and

advanced symptoms through the interface provided by the

mobile application. The values related to different

symptoms are entered in ‘Y’ or ‘N’. Once the user has

entered his response related to his symptoms, the data is

sent to the cloud.

A scalable storage is proposed for data generated from

WBAN, which can handle the big data efficiently. Table 4

shows attributes of EVD symptoms and their respective

responses collected from different users. These attributes

are categorized as primary, secondary, and advanced

symptoms. Secondary symptoms may be present in any

user depending upon the condition of the user. As the EboV

replicates in the body, it produces advanced symptoms

which show more worsening conditions for a virus infected

patient so that immediate hospitalization and treatment is

required. A user with advanced symptoms is highly

infectious, and the healthcare workers or uninfected users

must take precautions to avoid coming into direct contact

with that user.

The physical social interactions between different users

which may cause epidemics spreading are captured through

RFID attached to the user’s body. A user carries the mobile

phone with a RFID reader sense the RFID tag and the

information is transmitted to the cloud. An android based

application is designed to upload the aggregated data to the

cloud. Table 5 shows the close proximity interaction

RFID Tag

Bluetooth

ThermometerBP

EVD
Patient

Classification
Component

Outbreak
Prevention
Component

Monitoring
Component

Data Collection
Component

Hospital Doctor

Cloud

EVD
Database

Fig. 1 An architecture of the
proposed model

Table 1 Abbreviations used in the system definition and construction

S. no. Abbreviation Description

1. EVD Ebola virus disease

2. EboV Ebola virus

3. SEIR Susceptible-exposed-infectious-recovered

4. CPI Close proximity interaction

5. TNA Temporal Network Analysis

6. WBAN Wireless body area network

7. UID Unique identification number

8. GPS Geographic positioning system

9. IoT Internet of Things

10. AWS Amazon web services

IoT-based cloud framework to control\ldots 463
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attributes of different users that are used to create or update

TNA graph. The data collection component contains three

types of information from the patient: (1) EVD symptoms;

(2) personal attributes; (3) close proximity interactions.

The personal attributes of a patient need to be kept confi-

dential. The proposed system incorporates a secret sharing

scheme to hide the personal information of the user (Sareen

et al. 2016a, b).

3.2 Data classification component

This component is used to classify the user depending upon

EVD attributes data using J48 decision tree as category U

(uninfected), category S (susceptible), category E (ex-

posed), category I (infectious), category H (highly infec-

tious) or category R (recovered). A decision tree based

algorithm is used that graphically displays the classification

Table 2 Task flow of EVD detection using cloud computing and WBAN

Step 1 The user registers for the service using his mobile phone and internet. The system generates a

UID and is allocated to each user at the time of registration

Step 2 After getting registered to the cloud service, the user enters his symptoms using his mobile phone and

sends it to the cloud. The vital symptoms such as body temperature and blood pressure are collected

continuously through WBAN. These symptoms are sent to the mobile phone using Bluetooth. The mobile

phone further uploads the data to the cloud using Android based application

Step 3 The personal information and symptoms data are stored in the cloud database

Step 4 A J48 decision tree is used that classify the users into different categories of EboV infection

Step 5 If the system detects the user as infected, It monitors and examines the user regularly until the

patient is recovered

Step 6 A RFID is attached to the body of the user to record the close proximity interactions between

infected and uninfected users. A mobile phone with a RFID reader capture this information and

relays it to the cloud server. The server, in turn, will process the information and will generate a

alert message and send it to the mobile phone of an uninfected user in case the system detects the

close proximity interaction between them

Step 7 TNA graph is created or updated regularly using the current CPI data generated from RFID

which represents the current state of the outbreak

Step 8 Different metrics are computed which can be used by Government healthcare agencies to control the

spread of the outbreak

Step 9 The proposed system is tested on Amazon EC2 cloud to evaluate its accuracy and performance in

real time

Table 3 Personal attributes of users suffering from Ebola virus

S. no. Attribute Description

1 Mobno Mobile number of user

2 name Name of user

3 Age Age of user (in years)

4 Gender Male or female (M/F)

5 Address Permanent address of user

6 FCN Mobile number of family member

Table 4 Symptoms of Ebola
virus disease

Primary symptoms Value Secondary symptoms Value Advanced symptoms Value

Fever No/mild/high Vomiting (Y/N) Internal bleeding (Y/N)

Severe headache (Y/N) Diarrhea (Y/N) Low blood pressure (Y/N)

Muscle pain (Y/N) Stomach pain (Y/N) Lever disease (Y/N)

Sore throat No/yes/severe Chest pain (Y/N) Kidney disease (Y/N)

Low immunity level (Y/N) Weakness (Y/N) External bleeding (Y/N)

Skin rashes (Y/N) Breathlessness (Y/N)

Delirium (Y/N)

Seizure (Y/N)

Loss of consciousness (Y/N)
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process of a given EboV attributes for given output cate-

gories. A data mining software Weka 3.6 (Hall et al. 2009)

containing a collection of machine learning algorithms for

data mining tasks, is used to generate the J48 decision tree.

