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Abstract—Air Quality (AQ) is a very topical issue for many
cities and has a direct impact on the health of its citizens. We
propose to investigate the air quality of a large UK city using
low-cost Particulate Matter (PM) micro-sensors, and compare
them with government operated air quality stations. In this pilot
deployment we design and build six AQ IoT devices, each with
four different low-cost PM sensors and deploy them at two loca-
tions within the city. These devices are equipped with LoRaWAN
wireless network transceivers to test city scale Low-Power Wide-
Area Network network coverage. We conclude that some low-cost
PM sensors are viable for monitoring AQ and demonstrate that
our device design can be used via LoRaWAN to facilitate more
granular city coverage without limitations of network access.
Based on these findings we intend to deploy a larger LoRaWAN
enabled Air Quality sensor network deployment across the city.

Keywords-Internet of Things, Wireless Sensor Networks, Air
quality, Urban Pollution.

I. INTRODUCTION

Six Internet of Things (IoT) devices for monitoring air qual-

ity have been deployed across two schools in Southampton,

UK. This deployment is a pilot project and if successful will be

expanded to include more sites within the city. The objective of

this pilot project is to demonstrate the capability of the AQ IoT

devices to capture spatio-temporal variations of air pollutants

in order to raise awareness of air quality issues amongst

the public. These devices also act as a feasibility study for

low-power long range wireless communication (LoRaWAN)

to enable future sites without existing network connectivity

to be monitored. Existing AQ sensing networks use a wider

range of sensors and do not use Low-Power networks, but

the hardware is considerably more expensive, for example

CAIRSENSE [1], OpenSense [2] and Citi-Sense-MOB [3].

We show preliminary PM sensor data and correlate it with

reference air quality stations within the city. The findings from

this pilot deployment are positive and demonstrate that low-

cost PM sensors are viable and that city wide long range

wireless technologies can play a role in sensor networks.

II. AIR QUALITY MONITORING

Air pollution exerts a major burden on health worldwide[4]

being responsible for 6.5 million premature deaths in 2015[5].

Air pollutant concentrations and personal exposure levels

vary extensively between different indoor and outdoor en-

vironments. There is also variation in concentrations at a

fine spatio-temporal scale in urban environments[6], [7], [8].

Particulate matter (PM) of relevance to impact on health has

an aerodynamic diameter lower than 10µm, although the most

strongly linked effects are to fine PM, PM2.5, with aerody-

namic diameter lower than 2.5µm. PM can cause a wide range

of adverse effects on humans even at low concentrations[9].

In the UK, exposure to PM2.5 is responsible for 29,000 deaths

per year with an uncertainty of 75%[4]. This wide confidence

interval results from the fact that the impact of exposure to

air pollution on health cannot be captured accurately simply

by the concentrations of the pollutant because it depends

also on the duration and the frequency of the exposure[10].

At individual level, various other parameters, including age

and health status, also play roles. There is currently a poor

ability to determine personal exposure to pollution, given the

lack of pollution monitoring stations, and fine spatio-temporal

resolution of pollution variation. High spatio-temporal cover-

age of pollutants measurements is therefore urgently needed

to improve our understanding of air pollutant sources and

exposure.

At a national level in the UK, PM are monitored by the Au-

tomatic Urban and Rural Network (AURN) stations[11]. These

stations provide reliable and robust data about background

concentration levels but are expensive, and require significant

expertise to maintain. This makes it difficult to attain the

high spatial resolution [12] required to better assess personal

exposure and to precisely identify pollution sources. Different

approaches need to be combined to solve this issue[13].

Several projects to establish innovative air monitoring net-

works have been conducted in cities in Europe and in the

USA using low-cost micro-sensors. Some use mobile mea-

surements mounted on cars[6], on trams[14], on bikes[15],

[3] or on pedestrians[16]. Although low-cost micro-sensors

offer a means to increase the granularity of the data available,

the extent to which they can provide valid data first needs

to be evaluated. Low-cost micro-sensors may be used to

complement existing air pollution monitoring networks by pro-

viding the spatio-temporal resolution required to improve our

understanding of air pollutants and our exposure to them[17].

The deployment of a dense, accurate, reliable city-wide

network of PM sensors could improve our ability to iden-

tify sources of pollution, understand personal exposure and

complement existing monitoring networks to raise awareness



Fig. 1. Particulate matter sensors Alphasense OPC-N2, Plantower PMS5003,
Plantower PMS7003, Honeywell HPMA115S0

among the population.

