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ABSTRACT In this paper, we design and implement a distributed Internet of Things (IoT) framework called

IoT-guard, for an intelligent, resource-efficient, and real-time security management system. The system,

consisting of edge-fog computational layers, will aid in crime prevention and predict crime events in a

smart home environment (SHE). The IoT-guard will detect and confirm crime events in real-time, using

Artificial Intelligence (AI) and an event-driven approach to send crime data to protective services and police

units enabling immediate action while conserving resources, such as energy, bandwidth (BW), and memory

and Central Processing Unit (CPU) usage. In this study, we implement an IoT-guard laboratory testbed

prototype and perform evaluations on its efficiency for real-time security application. The outcomes show

better performance by the proposed system in terms of resource efficiency, agility, and scalability over the

traditional IoT surveillance systems and state-of-the-art (SoA) approaches.

INDEX TERMS IoT, edge, fog, video surveillance, convolutional neural network, motion detection,

gun-knife detection, real-time security, message queuing telemetry transport (MQTT).

I. INTRODUCTION

A smart home environment (SHE) consists of different appli-

cations of ubiquitous computing that integrates smartness into

dwellings for comfort, healthcare, safety, security, and energy

conservation. An SHE is monitored by ambient intelligence

to provide context-aware services and to facilitate safety and

security management [1]. A security management system is

designed to provide complete safety from robbery, sabotage,

and intrusion by monitoring the internal and external SHE,

using surveillance cameras [2]. Various cyber-physical sys-

tems widely adopt the use of intelligent video surveillance

(IVS) [3], [4] for automatic and accurate identification of

events and objects in a target scene. IVS enables video-

analytics to predict and interpret the activity of a scenario

without human intervention [3]. Meanwhile, with the devel-

opment of artificial intelligence (AI) and machine learning

(ML), surveillance applications and security procedures are

being improved with enhanced functions and accuracy [5].

The associate editor coordinating the review of this manuscript and
approving it for publication was Antonino Orsino.

According to the Uniform Crime Reports published by

the Federal Bureau of Investigation (FBI), the 2017 statis-

tics [6] show that in USA, burglaries of residential properties

accounted for 67.2 percent of all burglary offenses, and the

victims of these offenses suffered an estimated $3.4 billion

in property losses. In addition, 15.5 percent of all robberies

in 2017 occurred at commercial properties while residences

experienced 16 percent. Due to this rise in property crime,

the research community is paying attention to smart home

security

Protective services and authorities often fail to respond to

crime incidents efficiently. They tend to follow a reactive

approach which relies mostly on witness reports or closed

circuit television (CCTV) footage after the crime takes place.

Therefore, in most cases, when an event occurs, authorities

visit the location of the incident, retrieve the content manually

from the camera, and then proceed to identify relevant footage

either by watching the full length of the video or by pro-

cessing it through specialized video analytics algorithms [7].

Thus reactive approach is naturally inefficient for prevent-

ing crimes [8]. An efficient crime predictive system could
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enable robust security management in an SHE by identifying

preventative procedures. Thus, the authorities could reduce

crime incidents and losses. In addition, modern multimedia

surveillance systems comprise a wide range of sensors, dis-

tributed over multiple sites [9]. The video surveillance system

in an SHE consists of many cameras that can produce a

large amount of surveillance data, both photo and video. This

may result in heavy network congestion and impose compli-

cated processing load on individual devices and systems [10].

In this paper, we will discuss an IoT-integrated intelligent

video surveillance framework to provide an effective solution

to this problem.

The internet of things (IoT) is the internetworking of

physical objects, virtual objects, living beings, analytics,

user interfaces, and network connectivity that allows these

objects to collect and exchange data over an internet-based

infrastructure [11]. This internetworking enables advanced

IoT applications (e.g., environment monitoring, smart-city,

intelligent transportation, healthcare, surveillance, and smart

homes) [10], [12]. The IoT opens the door to advanced inno-

vations to facilitate modern interactions and provides new

opportunities for infrastructures and services that improve the

quality of life [10]. Hence, an IoT-based smart-surveillance

system can be adapted to reduce the crime rate, especially in

a smart building. Although cloud-based IoT architectures are

used for processing and storing essential surveillance data [9],

they have issues regarding bandwidth and latency-sensitive

video surveillance applications which require IoT nodes

near the source of visual data to meet their delay require-

ments [11]. Fog computing [13] has been introduced to

address these issues.