As shown in Fig. 2 generated by Weka 3.6, each user is

categorized as infected under category S if he has no

infection and having a low-level immunity along with a

cough or a sore throat. The category E of the infected

patient shows mild fever along with a cough or a sore

throat. During this phase, the level of infection in the body

of the patient is low. However, if fever and sore throat are

high along with secondary symptoms such as a headache,

body ache, then the patient is infectious and the category of

infection will be I. In this stage, the patient absorbs suffi-

ciently large infection that can be transmitted to other

susceptible individuals. In category H, the infected patients

show severe symptoms along with symptoms of category I.

Finally, once the patient’s immune system has cleared the

parasite or infection and the patient are no longer infectious

and comes under the category recovered (R). The user is

treated as uninfected if he does not possess any of the

above conditions. The life cycle of EVD moving through

different states is shown in Fig. 3.

3.3 Monitoring component for Ebola virus infected

users

EboV-infected users require continuous monitoring for at

least 21 days in consultation with the relevant health

Table 5 Close proximity
interaction attributes of users

S. no. Attribute Description

1 UID source UID of source patient

2 UID target UID of target patient

3 Category source Category of source patient as infected or uninfected

4 Category target Category of target patient as infected or uninfected

5 Start time Start time of interaction

6 End time End time of interaction

Fig. 2 A tree visualization of
classification algorithm in Weka

EXPOSEDSUSCEPTIBLE

LOW IMMUNITY WITHOUT
VIRAL PERSISTENCE

VIRUS ENTERED IN THE BODY

HIGHLY INFECTIOUS

RECOVERD

PERSON RECOVERED
FROM DISEASE

PERSON SHOWING
SEVERE SYMPTOMS

Contact with
Infected Person

RISK OF
REINFECTION

INFECTION

CLEARED

NEW OUTBREAK

PERSON CAPABLE OF TRANSMITTING
VIRUS TO ANOTHER PERSON

INFECTIOUS

VIRUS PROGRESS IN INFECTED BODY

Fig. 3 Life cycle of an SEIHR model for EVD patients
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department. It refers to the regular examination of the

treatment and symptoms of individual users so that com-

plete history of progress report for each patient can be

maintained by the system. Monitoring of patient is done at

different intervals of time that depends upon the infected

categories of the patient as classified by a J48 decision tree.

A time interval of 2 h is chosen for the highly infected

patients as they show severe symptoms and are required to

monitor more frequently. However, monitoring interval

can also be changed by consulting a specialized doctor.

Table 6 shows monitoring time interval for different cate-

gories of infected patients.

The infected patients are continuously monitored and

examined until they are completely recovered from the

infection. The notifications and alert messages are gener-

ated by the system and are sent to the mobile phones of

infected patients. Alert messages are also sent to nearby

hospitals or healthcare agencies depending upon the GPS

location of the patient’s mobile phone. The proposed sys-

tem performed the classification process periodically to

evaluate the category of the patient as shown in Algorithm

1. In case, the category of the patient is changed then alert

messages are generated by the system and are sent to the

user and the nearby hospital. The patient record is also

updated accordingly.

3.4 Controlling the spread of Ebola virus outbreak

To control the spreading of Ebola outbreak is one of the

important steps in our proposed model. Temporal Network

Analysis (TNA) is used in our model representing each

user as a node and edges are formed between users having

close proximity interactions (CPIs) between them. Differ-

ent color of the nodes represents different categories of

infection among users. TNA plays an important role in

describing the state of epidemics. With the help of TNA

graph, the evolution of epidemic spread can be predicted

and the infected users that are highly responsible for the

spread of the disease can also be identified. Gephi 0.9.1 (Fu

et al. 2016) is used to generate TNA graph. Gephi is an

open-source software for visualizing and analyzing tem-

poral networks graphs. Gephi uses a 3D render engine to

display graphs in real time and speed up the exploration.