III. PARTICULATE MATTER SENSORS

Low-cost micro-sensors are already being used to monitor

PM pollution (see Figure 1). Their prices range from a few

USD to a few hundred USD making it possible to deploy dense

city-wide networks. These micro-sensors need to be plugged

into a processor (e.g. Raspberry Pi), equipped with the means

to communicate or store the data collected. The most com-

mon low-cost PM micro-sensors are Optical Particle Counters

(OPC), based on light-scattering. They can typically detect

particles with aerodynamic diameters ranging from 0.3µm to

10µm[18]. Below 0.3µm the particles do not scatter light

sufficiently and over 10µm, depending on the actual size of

the inlet, they cannot enter the sensor. These sensors transform

the signal measured into a raw particulate count or/and mass

concentration. The lower limit of detection of these sensors

is generally between 1 to 10µg/m3 which is the same order

of magnitude as the World Health Organisation annual mean

guideline for PM2.5[19]. Reference methods for measuring

PM mass concentration rely on the direct determination of

particle mass, rather than inference of particle mass from

particle count. Mass concentration is used in the legislation and

is necessary to compare reference measurement instruments,

but the raw particulate count is also useful, especially at

concentration levels close to the sensor limit.

The key drawback of using low-cost PM micro-sensors is

the data quality, which may be susceptible to: (i) drift over

time[1], [20], (ii) interference from climate conditions, (iii)

differing performance in differing environments, (iv) a lack of

reproducibility between sensor units, (v) the composition of

the PM[21].

Different models of PM micro-sensors may present different

characteristics and will behave differently regarding the data

quality issues listed above. In order to address this issue, four

PM micro-sensors have been selected for this deployment

based on their popularity in the literature, on their ease of

use or on their availability:(i) Alphasense OPC-N2, (ii) Plan-

tower PMS5003, (iii) Plantower PMS7003, (iv) Honeywell

HPMA115S0 (from left to right on Figure 1). The main

characteristics of the sensors are listed in Table I.

IV. IOT DEVICE

A. Hardware

The air quality IoT Device is built around the Raspberry Pi 3

Model B, which is then equipped with a Power Over Ethernet

(PoE)[26] HAT in order to enable low voltage power and net-

work connectivity. The power is provided using a standalone

PoE injector. A LoRaWAN HAT is also installed to provide a

secondary communication method which is discussed further

in Section V. The LoRaWAN HAT also provides a GPS

receiver connected to the on-board serial port, this is currently

only used to set the system time (RTC), however, in the future

it can be used for mobile applications. Each node is also

equipped with temperature and relative humidity monitoring

as relative humidity, and temperature to a lesser extent, are

potential data confounders for the particulate readings of some

PM micro-sensors[27], [28].

Three of the PM sensors require a serial port and the

LoRaWAN HAT uses the Raspberry Pis single serial port for

the GPS device. FTDI USB-serial converters were used to add

serial ports, in particular because each device has a unique

serial number. This serial number enables consistent naming

of serial ports between reboots, something which cannot be

guaranteed with all such devices. The Raspberry Pis onboard

SPI device is used to interface with the LoRaWAN module, but

testing showed that repeatable reliable behaviour could not be

achieved using this with the SPI OPC-N2 Sensor. A USB-SPI

device was used to overcome these issues.

The HPMA115S0 does not give access to a raw particulate

number and was not able to capture variations of particulate

matter at levels of concentrations experienced during the de-

ployment. The time resolution of the OPC-N2 cannot be lower

than 2s, sending commands more frequently creates commu-

nication issues, which is exacerbated by the length of the

communication wires. For the OPC-N2 and the HPMA115S0,

a time resolution of 6s was used which correspond to the max-

imum response time of the HPMA115S0. For the Plantower

PMS5003 and PMS7003, the resolution alternates between

1 and 3 seconds depending on the particulate count. The

Plantower PMS7003 is connected to the FTDI Chip by a PCB

connector board supplied with the sensors. This board has

caused intermittent connection issues and needs to be replaced

by a direct connection to the sensor pins.

The PM sensors are enclosed in an IP65 ABS enclosure

360x200x160mm (HxWxD) mounted in a portrait orientation.