Fog, by residing in between cloud and edge devices, pro-

vides a decentralized computing infrastructure to perform a

substantial amount of communication, control, storage, and

management [14]. It may utilize one or more IoT end devices

or near-user edge devices collaboratively. An edge device

(also known as a terminal/end), on the other hand, tends to

be limited to computing at the edge of the network [14].

The data-generating sensors and IoT devices are located

at or near an edge node. Fog nodes can reduce the processing

burden on resource-constrained edge devices [11], overcome

bandwidth constraints for centralized services, and meet

latency requirements of delay-sensitive applications [10].

Fog computing has the ability of responding quickly,

and therefore provides on-demand services by storing

and processing data locally [10]. This criterion encour-

ages researchers to integrate fog computing in time-critical

IoT applications (e.g., smart home security [SHS]) to improve

real-time crime prevention.

Unlike the classical approach, where the camera sen-

sors remain active regardless of the presence of target

events or anomalies, an event-driven approach can pro-

vide better surveillance services by monitoring patterns and

surveillance activity in the field of view. In this approach,

an end/edge node will forward the surveillance data to the

fog whenever it identifies an event (e.g., motion) in its input

data streams. This approach can significantly reduce energy

consumption and bandwidth due to the minimal amount of

data transmission to the fog [9]. Edge computing enables this

event-driven approach in a target IoT surveillance applica-

tion by delegating simple processing to camera-connected,

constrained IoT-edge-node devices [15]. Fog computing, on

the other hand, enables AI into the system to make deci-

sions based on previously gathered information or prior

inputs which have made the system more automated [16].

Deep learning (DL), also known as deep structured learn-

ing, hierarchical learning, deep-feature learning, and deep-

representation learning, is a branch of ML that represents

high-level data abstractions [17]. DL enriches AI fields,

such as transfer learning, computer vision, semantic parsing,

and language processing. DL algorithms are more popular

than the old ML algorithms, especially, in the area of com-

puter vision [5] (i.e., object recognition, driverless cars, and

AI gaming [17]). Integrating DL in the trademark of AI into

the fog node will enable it to predict possible events, and

decide and act on its own beforehand, which is very necessary

for implementing a predictive approach for automatic and

accurate identification of crime events and eventually to avoid

crime incidents at an SHE.

Based on all the discussions above, we propose

IoT-guard, an event-driven edge-fog-integrated video surveil-

lance framework, to perform real-time security management

by aiding in crime prevention and predicting crime events

at an SHE. The proposed IoT-guard approach provides a

three-layer architectural framework that orchestrates event-

driven edge devices in an SHE and DL-implemented fog

computing nodes to address increasing human security con-

cerns. The system also provides an alert by sending the crime

data instantly to the police or protective service, and thus,

it ensures a quick response.

The main contributions of the proposed system are:

(i) a resource-efficient smart-edge-node implementation to

detect human intrusion and initiate fog processing; (ii) a fog-

enabled infrastructure for the detection and confirmation of a

crime; and (iii) an event-driven crime data reporting service

to the police station to deal with a detected crime. There-

fore, the proposed framework integrates image processing,

AI computer vision, and network communicationmethods for

real-time crime event detection, ensuring resource efficiency

and good distribution of the processing load in an IoT-based

video surveillance system. The rest of the paper is organized

as follows: Section II discusses the most relevant background

works; Section III provides a detailed description of the

proposed IoT-guard framework; Section IV and Section V

present performance evaluation of the IoT-guard laboratory

prototype and comparison with the state-of-the-art architec-

tures, respectively and finally, Section VI concludes the paper

and outlines future research.

II. RELATED BACKGROUND SURVEY

This section surveys previous works on smart surveil-

lance and analyzes techniques leveraging security and safety
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services in a smart-city environment, including transporta-

tion, healthcare, industry, and residences.

Shih [18] developed an occupancy detection and track-

ing system for automatic monitoring and commissioning

of a building with the help of an image-based depth sen-

sor and a programmable pan–tilt–zoom camera. A device

free occupant-activity sensing system using Wi-Fi-(IEEE

802.11x)-enabled IoT devices for smart homes is proposed

by Yang et al. [19]. Lee et al. studied an on-road pedes-

trian tracking system across multiple moving cameras [20]

and in another article, developed a technique for vehi-

cle tracking and localization based on 3-D constrained

multiple-kernel tracking [21]. In [22], Chen et al. proposed
a quality-of-content-based joint source and channel coding

system for detecting humans in a mobile surveillance cloud.