Using this tool, the infected patients and their connections

with another susceptible or uninfected user can be depicted

effectively as shown in Fig. 4.

4 RFID based Ebola outbreak prevention

Some pathogens such as EboV can transmit through dif-

ferent routes. The main mode of transmission of EboV

infection are airborne and via droplet. In airborne trans-

mission, the pathogens are transferred from an infectious

user through coughing and breathing. The air carries the

pathogens up to a certain distance depending on the envi-

ronmental conditions and can be inhaled by an uninfected

user. Droplets from an infected user are transmitted to an

uninfected user when they come in contact with each other,

making CPIs highly relevant for virus spread. In the pro-

posed architecture, identifying the close-range proximity or

contact between infected users and uninfected users is of

paramount importance which is used to prevent the spread

of the EVD outbreak. A clear picture of network structure

created showing the contacts between infected and unin-

fected users will help the government and healthcare

agencies to control the outbreak at the earliest.

A RFID is proposed which is used to detect high-reso-

lution proximity between infected and uninfected users.

RFID exchange radio waves when they come in proximity

to each other and is one of the most promising technologies

in the area of automatic identification of an object (Read

et al. 2012). Recent advances in RFID devices such as

small, lightweight and long battery life make it ideal for

social network studies. RFID tags are attached to the chest

of the users in a certain geographic area monitoring for

EVD outbreak to detect the contacts only when persons

approach each other (e.g., face-to-face interactions). A

mobile phone with a RFID reader is used to sense the RFID

tag carry by another user. Whenever an uninfected user

carrying the mobile phone comes in contact with an

infected user wearing the RFID tag, the mobile phone sense

the tag and identify the presence of the infected user. The

Table 6 Monitoring interval of EVD infected patients

S. no. Category Monitoring time-interval (h)

1 Susceptible (S) 12–24

2 Exposed (E) 12

3 Infected (I) 8

4 Highly infected (H) 2

5 Recovered (R) 24–48
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range of proximity should be within 1–2 m of one another.

This threshold limit is used to sense only those CPIs during

which EboV can be transmitted (Vanhems et al. 2013). The

contact details captured by the mobile phone is sent to the

cloud via 3G/4G internet connection for storage, process-

ing, and continuous monitoring. An alert message will be

automatically generated by the system and is sent to the

mobile phone of an uninfected user. The objective is to

avoid contact with an infected patient so as to prevent the

spreading of the epidemic. The proximity detection is

performed periodically, and each RFID tag sends contact

information to the mobile phone of another user every few

seconds (Stehle et al. 2011). The time duration of 20-s

interval is set during which the proximity can be evaluated

with a confidence level of 99 % (Cattuto et al. 2010).

Figure 5 shows an architecture of close proximity inter-

action between infected and uninfected users.

4.1 Creating temporal network graph

In the TNA graph, an edge between two nodes (users) is

appeared or disappeared depending upon whether they are

in proximity to each other or not at a specific time. Such a

graph based on interactions over time between users shows

a continuous change in the structure corresponding to

dynamic users activity. Recent technological advances

such as RFID and mobile devices further support real time

gathering of information on human-to-human interactions.

Once the category of users is detected by the classification

component, a TNA graph is created and regularly updated

as and when new CPI data are received from different

users. Algorithm 2 is used to create or update TNA graph

using CPI data generated from the RFID in real time. Using

TNA graph, some important conclusions can be drawn

which will help the healthcare agencies to control the

Ebola outbreak.

4.2 Temporal network graph metrics

Identifying critical users (nodes) that are responsible for

the spread of the EboV is an important step of our model.

Moreover, an infected user with the high geodesic locality

to other users can spread EboV quickly to large numbers of

Fig. 4 Visualization of temporal network graph in Gephi 0.9.1. Snapshots are taken at time interval: a t1 = 250 s, t2 = 500 s, b t1 = 750 s, t2 =
1000 s, and c t1 = 1500 s, t2 = 1750 s
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users. Some of the important metrics that can be drawn

from TNA graphs are discussed in this Section.