In order to take representative samples the sensors need a

constant air flow. This was achieved by drilling a series of

8mm holes in the base and side of the enclosure. In order to

reduce debris and biological material entering the enclosure

these holes are protected by a 3mm hole diameter mesh,

1.5mm thick and 51% of open area. The sensors are then

mounted on a bulkhead inserted across the width of the box

as shown in Figure 2. The Raspberry Pi is mounted above the

bulkhead in order to provide additional protection from water

ingress. Two of the sensors (PMS5003 & PMS7003) have the

intake and exhaust on the same side. The HPMA115S0 and

OPC-N2 exhaust from the opposite side to the intake. This

means these sensors are exhausting into the main Raspberry

Pi compartment. In order to eliminate the affect of any heat

produced by the Raspberry Pi, this exhaust is then ducted

away from the enclosure, via a 20mm pipe to prevent air



TABLE I
MAIN CHARACTERISTICS OF THE FAN ASSISTED PARTICULATE MATTER (PM) SENSORS USED IN THE DEPLOYMENT

Model Size
(mm)

(HxWxD)

Price
(USD)

Interface Current requirement Detection
range (µm)

Concentration range of
measurement (µg/m3)

Raw
output

Alphasense OPC-N2[22] 60x64x75 443 SPI 175mA @ 5V DC 0.38 to 17 0.01 to 1,500 Yes
Plantower PMS5003[23] 38x21x50 28 UART 100mA @ 5V DC 0.3 to 10 0 to 500 Yes
Plantower PMS7003[24] 37x12x48 28 UART 100mA @ 5V DC 0.3 to 10 0 to 500 Yes
Honeywell HPMA115S0[25] 36x43x24 33 UART 80mA @ 5V DC Not known 0 to 1,000 No

Fig. 2. Air Quality IoT device deployed on an external wall

recirculation. Figure 2 shows the complete Air Quality IoT

device deployed on an external wall located at School A, (see

Figure 3 for school location).

B. Software

When using a Raspberry Pi as the processor for a remote

deployment careful consideration needs to be given to the

Operating System (OS). This software is a single point of

failure for the deployment. In this deployment there were

conflicting constraints, pragmatism meant that the OS chosen

was the latest version of Raspbian Lite. This was chosen

because of the ease of development and deployment. This

decision was made knowing there are major weaknesses in

this choice. When running the Pi on an unreliable power

supply there is a strong possibility of SD corruption unless

mitigating steps are taken. The easiest way to protect against

this corruption is to run a read-only root file system, this

reduces the likelihood of a write being performed when power

is lost. It is these failed writes that can cause the corruption.

Another issue with the default Raspbian (Lite) image is

the number of pre-installed packages, although making de-

velopment faster has two main disadvantages: the image is

very large, and it increases the number of updates that need

deploying. If the device is connected to a high bandwidth

network this is not an issue, this is not also the deployment

situation faced. Addressing the issues discussed in this section

is on-going work and is further discussed in section VII.

C. Deployment

Six AQ IoT devices have been deployed across two School

sites, shown in Figure 3 within the city of Southampton. At

each school the deployment positions have been chosen so that

the devices are positioned around the perimeter, with at least

one of the devices being located next to a road influenced by

school traffic. School A is the closer of the two sites to the

AURN monitoring station ”Southampton Centre”. The AQ IoT

devices have been mounted on exterior walls/fences or railings

≈ 2− 3m high. A single Cat-5 network cable provides power

and where possible network from inside the attached building.

D. Management

We use Icinga [30] to provide automatic status monitoring

of the deployment as it provides failure notification and

failure timing, allowing downtime patterns to be identified.

A particular consideration when choosing which monitoring

software to use is the ability to write custom checks using

nagios plugins[31] to enable monitoring of custom aspects of

this deployment. We use Microsoft Azure hosted server to

host the OpenVPN, Icinga and to store all the data received

via rsync from the AQ IoT devices.

V. DATA CONNECTIVITY

This deployment aims to provide real-time air quality mon-

itoring data, therefore data connectivity is required in order

to enable remote connections to the sensor nodes. Two main

technologies have been investigated: OpenVPN[32] and SSH

tunnels. The two separate methods of remote access have been

chosen to provide resilience and flexibility, to overcome factors

outside of the researchers control. Both the OpenVPN and the



Fig. 3. The 6 deployed Air Quality IoT devices at schools A & B, the 7 LoRaWAN base stations, and confirmed coverage across Southampton, UK[29].