Ajiboye et al. [23] proposed Fused Video Surveillance

Architecture (FVSA) that enhances the public safety by uti-

lizing data from privately-owned cameras.

Cloud-based IoT architectures are used for processing and

storing essential surveillance data where each camera/node

sends the data directly to a cloud for all sorts of deci-

sion making. The authors of [24] discussed the contribu-

tion of cloud technology and its secured integration into

IoT architectures. Hossain [9] proposed a framework for a

cloud-basedmultimedia surveillance system that supports the

processing overload, storage requirements, access, security,

and privacy in large-scale surveillance settings. These studies

reveal the capability of cloud computing to satisfy many

IoT requirements (e.g., monitoring, sensor stream processing,

and visualization tasks). However, the large amount of real-

time media data sent by the end devices using high-speed

fiber networks leads to a high network deployment cost [25].

Although the situation has changed in recent years with the

internetworking ability of IoT, still IoT-cloud architecture has

issues regarding bandwidth, energy, and latency in real-time

video surveillance applications [11], [25].

Consequently, fog computing paradigm emerged and

fog–based solutions can now facilitate real-time processing

and fast response time, and reduce latency issues, thus extend-

ing cloud computing and services closer to the end of the

network [11], [25]. Fog, however, can be distinguished from

the cloud by its proximity to the end users, the geographical

distribution, and its mobility support [26]. Ni et al. [10]
explained the architecture, features, and role of fog com-

puting. Distributed and efficient object-detection architecture

in edge computing for real-time surveillance application is

also proposed in [25]. The authors in [27] explained an

edge-computing framework to enable cooperative video pro-

cessing on resource-abundant mobile devices for delay-

sensitive multimedia IoT tasks.

To provide intelligent applications, researchers combined

IoT with AI. An AI and software-defined network-(SDN)-

based system for detecting and correcting multimedia trans-

mission errors in a surveillance IoT environment is described

by [28]. A DL-based pedestrian detection and face recogni-

tion technique for surveillance application in a fog-enabled

IoT environment is proposed by [5]. Li et al. [29] showed
the design of a novel offloading strategy to optimize

IoT DL applications with an edge-computing environment.

Cao et al. [30] described the design of a self-optimizing,

context-driven, and energy-aware IoT wireless video sen-

sor node for surveillance applications. A fog framework

for intelligent video surveillance to enhance crime assis-

tance and safety in public transportation is presented by [8].

Fan et al. [31] described a novel visualization mecha-

nism which fuses multimodal information for large-scale

intelligent video surveillance, utilizing an event-driven

approach. Some architectures and frameworks for event-

driven video surveillance approaches are also described

in [32], [33], and [34], along with energy-aware, event-driven

video surveillance solutions, such as [35] and [36].

The authors of [8] described the critical application

requirements of an efficient smart-surveillance system, such

as real-time and accurate detection of an event, reliable and

agile prediction of crime events, and high-performance ser-

vice deployment. Resource-efficient approaches add benefits

in the IoT-based video surveillance architectures because

of the ever-increasing number of surveillance nodes [11].

A BW-and energy-aware video compression algorithm

for IoT-based video surveillance applications is proposed

by [37]. However, to deploy a resource-efficient and proac-

tive surveillance system, the previously discussed propos-

als may be insufficient. Therefore, this paper proposes

IoT-guard, which successfully addresses all requirements.

It also achieves significant efficiency compared to SoA or

traditional surveillance architectures.

III. IOT-GUARD FRAMEWORK

This section describes the security management framework

of the proposed IoT-guard. The system provides crime

detection and proactive alerts using edge-and fog-integrated

approaches. Fig. 1 illustrates the high-level architecture of

the system for security management at an SHE. Camera-

connected several edge nodes are set at different points to

cover the inside and outside of a residential unit. The event-

driven feature deployed in each of the edge nodes keeps them

on standby unless any significant movement from the human

intrusion is detected. If motion is detected, the edge node

will capturemotion-detected images and forward them and its

own location to a fog node. A single fog node controls several

edge nodes within one single unit or building. Several fog

nodes to cover an entire residential area consisting of several

buildings.