Definition 1 Characteristics temporal path length

Characteristics temporal path length represents how fast, an

EboV can be transmitted from an infected user to another

in the network. A small value of temporal path length

represents a faster transmission of EboV. It is defined as the

mean temporal distance over all pair of nodes:

L ¼
1

NðN � 1Þ

X

ij

dij

where N ¼ f1; 2; . . .;Ng is a collection of nodes, dij rep-

resents the length of the temporal shortest path from node i

to j. The temporal global efficiency of a time-varying graph

can be computed as follows:

L ¼
1

NðN � 1Þ

X

ij

1

dij

Definition 2 Temporal correlation coefficient Finding the

probability of the formation of clusters of Ebola-infected

patients in any region is of high importance. It will help the

government agencies to isolate that region and stop all

kinds of travel from that region. Temporal correlation

coefficient (TCC) value is used in the proposed architecture

to identify the probability of cluster formation. It can be

computed as:

TCC ¼
1

N

X

i

Ci ¼
1

N

X

i

1

M � 1

X

m�1

m¼1

Ciðtm; tmþ1Þ

where Ciðtm; tmþ1Þ is the topological overlap of the neigh-

borhood of infected user i in the time interval ½tm; tmþ1� and

defined as follows:

Ciðtm; tmþ1Þ ¼

P

j aijðtmÞaijðtmþ1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

j aijðtmÞ
h i

P

j aijðtmþ1

h i

r

Definition 3 Temporal betweenness centrality Temporal

betweenness centrality is a very effective metric that shows

the level of involvement of any infected user in spreading

the outbreak. An infected user with a large number of

neighbors will contribute more to the spreading of the

outbreak. The Temporal betweenness centrality (TCB) of a

node i is the fraction of temporal shortest path passing

trough node i and is defined as follows:

TCB
i ¼

X

j2V

X

k2V ;k 6¼j

rjkðiÞ

rjk

where rjk is the number of temporal shortest paths from

user j to user k, rjkðiÞ is the number of such temporal

shortest paths that pass through the infected user i.

Definition 4 Temporal closeness centrality Sometimes

the user is not in direct contact with the Ebola infected

patient but knows another user who is in direct contact with

Ebola-infected patient. The closeness centrality of any user

i describes the closeness of the user i to any other infected

or uninfected users. It can be computed as the inverse of

the average length of the temporal shortest path from users

i to j.

TCC
i ¼

N � 1
P

j dij

where dij is the length of the temporal shortest path from

user i to j.

5 Experiment setup and performance analysis

The greatest effort was made to search on the internet for

the real data of EVD patients based on symptoms. We are

not able to retrieve such data to test our proposed model.

Synthetic data is generated to conduct experiments and

Table 7 Probabilities set for Ebola virus symptoms

Primary symptoms Probabilities Secondary symptoms Probabilities Advanced symptoms Probabilities

Fever 0.60 Vomiting 0.05 Internal bleeding 0.05

Severe headache 0.21 Diarrhea 0.09 Low blood pressure 0.02

Muscle pain 0.15 Stomach pain 0.17 Lever disease 0.01

Sore throat 0.10 Chest pain 0.11 Kidney disease 0.02

Low immunity level 0.70 Weakness 0.25 External bleeding 0.05

No symptoms 0.60 Skin rashes 0.15 Breathlessness 0.03

No symptoms 0.50 Delirium 0.01

Seizure 0.01

Loss of consciousness 0.02

No symptoms 0.70
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performance evaluation of the proposed model. Our

experiment is divided into following segments:

• Synthetic data generation.

• Classification of synthetic data using J48 decision tree.

• Testing of the proposed model on Amazon EC2 cloud.

• Computation of outbreak metrics using TNA.

• Cost analysis.

5.1 Synthetic data generation

Since symptoms based data for Ebola patients is not

available for the proper evaluation of the proposed model.

Synthetic data is generated in such a way that all possible

combination of symptoms are taken. Table 7 shows the

probabilities of each EboV symptoms which is incorpo-

rated in any newly generated case while creating a

synthetic dataset for Ebola virus. Algorithm 3 is designed

to create such patient dataset.

The data about proximity contact details generated by

RFID is also required for the appropriate evaluation of the

monitoring process. We have used a real dataset measured

by the SocioPatterns infrastructure (SocioPatterns 2016)

that contains the contact details of the students during five

days in December 2013. The file contains 188,508 entries

and each entry describes close proximity interaction (CPI)

between different students during 20-s intervals. Each line

contains information about source, target, start time, end

time, where source and target are the IDs of the students

that come in proximity of 1–2 m for the time interval

between the start time and end time (Mastrandrea et al.

2015). Algorithm 4 is designed for generating synthetic

data of 2 million users by mapping the CPI data between

students at different time intervals with generated 5000

Ebola cases. Such data will be used to create TNA graph.