TABLE II
LORAWAN BANDWIDTH CALCULATED AT 1% DUTY CYCLE

Configuration Data Rate
(bit/s)

Max Payload
(byte)

Max Data Transfer
(byte/h)

SF12/125kHz 250 51 1,065
SF11/125kHz 440 51 1,947
SF10/125kHz 980 51 4,359
SF9/125kHz 1,760 115 7,877
SF8/125kHz 3,125 222 14,032
SF7/125kHz 5,470 222 24,582

SSH tunnels connect from the IoT device to a Linux VPS

running on the Microsoft Azure cloud platform. The OpenVPN

tunnel allows the IoT device to be accessed directly from the

cloud server. The SSH tunnel that the IoT device establishes

to the server initiates a reverse tunnel enabling users on the

server to connect into the device.

Not all of our AQ IoT devices will have wired/wireless net-

work connectivity so we have included a LoRaWAN module

to allow low bandwidth long range communication [33], see

Table II. The aim is to validate using LoRaWAN as the sole

communication channel. We have deployed a total of 6 base

stations in Southampton and a 7th has been installed by a 3rd

party, as shown in Table III and Figure 3.

VI. RESULTS

A first analysis of the data collected over a period of 12 days

between the 8th – 20th of February by one of the IoT devices

in School A revealed that while the Alphasense OPC-N2 and

the Plantower PMS5003 and PMS7003 were able to capture

variations in PM concentrations, the Honeywell HPMA115S0

showed little to no variations in the PM concentration in any

of the boxes. We suspect that the Honeywell HPMA115S0 was

below its detection limit. The variations of PM concentration

measured by the other sensors show similar trends to the

variations measured by the respective sensors of the two other

AQ IoT devices located at School A.

The closest AURN monitoring station, ”Southampton Cen-

tre”, is located about 1km away from School A (see Figure

3). This station produces hourly PM2.5 concentration data that

we compared to the PM2.5 concentrations measured by the

sensors of the AQ IoT devices and averaged by hour. We also

compared it with the PM2.5 concentrations measured captured

during the same period of time by one of the IoT device

located at School B. The data for PM2.5 concentrations from

the AURN station are not yet available for the 13th – 16th

February. Table IV gives the Root Mean Square Error (RMSE)

and the Pearson coefficient (R2) of the sensor data compared

when using ”Southampton centre” monitoring station as a

reference using a sensor evaluation toolbox[34]. The Plantower



TABLE III
LORAWAN BASE STATIONS FOR SOUTHAMPTON CITY

Name Altitude(m) Brand Model Antenna 3rd Party

1 7276FFFFFE010292 8 Kerlink iBTS Procom CXL 900-3LW-NB (Dual) No
2 7276FFFFFE0103EC 85 Kerlink iBTS Procom CXL 900-3LW/I No
3 B827EBFFFEE36EF8 85 Raspberry Pi IMST iC880A Procom CXL 900-3LW-NB No
4 7276FFFFFE0103F0 50 Kerlink iBTS Procom CXL 900-3LW/I No
5 B827EBFFFE2D3798 45 Raspberry Pi IMST iC880A Taoglas OMB No
6 B827EBFFFE71AB02 65 Raspberry Pi IMST iC880A Taoglas OMB No
7 B827EBFFFEAC4B12 60 Raspberry Pi IMST iC880A RF Solutions FLEXI-SMA90-868 Yes

TABLE IV
ROOT MEAN SQUARE ERROR AND PEARSON COEFFICIENT OF ONE IOT

DEVICE AT EACH SCHOOL

School A School B

Sensor RMSE R2 RMSE R2

Alphasense OPC-N2 0.052 0.276 0.045 0.259
Plantower PMS5003 0.030 0.694 0.024 0.577
Plantower PMS7003 0.027 0.669 0.024 0.566
Honeywell HPMA115S0 0.044 0 0.038 0

PMS5003 and PMS7003 obtain significantly better RMSE and

R2 than the OPC-N2 and HPMA115S0.