With the help of AI, each fog node can detect and identify

a possible crime event and crime object by processing the

motion-captured images sent by an edge node. If a fog node

identifies and confirms the presence of a human and weapon,

it will classify the type of weapon and immediately dispatch

crime event information (i.e., a labeled image and location)

to the nearest crime prevention unit (i.e., police or protec-

tive service in that area) instantly. Each fog node is also

able to dispatch crime data simultaneously in the form of a
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FIGURE 1. Illustration of high-level view of IoT-guard-enabled security management system.

mobile phone alert message. Using the crime data sent by

the fog node, the crime prevention unit can ensure real-time

crime prevention before the crime actually takes place. The

AI-enabled event-driven fog node also nullifies any false pos-

itive result registered by the edge node. Each crime prevention

unit may receive a crime notification from several fog nodes

covering a residential area. All the fog nodes maintain bidi-

rectional communication with a central cloud server within

a smart city for receiving system updates, crime event data

mining, statistical analysis, and periodic information storage.

Fig. 2 shows a general workflow diagram of the

IoT-guard framework. The three-layer IoT-guard framework

is discussed in detail in the following subsections.

A. EDGE-NODE PROCESSING

The system locates an edge node at the possible crime scene.

The edge node, containing a camera sensor, will detect any

motion, and capture motion-object images and transmit them

to the fog node. The edge node divides its task into three

categories: image processing, motion detection, and motion

image dispatching. The image-processing functionality finds

moving objects in dynamic image sequences by making

use of a pixel-based change detection technique. The most

intuitive method to detect change is the simple differenc-

ing of pixels, followed by thresholding. The detection of

pixel-level change requires little computational cost [38].

Hence, the system will utilize the pixel-based background

subtraction technique for detecting changes or motion in

real-time video sequences at a constrained IoT edge node.

An advantage of the pixel-based background subtraction

technique is that it compensates for the lack of spatial consis-

tency by a constant updating of the model parameters [39].

In addition, the background subtraction method enables

robust segmentation by applying a threshold to the individ-

ual pixel’s difference in subsequent frames, which helps to

separate the moving object or foreground from the back-

ground [40]. We implemented this approach at the edge node

to identify human motion. We tested the algorithm and set the

threshold and sensitivity level for the system to avoid false

positive results.

While the edge node continuously scans for motion using

the motion detection algorithm, it does not perform any trans-

mission of media data. Whenever it detects motion, it imme-

diately captures motion-detected images and dispatches them

to a specific fog node along with its location information.

Then, it continues its function of identifyingmotion as before.

B. FOG-NODE PROCESSING

Deep neural network (DNN) is a popular deep learning (DL)

structure that consists of multiple-layered models of inputs
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FIGURE 2. Workflow diagram of the IoT-guard framework.

that can be used as a feed-forward, convolutional, or recur-

rent neural network [17]. The convolutional neural network

(CNN) is implemented by forming layers based on convolu-

tion, where input data is convolved to a smaller area, detecting

important part within that area. Each of the convolutional

layers applies nonlinear activation functions and filters in the

order of hundreds to thousands and combine their results to

compute the output [17]. A fog node, controlling several edge

nodes, receives motion-detected images from them. Using

intelligent computational methods, it then applies an object

detection algorithm using a pre-trained CNN model.

The CNN architecture that we used to train and build the

classifier model is a simplified version of VGGNet [41].

The model can predict crime objects. In the robberies in

USA for which the Uniform Crime Reporting (UCR) Pro-

gram received weapons information in 2017, firearms were

used in 40.6 percent, and knives or cutting instruments

in 8.1 percent [6]. Therefore, we collected gun1 [42] and

knife2 datasets to train and build a CNNmodel that is capable

of detecting guns and knives. Hence, the CNNmodel running

at a fog node detects and labels the images with the name of

the crime objects having the highest probability, and saves

those images. The fog node then assembles and sends crime

data (i.e., the labeled image, crime event location, and camera

position) to the nearest crime assistance or police unit and

1https://sci2s.ugr.es/weapons-detection
2https://github.com/Hvass-Labs/knifey-spoony

also sends an alert message to the protective service in real-

time. On the other hand, the cloud is responsible for generat-

ing updated CNN crime data models (i.e., by using transfer

learning methods [43]), so that the fog node can download

them whenever they are available.

C. CRIME PREVENTION UNIT

The crime unit receives the crime image, alert message, and

crime location information. The alert message consists of the

crime data and location, and the labeled-image verifies and

confirms the crime weapon. Finally, the location information

tells the police where the crime might occur so they can take

necessary steps to prevent it.