Table 8 Category wise detailed
accuracy for J48 decision tree in
Weka 3.6

TP rate FP rate Precision Recall F-measure ROC area Category

0.926 0.077 0.899 0.902 0.895 0.872 S

0.833 0.126 0.786 0.733 0.708 0.783 E

1.000 0.000 1.000 1.000 1.000 0.703 U

0.921 0.010 1.000 0.971 0.927 1.000 I

1.000 0.095 0.846 1.000 0.917 0.919 H

0.971 0.014 0.880 0.871 0.833 0.805 R

Weighted avg 0.941 0.054 0.901 0.912 0.880 0.874

Table 9 Summary of tenfold cross-validation of J48 decision tree
tested in Weka 3.6

Parameters Results

Correctly classified instances 4700 (94 %)

Incorrectly classified instances 300 (6 %)

Kappa statistic 0.8258

Mean absolute error 0.0937

Root mean squared error 0.294

Relative absolute error 14.831 %

Root relative squared error 81.3111 %

Total number of instances 5000

Table 10 Confusion matrix of
J48 decision tree in Weka 3.6

Classified category S E U I H R

1536 0 0 0 0 0 S Actual category

0 397 127 0 0 0 E

104 0 1837 0 333 110 U

0 277 0 0 119 0 I

0 0 0 1893 2216 0 H

309 112 205 0 0 423 R
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5.2 Classification of synthetic data using J48 deci-

sion tree

Once the 5000 cases of Ebola virus are generated from

Algorithm 3, they are classified into different categories

using J48 decision tree in Weka 3.6 (Hall et al. 2009).

Decision tree created by Weka 3.6 is shown in Fig. 2. A

10-fold cross validation is applied to evaluate the perfor-

mance of the J48 decision tree. Data of 5000 categories are

tested in Weka 3.6 and various statistical results are pro-

duced as shown in Tables 8, 9 and 10. Decision tree

classifies the users with an accuracy of 94 %. Table 8

shows the detailed accuracy of each category which is

classified by the J48 decision tree.

True positives (TP) also known as sensitivity is the

percentage of categories of Ebola cases correctly classified

by the classifier. False positives (FP) also known specificity

is the percentage of Ebola cases wrongly classified by the

classifier. The J48 classification algorithm produces high

TP rate of 0.941 and low FP rate of 0.054. The relevancy of

the results is provided by the two parameters precision and

recall. The proposed classification algorithm provides

higher values of precision and recall which are 0.901 and

0.912 respectively. The other statistical parameters

F-Measure and ROC area both represents classification

accuracy. An algorithm with a higher value of F-Measure

and ROC area are more accurate and our J48 decision tree

provides F-Measure of 0.880 and ROC area of 0.874

respectively. Hence, the use of J48 decision tree in our

proposed architecture is justified.

5.3 Testing of the proposed model on Amazon EC2

cloud

The performance of the proposed model was evaluated in

real time by hosting it on the cloud. Synthetic generated

Ebola cases are stored in the cloud provided by Amazon

EC2. General purpose compute optimized c3.xlarge

(Amazon 2016) instances are used to set up an application

over the cloud. Synthetic data of 2 million users are used to

evaluate the performance. Initially, the system was started

with 10,000 requests,then after each 5-min request to the

system was increased by 10,000 and system performance

was studied for a total experiment time of 100 min.

Figure 6a represents resource utilized by the proposed

model that vary with the different number of users. The

system achieves saturation very fast when numbers of users

Table 11 Detailed accuracy of J48 tree and other models for the
classification of EVD patients

Classification Sensitivity Specificity Accuracy ROC
model (%) (%) (%)

J48 tree 94.1 5.4 88.0 0.984

Random tree 50.0 50.0 49.8 0.495

Naive Bayes 53.1 46.9 52.7 0.540

REP tree 56.3 43.8 56.1 0.575
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reach 25,000 because more resources will be consumed to

process them. Similarly, the response time of the proposed

model for a different number of users is also shown in

Fig. 6b. The system takes low response time for a less

number of users as there are fewer records available in the

database to perform any operation. Figure 6c shows the

latency time of the proposed model for a different number

of users.

The accurate categorization of users is a vital step in our

proposed model. Different classification algorithms such as

a random tree, Naive Bayes, and REPTree are also tested in

Weka 3.6 to compare their performance with our proposed

J48 decision tree. We have evaluated the performance of

the classifiers on the Amazon EC2 cloud for a given syn-

thetic dataset of 2 million users and compared their per-

formances. Table 11 shows the comparative classification

performance in different classification model tested in

Weka 3.6. J48 decision tree provides higher accuracy than

other classifiers. Figure 7 illustrates the comparison of the

accuracy of the different classification algorithms.