VII. CONCLUSION AND FUTURE WORK

We conclude that low-cost PM micro-sensors are viable

and intend to perform a larger deployment to investigate

further. Our deployed AQ IoT Devices show that not all PM

sensors are equal but that it is possible to achieve a good

correlation with the AURN stations. Further work is required

to determine (i) how sensor operation varies according to

changes in environmental characteristics, (ii) how sensor data

tracks reference monitoring station data in co-localisation

studies, and (iii) whether sensor data from such boxes can be

corrected to provide sufficiently reliable data where reference

stations are not viable and where improved spatio-temporal

resolution of PM concentrations is required.

With careful selection of hardware and data transmission

optimisation it is possible to operate a LoRaWAN based

sensor network and remain with in the 1% duty cycle. Using

LoRaWAN has proven invaluable as a secondary channel

of communication, providing hourly readings even during

network outages and at locations without network access.

Although all the raw data is stored on the AQ IoT Devices,

the LoRaWAN messages confirm device operation, reducing

the need for physical site visits. Spreading Factor 10 proved a

good trade-off between airtime (and hence duty cycle limits)

and transmission range. Table II shows that this will facilitate

a total of 4.2kbit of data payload per hour. By optimising our

binary data storage, selecting only the data channels required

(e.g. PM2.5) and limiting to two PM sensors we believe that

it is possible to use LoRaWAN to transmit all our sensor data.

This opens up new opportunities for sensor location as we only

require power and LoRaWAN coverage. As part on ongoing

future work we intend to experiment with using LoRaWAN

only devices and potentially alternative sources of power. The

overall aim is to gain a better spread of sensor devices across

the city.

Regardless of the network connectivity we are experiment-

ing with using LoRaWAN as a means to control the AQ IoT

Devices as the message sizes are suitably small and can be

queued for delivery for example, to perform maintenance, e.g.

Reboot, request rebuild or update (via wired network) and

reconfigure sensor polling rates.

Three of our LoRaWAN base stations are Kerlink iBTS

devices which support LoRaWAN v2.0 [35] one of the features

that this offers is location of the transmit message, without

the need for GPS. One of our goals is to make the AQ IoT

devices mobile/portable and a key limitation is power require-

ments. Eliminating GPS and WiFi drastically reduces power

requirements, the Raspberry Pi has lower power hardware

variants and OS optimisations can assist with reducing overall

powder consumption. We are currently seeing LoRaWAN

receive ranges of over 12km using SF7, but the coverage is

not uniform. We have over 25,000 GPS validated LoRaWAN

data points across the city. The tested LoRaWAN coverage is

shown in Figure 3 and online at ttnmapper.org.

As discussed in Section IV-B the default Raspbian OS has

some limitations, mainly its inability to recover from SD

card corruptions and a difficulty with full operating system

updates (especially fail-over and recovery). We recognised this

as a limitation early on and built a custom minimal Linux

distribution for use in subsequent deployments.

The custom-built minimal Linux distribution has been built

using the Yocto project tools [36]. We mainly decided to

follow this route due to the flexibility it offers around choosing

only the necessary packages, libraries and binaries. Most of

the popular Single Board Computer (SBC) Operating Systems

(i.e. Raspbian) are trimmed down versions of PC distributions,

which although valuable for beginners and hobbyists, are

too large for resources constrained field deployments. Power

failure can cause SD card corruptions on read/write partitions,

so we used the Yocto tools to make the operating system

partitions read-only.

The custom Operating System has four major components:

Over the Air (OTA) updates capabilities (OSTree) [37], con-

tainerisation (Docker) [38] and the tools required for the

management infrastructure. OTA capabilities allow us to add

new packages and make changes to the OS for example,

security updates. OSTree was chosen because it sends updates

in the form of deltas. It only sends OS differences as opposed

to other tools of this type that send full OS updates requiring

larger bandwidth and could be difficult to deploy in remote

locations. OSTree benefits from open source management



tools, such as the GENIVI [39], built to ease the management

of OTA deployments.

Containerisation offers a new perspective over deploying

and managing applications. The custom-built OS runs appli-

cations in Docker containers, which allows us to remotely add

stop, start and delete applications within containers. One of

the most important advantage containerisation offers is ease of

building applications independent of the host OS, eliminating

dependency problems and enabling portability. It offers fault

tolerance and security capabilities, and management tooling

such as Cockpit [40], which allows us to manage Docker

containers and OS updates.

The underlying datasets can be found at:

https://doi.org/10.5281/zenodo.1217023
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