IV. EVALUATION OF THE IOT-GUARD FRAMEWOK

In this section, we describe the deployment of the testbed

architecture in a laboratory environment. The camera-

connected edge node and the fog node are implemented using

a Raspberry Pi 3 (RPi) device and a personal computer (PC),

respectively. The hardware and software configurations, com-

munication network, and the real-time experimental evalua-

tion of the prototype are discussed elaborately in this section.

A. DEVICE AND HARDWARE CONFIGURATION

The Raspberry Pi3 3 model B (RPi) is one of the most

common devices for emulating an IoT edge node [44].

3,4https://www.raspberrypi.org
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Its quad-core 64-bit ARM Cortex A53 operating Raspbian

stretch (clocked at 1.2 GHz) has a built-in 802.11 n Wireless

LAN and 400MHz Video Core IV. These features enable it to

encode/decode visual data and apply a motion detection algo-

rithm to real-time video input. The Pi camera-board4 plugs

directly into a dedicated 15 pin MIPI camera serial interface

(CSI) on the RPi through a 15 pin Ribbon cable. This 5 MP

camera sensor can capture a maximum of 2592 × 1944 res-

olution static images as well as support the 1080@30fps,

720@60 fps, and 640 × 480@60/90 fps video recordings.

Hence, the pi camera connected with the RPi will serve as a

visual edge node for this experiment and the prototype.

An Intel(R) Core (TM) i7 processor clocked at 3.40GHz

with 24GB RAM and 64-bit Windows 7 operating system

will be functioning as a fog node for the experimentation.

The training, validation, and testing of the CNN model are

also done using the CPU of this device. Another PC with a

Linux operating system will be used to receive crime data

(i.e., acting as a protective service unit), while a smartphone

will receive the Short Message Service (SMS) alert.

B. NETWORK AND SOFTWARE CONFIGURATION

Based on the evaluation and experimentation of [11], we set

IEEE 802.11(WLAN) as the physical layer protocol, IPv4 as

the network layer protocol, and, finally,MQTT as the applica-

tion layer protocol for the proposed system. TheMQTT client

publishes multimedia data (text, image, and video) through

a specific topic to the broker/server, and, then, the broker

forwards the data to the clients who have subscribed to that

topic [11]. The publisher/subscriber side scripts for the proto-

type are all written using Python5 (version 2.7.13 and 3.5.6).

Wireshark6 (version 2.6) and tcpdump5 are used to monitor

and analyze the generated network traffic between the edge

node and the fog node, and from the fog to the protective

service unit. The system utilizes Eclipse mosquitto7 message

broker as the dedicated MQTT broker. With the help of an

MQTT Python client library called Paho-mqtt8, it creates

applications for a multimedia publisher and subscriber at

different nodes. It also connects to the mosquitto broker to

route the data to the subscriber using the specified topic.

In addition, the system uses the Twilio9 API for producing

SMS notifications. All these software programs and libraries

are open-source and free.

C. PROTOTYPE EVALUATION

We evaluated the implemented laboratory prototype of the

system in several steps. The first step evaluates the motion

detection algorithm and data transmission performance of

the edge node. The second step refers to the evaluation of

the trained CNN model and its prediction accuracy at the

fog node. Finally, the third step includes the crime data, and

5https://www.python.org
6https://www.wireshark.org
7https://mosquitto.org
8https://pypi.org/project/paho-mqtt
9https://www.twilio.com

TABLE 1. Experimental parameter at edge node.

FIGURE 3. Image with an intruder holding a knife to be sent to the fog
device, after motion is detected (image taken in a lab setting).

SMS alert transmission and reception performance of the

prototype. The following subsections describe the evaluation

steps.

1) EVALUATION AT THE EDGE NODE

We implemented and tested the motion detection algorithm

at the edge node. Table 1 shows the experimental parameters

used to get the best output from the algorithm. The camera at

the edge successfully scanned and detected an intruder, and

then captured and transmitted images instantly according to

the parameter described in Table 1. Fig. 3 shows a motion-

detected image captured at the edge node.

2) CNN MODEL EVALUATION

We trained the fog device using around 1,000 knife images

and 800 gun (i.e., pistol) images. The ratio of the training-

to-testing images was 8:2. The images were categorized

into two sub-labels, gun and knife, and under two labels,

weapon and auto-weapon. The validation loss after 25 epochs

was negligible. However, training the machine with a large

number of datasets ensures better accuracy of prediction.