The performance of proposed J48 classification algo-

rithm is also evaluated on the Amazon EC2 cloud. Clas-

sification of a large dataset of users into different categories

Fig. 8 Performance analysis of proposed model: a classification accuracy of system, b classification time of system
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of infection requires a high-performance level. The per-

formance of J48 decision tree algorithm in terms of clas-

sification accuracy and classification time is shown in

Fig. 8. Figure 8a shows the classification accuracy of the

algorithm. It represents the percentage of correct classifi-

cation of infected and uninfected users in their respective

category. Initially, J48 decision tree shows an accuracy of

70 %, but as time progresses its accuracy rises due to a

large user dataset. Figure 8b shows the time taken by the

system for the classification of the users. The classification

algorithm takes more time for the large dataset as shown in

the graph.

5.4 Computation of outbreak metrics using

temporal network analysis

An in-depth analysis of CPI network structure is an impor-

tant tool for controlling the outbreak. The most commonly

used controlling techniques are vaccination that can reduce

the level of infection of infected users and prevent its spread.

Furthermore, It is not possible to provide vaccination to the

entire population in order to prevent the outbreaks. Different

metrics are computed from the TNA graph that can be used

in identifying the highly infected areas or users account-

able for spreading the disease.

Synthetic data of 2 million users is simulated in Gephi

0.9.1 for the simulation of outbreak prevention using TNA

techniques. Different temporal metrics are evaluated as

shown in Table 12. Figure 9 shows different outbreak

metrics generated from the TNA graph using Gephi 0.9.1.

Figure 9a shows the closeness centrality distribution of the

Table 12 Summary statistics for temporal metrics tested in Gephi
0.9.1

S. no. Parameters Results

1 Number of weakly connected components 32,522

2 Number of strongly connected components 199,922

3 Network diameter 178

4 Average path length 52.058

5 Average degree 2.0000

6 Average weighted degree 1.0000

Fig. 9 Different outbreak metrics generated using TNA: a harmonic closeness centrality distribution, b eccentricity distribution, c betweenness
centrality distribution, d eigenvector centrality distribution
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graph. An eccentricity distribution of the TNA graph is

depicted in Fig. 9b. The betweenness centrality distribution

of the graph is shown in Fig. 9c. Figure 9d provides the

eigenvector centrality distribution of the TNA graph.

Experimental results show that the TNA is a very useful

and effective tool to analyze the state of the outbreak using

different parameters.

5.5 Cost analysis

Cost is an important factor that needs consideration to

evaluate the economic feasibility of our proposed model in

poor countries such as Guinea, Liberia and Sierra Leone.

Purchasing cloud services is a fundamentally different

approach in which no maintenance or installation is

required, and the upfront cost can be eliminated entirely by

using an pay-per-use payment method that charges the user

by rounding up to the nearest hour of usage time. AWS

offers three usage tiers: on-demand, one year reserved, and

three-year reserved at a very reasonable price. In order to

deploy our proposed model, Amazon offers EC2 service

for virtual computer rental (known as instances) with a

variety of hardware specifications. The most basic instance

is a single-core CPU with 1 Gbyte of RAM, priced at US

$0.013 per hour (Amazon EC2 2016). The cost of RFID

tags have fallen significantly over the past few years, which

varies from $0.05–0.07 (RFID 2016). The analysis shows

that the cloud computing services and sensor technology

are cost effective and can be borne by the government of

any nation at the time of outbreak.

6 Conclusion

EVD is a global challenge for any country and healthcare

agencies. In this paper, we proposed a cloud-based archi-

tecture for predicting and preventing EVD using TNA and

wearable body sensor technology. The vital body symp-

toms and social interactions are captured using WBAN and

RFID respectively. Unlike traditional offline models, our

approach is based on capturing the real time close prox-

imity contacts and health information so as to control the

epidemic spreading. The J48 decision tree is used to clas-

sify the users into different categories. TNA is used to

represent each Ebola infected users on the TNA graph.

Different temporal metrics are computed to identify those

infected individuals or regions that are highly involved in

the spreading of epidemics. The proposed model is tested

on Amazon EC2 cloud which provides 94 % classification

accuracy and around 92 % utilization of cloud resource.

Sometimes, the users are not willing to carry RFID tags and

body sensors. In the future work, we will focus on

estimating the missing data of such users in order to

improve the efficiency of the system.
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