Figs. 4 and 5 show the evaluation result of predicting crime

objects using the CNN model. The model detected a knife

and a gun (shown in Fig. 4) and labeled them on the images.

The model is equally efficient on real-world CCTV images

as well, as shown in Fig. 5.

3) CRIME DATA TRANSMISSION AND RECEPTION

The fog node increases the resolution of the crime image

(800x540), then successfully dispatches the crime data

(i.e., the object labeled image and location) and SMS alert

to the protective service in real-time. Figs. 6 and 7 show the

received crime information at the crime unit of the system.

The IoT-guard can insert the name and highest probability of

the crime object in the SMS notification as well.
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FIGURE 4. (a) Knife and (b) gun detected and labeled on the images at
the fog (Lab environment).

FIGURE 5. Detection on real-world CCTV images (image source: (a) [45],
(b) [46], (c) [47], (d) [48], (e) [49], and (f) [50].

FIGURE 6. Crime information received at the crime unit, (a) SMS alert and
(b) knife-detected image.

Fig. 8 shows the prototype configuration, operation, and

the communication protocol stack of the proposed system

as a testbed. This prototype architecture is used to evaluate

the function and performance of the IoT-guard in real-time.

We utilized the method described in [11] to measure different

parameters of the system, such as system latency at different

FIGURE 7. Crime information received at the crime unit, (a) SMS alert and
(b) gun-detected image.

TABLE 2. Performance observation of IoT-guard.

nodes, data transmission latency, percentage of CPU, and

memory usage, and energy consumption.

Table 2 shows the performance of the system. Although

the system was implemented in a lab environment, its per-

formance was quick enough to report the potential crime

beforehand with negligible latency.

The energy measurement at the fog node was out of the

scope of this research, because the proposed architecture

has focused on real-time data processing using the high-

computational CNN model at the fog node to save computa-

tional cost, energy, and bandwidth at the resource-constrained

edge nodes of the IoT-based surveillance system. Therefore,

we performed energy measurements only at the edge node for

performance evaluation and comparison.

V. PERFORMANCE COMPARISON AND DISCUSSION

In this section, we compare the performance of the pro-

posed IoT-guard with traditional surveillance architectures

and the SoA framework. Because of the importance of the

resource-efficiency, video compression techniques are con-

sidered in order to save a significant amount of transmission

energy during deployment in the IoT surveillance nodes [37].

Therefore, we compare the performance of our proposed

system with a similar IoT-based video surveillance archi-

tecture [25], with and without an IoT video compression

algorithm [37]. The parameters compared include storage
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FIGURE 8. Testbed configuration used in the evaluation of the deployed IoT-guard.

requirement, transmission BW, energy consumption, and

memory and CPU usage.

We implemented and compared four different IoT

surveillance architectures: architecture 1, architecture 2,

architecture 3, and architecture 4, which communicate from

an edge/end node to a fog node for video surveillance

applications. Architecture 1 [25] continuously transmits cap-

tured images/video from an end node to a fog node, where

the deep-learning model processes them for object detec-

tion. Architecture 2 resembles architecture 1, except for

an additional inter-frame/video compression [37] technique

appended to the video captured at its edge node. Archi-

tecture 3 is the proposed IoT-guard system, where the end

node utilizes a lightweight motion detection algorithm only.

Architecture 4 resembles the IoT-guard but with the inter-

frame/video compression [37] technique added to its edge

node. We applied an intra-frame compression (i.e., JPEG

[Joint Photographic Experts Group]) technique to all these

four architectures as a general IoT characteristic. The evalua-

tion was made using similar hardware in the lab environment

for better comparison among these architectures.

Figs. 9 to 17 present graphical contrasts among these sys-

tems in terms of storage, BW, and energy saving and CPU

usage. Tables 3 and 4 show numerical measurements of the

parameters of interest of these architectures. We observed

these parameters at the end node (i.e., edge) of these struc-

tures. The proposed IoT-guard transmitted only those events

triggered by anomaly/motion detection incidents, while the

traditional architectures, 1 and 2, continuously transmitted

multimedia data throughout the day. Therefore, we varied the

number of anomaly events (i.e., 1, 5, 10, 50, and 100) at the

edge node of the IoT-guard to compare its performance with

the traditional architectures.

It is evident from Table 3 that, although the maximum

percentage of memory usage of these architectures is similar,

they significantly vary in percentage of CPU usage. In the

case of structures 1 and 2, the camera-connected edge nodes

capture images, and process and transmit them continuously.

Consequently, the percentage of CPU usage of these architec-

tures is higher if we compare them with 3 and 4. In contrast,

the proposed architecture uses a lightweight event-driven

approach and transmits only if an anomaly/event occurs.

Therefore, its percentage of CPU usage is significantly less

than the other structures. Even though architecture 4 uses

the same features as architecture 3, its additional computa-

tional burden due to the video compression algorithm makes

the CPU usage higher compared to that of architecture 3.

Fig. 9 presents the graphical contrast among these
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TABLE 3. Comparison among different IoT-based video surveillance architectures.

TABLE 4. Energy consumption comparison.

architectures in terms of the percentage of CPU usage

savings. The proposed IoT-guard provides around 60 percent

savings in CPU usage compared to others.

From Table 3, it is clear that the average storage require-

ments of structures 1 and 2 differ from the others signifi-

cantly. Fig. 10 shows the efficiency of the IoT-guard in terms

of savings in storage requirement. Whether the IoT-guard

architecture is deployed with or without the video compres-

sion, the storage requirement is reduced by 99 percent at

the fog node, even though the number of anomalies/events

is 100 (Fig. 10). On the other hand, as shown in Fig. 10,

associating the compression algorithm with the proposed

architecture helps the IoT-guard save 20 percent more storage

at the receiving fog node, which is required for day-long data

transmission.

Similarly, the proposed architecture is substantially

BW efficient compared to architectures 1 and 2. The event-

driven feature helps the system to maintain constantly the

BW savings above 99 percent. This BW efficiency is related

neither to the number of events nor the integration of the video

compression (Figs. 11 and Fig. 12). Although architecture 4

saves lightly more than architecture 3, especially when the

number of events increases (as shown in Fig. 13), it does not

impact much on the overall BW savings compared to the tra-

ditional architectures, i.e., 1 and 2 (shown in Figs. 11 and 12).

In addition, the proposed architecture is equally energy

efficient either it is deployed with or without the video

compression technique compared to architecture 1 and 2.

Table 4 shows the comparative numerical analysis of

the energy consumption of these four IoT architectures.
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FIGURE 9. Comparison of percentage of CPU usage savings.

FIGURE 10. Comparison of percentage of storage savings at the fog node.

FIGURE 11. Percentage of BW savings compared to architecture 1.

Figs. 14 and 15 show that the IoT-guard can save

24 percent energy and 50 percent energy compared to archi-

tectures 1 and 2, respectively, which is unaffected by the

integration of the video compression or the number of events.

FIGURE 12. Percentage of BW savings compared to architecture 2.

FIGURE 13. Difference in BW consumption between architectures 3 and 4
based on the varying number of events.

FIGURE 14. Percentage of energy savings compared to architecture 1.

Moreover, the proposed system can save 42.9 percent more

energy if it omits the video compression algorithm (Fig. 16).

Fig. 17 shows the difference in energy consumption based on

the varying number of events, between architectures 3 and
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FIGURE 15. Percentage of energy savings compared to architecture 2.

FIGURE 16. Overall comparison of percentage energy savings.

architecture 4 during the detection and transmission of mul-

timedia data.

Later, we compared our proposed system with a state-

of-the-art (SoA) architecture [8]. In the SoA architecture,

the authors incorporated a deep learning (DL) based real-

time object-detectionmodule in the edge node (RPi), aimed at

human vision ability. According to this architecture, the edge

node detects the crime object, using the DL-based object-

detection module and the fog node provides all the crime

object templates. The fog also performs second-level pro-

cessing to confirm the crime object and then informs the

crime services. Therefore, the SoA architecture conducts two-

levels of processing and detection. We implemented the SoA

architecture as a laboratory prototype to compare it with

our proposed system by categorizing the processing into two

parts: the edge-to-fog unit and the edge-to-fog-to-crime unit.

Then the performance of this SoA system was evaluated and

compared to the proposed one.

The implementation of the SoA architecture resulted in

some significant outcomes and findings. The architecture

FIGURE 17. Difference in energy consumption between architectures 3
and 4 based on the varying number of events.

TABLE 5. Comparison between proposed and SoA architecture.

performed poorly, when we ran the trained CNN model at

the RPi edge node to detect objects in real-time. The edge

node froze several times due to the computational workload

imposed on it by the DL model even though the frame rate

was too low (5fps). Therefore, we checked the performance

using some pre-saved images and also using a single image

at a time. Still, the performance in terms of memory and

CPU usage, and detection time did not improve that

much. Table 5 shows the results and comparison.

It is clear that running a deep-learning object-detection

model requires very high CPU and memory usage in a con-

strained IoT device, reducing the scalability at the edge node.

In addition, the low agility of the SoA system increases

energy consumption significantly. Moreover, large compu-

tations can reduce system performance or freeze it at the

edge node, which is very inefficient for real-time surveil-

lance applications. On the other hand, the IoT-guard utilizes

a lightweight motion detection algorithm at the constrained
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TABLE 6. Qualitative comparison among different real-time surveillance systems.

edge node and runs the heavy computational CNN model

at its unconstrained fog node to detect crime objects. This

approach distributes the workload quite efficiently among

different nodes of an IoT surveillance system and achieves

high savings in CPU (84.8 percent) and memory usage

(90 percent). It also leaves room for scalability to add other

computationally lightweight intelligence at the edge node

and highly computational algorithms at the fog node, while

keeping the proper balance in the workloads. This balance

makes the proposed system faster and enables real-time crime

detection. In addition, the lightweight motion detection algo-

rithm greatly reduces the energy consumption of its edge node

by about 98 percent compared to the SoA architecture, which

utilizes a heavy CNN model for the same purpose at its edge

node.

Therefore, the choice of effective communication architec-

tures and protocols [11], proper distribution of computational

workload, and appropriate algorithms enhance the efficiency,

agility, and scalability of the system, while reducing the

energy consumption significantly. The comparison results,

shown in Table 5 and Fig. 18, also illustrate the greater

efficiency of the system in terms of time, energy, and memory

and CPU usage compared to the SoA architecture.

FIGURE 18. Comparison of CPU and memory usage, and energy with SoA
at edge.

Finally, a generic and comparative analysis between the

proposed architecture and other IoT-based architectures is

made, as shown in Table 6. The comparison shows the supe-

riority of the proposed IoT-guard architecture over others.
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It incorporates criteria to provide a proactive crime

detection and management system using a decentralized

edge-fog-cloud-based surveillance architecture. The proper

distribution of computational loads from a constrained edge

node to a resourceful fog node enables the system to pro-

vide real-time operation and service. In particular, shift-

ing the heavy processing and computational burden to the

fog node significantly reduces cost, and saves energy and

bandwidth consumption. The event-aware lightweight algo-

rithm reduces the computational load at the constrained

edge node, allowing scalability in order to integrate more

intelligence in the future. Moreover, the high resource-

awareness at the constrained edge node benefits the IoT-based

video surveillance architecture to cope with the growing

number of surveillance nodes [11]. Feeding context-aware

critical multimedia data to the fog node and utilizing low

resource-consuming constrained edge nodes allows a drastic

reduction in the overall cost of the system deployment as

well.

VI. CONCLUSION

In this article, we have presented the design, deployment, and

performance evaluation of the IoT-guard, which is an event-

driven and fog-based smart-surveillance system for real-time

crime detection and security management. The application

targets security management within a smart home environ-

ment under the smart-city paradigm. We evaluated the suit-

ability and feasibility of the proposed system by deploying

a laboratory testbed of the IoT-guard and observed its per-

formance. We implemented the proposed architecture with

and without a video compression algorithm and compare the

performance between them along with other IoT-based video

surveillance architectures. Our system outperformed others

with greater efficiency in terms of energy, bandwidth, and

percentage of CPU usage. Although the video compression

algorithm helped our proposed IoT-guard architecture to save

20 percent more storage, it reduced its efficiency, notably in

terms of energy and percentage of CPU usage. Therefore,

the proposed system is far more efficient even without the

video compression algorithm. Then, we performed a quan-

titative analysis between the proposed architecture and the

SoA architecture. The outcomes proved the superiority of our

proposed system in terms of agility, scalability, energy, and

CPU andmemory usage. Finally, an overall comparative anal-

ysis concluded the pre-eminence of the proposed IoT-guard

over others, given the requirements of present and future

video surveillance. We can upgrade the proposed system in

the future by adding other types of crime objects or threat

events to the model without changing the system configura-

tion. Moreover, it can be further trained to detect more fea-

tures in the future, for instance, utilizing transfer learning, and

thus enabling it to differentiate between resident members

and intruders using facial recognition features. This system

could include more intelligence and services in the future for

other video surveillance applications by utilizing its efficient

workload management ability.
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