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Abstract: The Internet of Things (IoT) ecosystem has experienced significant growth in data traffic
and consequently high dimensionality. Intrusion Detection Systems (IDSs) are essential self-protective
tools against various cyber-attacks. However, IoT IDS systems face significant challenges due to
functional and physical diversity. These IoT characteristics make exploiting all features and attributes
for IDS self-protection difficult and unrealistic. This paper proposes and implements a novel feature
selection and extraction approach (i.e., our method) for anomaly-based IDS. The approach begins
with using two entropy-based approaches (i.e., information gain (IG) and gain ratio (GR)) to select
and extract relevant features in various ratios. Then, mathematical set theory (union and intersection)
is used to extract the best features. The model framework is trained and tested on the IoT intrusion
dataset 2020 (IoTID20) and NSL-KDD dataset using four machine learning algorithms: Bagging,
Multilayer Perception, J48, and IBk. Our approach has resulted in 11 and 28 relevant features (out of
86) using the intersection and union, respectively, on IoTID20 and resulted 15 and 25 relevant features
(out of 41) using the intersection and union, respectively, on NSL-KDD. We have further compared
our approach with other state-of-the-art studies. The comparison reveals that our model is superior
and competent, scoring a very high 99.98% classification accuracy.

Keywords: cybersecurity; anomaly detection accuracy; feature selection; Internet of Things (IoT);
intrusion detection system; and machine learning

1. Introduction

New cybersecurity risks have emerged owing to organizations deploying Internet
of things (IoT) devices in IT (information technology) and OT (operational technology)
environments. Such new risks threaten to undermine structural tenets such as safety,
mobility, efficiency, and security of operational ecosystems. New threat vectors not only
affect technological aspects of our lives but also pose a risk towards financial and physical
wellbeing [1]. The threat of attack has brought several insecurities to online privacy,
social networks, business, and critical infrastructure [2,3]. Therefore, the development of
resilient strategies has become an essential part of dynamical environments such as the
IoT ecosystem. IoT is a constantly evolving emerging technology set [4,5] that changes
the security and risk schematics of automated networked systems [6,7]. IoT has spread
into a wide range of human systems to shape the core of our industrial society to become
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the man–machine interface of life. By 2024, IoT is expected to reach 83 billion devices
operationally [8]. IoT applications include smart cities, smart homes, and intelligent
transportation. These applications deploy IoT devices to increase productivity and reduce
costs by using ’plug-n-play’ kits that do not require extensive prior device knowledge.
Such a ‘plug-n-play’ configuration increases the risk of cyber-misbehavior. Compounding
factors include the typical mixture of multitudes of wired or wireless communications that
employ cloud-connected embedded systems used by consumers to interconnect with each
other [9,10].

Intrusion detection systems (IDS) are widely used to improve security posture in an
IT infrastructure. An IDS is considered a suitable and practical approach to detect attacks
and assure network security by safeguarding against intrusive hackers [3]. Anomaly-based
IDS approaches can efficiently detect zero-day (unknown) attacks [11,12]. An intrusion
can be defined as a sequence of unexpected activities locally or globally, harming network
confidentiality, integrity, and/or availability (i.e., the CIA triad) [13,14]. The network traffic
consists of packets associated with packet header fields. Features related to those instances
are important to define the purpose of detecting anomalies. The purpose of an IDS is to
detect and/or prevent abnormal misbehavior (i.e., unauthorized use), both passive and
active network intruder activities, and thus improve CIA.

In recent times, machine learning (ML)-based approaches have been employed for
intrusion detection in IoTs IDSs [3,15–21]. Existing IDSs assume that the IoT devices have
the same feature pattern and packet types. However, IoT devices vary in some respects,
such as hardware characteristics and functionality, computational capability, and different
abilities for generating various features [11,22]. The features become sparse when nodes
are aggregated to create data, and the irrelevant features (attributes) are set to either nulls
or zeros. Data sparsity is one of the disadvantages that affect the accuracy and efficiency of
data modeling. Feature selection, an important part of a machine learning-based solution,
plays an important role in increasing detection accuracy and speed of the training phase.
Several feature selection techniques have been proposed to improve detection of anomalous
behavior variants such as Flexible Mutual Information-based Feature Selection (FMIFS) [23],
Modified Mutual Information-Based Feature Selection (MMIFS) with Support Vector Ma-
chine (SVM) [24], and SVM with Neural Networks (NN) [25]. Those approaches/models
and other recent state-of-the-art studies have been presented in the related work section.
Detection accuracy of anomaly-based IDSs is considered the main challenge in the IoT ecosystem due
to the constantly evolving nature of the IoT environment [26,27]. This paper proposes a novel
feature selection approach for machine learning-based IDS towards obtaining a resilient
performance within the diverse IoT ecosystem.

1.1. Feature Selection

IoT datasets are of intrinsically high dimensionality represented by n instances and m
columns (features) [11]. The data matrix is X ∈ RN×M, and the Y is the target variable(s)
(class(es)). A target instance (class) may be either discrete or continuous, and the model
can also be dynamic or static. A feature selection (FS) enhances model performance by
reducing dimensionality. FS can be defined as a subset of P�M features, i.e., XFS ∈ RN×P,
where p are relevant features of the target class. In this research, we endeavored to find an
optimal method to detect security violations in the IoT ecosystem; efficient, accurate, and
general. What follows provides the rationale we used to find what we claim is optimal.

Feature selection endeavors to eliminate irrelevant and redundant features and to
choose the most pertinent and important features. Furthermore, the FS process usually
improves the general performance and data dimensionality, reducing the cost of classi-
fication and prediction by reducing the time complexity for building the model. On the
other hand, applying all features in the IDS model includes several drawbacks: (i) the
computational overhead is increased, and training and testing time are slower, (ii) storage
requirements increase due to the large number of features, (iii) the error rate of the model
increases because irrelevant features diminish the discriminating power of the relevant
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features as well as reduce accuracy. FS approaches can be characterized into five cate-
gories: (i) filter-based, (ii) wrapper-based, (iii) embedded-based, (vi) hybrid-based, and
(v) learning-based. The filter method gives weights to each feature (i.e., dimension), sorts
them based on these weights, and then uses those subsets of features to train the model for
either classification or prediction. Therefore, the process of feature selection is independent
of the classification/prediction techniques. Numerous statistical measures are used in
filtering methods to obtain feature subsets.

The model, using a particular FS method, initially uses all features but subsequently
omits unrelated features to address the curse of dimensionality problem. This refining
is designed to acquire the best subset of features based on statistical gauges such as
information gain (IG) and gain ratio (GR), Pearson’s correlation (PC) [28], chi-square
(Chi12) [29], and mutual information (MI) [30–33]. The wrapper method is considered a
black box technique [34]. Inductive algorithms are used to select feature subsets in the
wrapper method, whereas filter methods are independent of the inductive algorithm. In
addition, wrapper methods are more complex and expensive computationally than filter
methods because they rely on iterating the learning systems (i.e., ML-derived models)
several times until a subset of relevant features is reached. Moreover, the wrapper method
accounts for the influence of the model performance on the feature subsets and strives to
achieve high classification accuracy.

Embedded methods are incorporated with ML algorithms to select a feature subset
during the learning process. The blending of feature selection approaches is used during
the learning process to achieve advantages by improving classification, accuracy, and
computational cost. Embedded methods can avoid retraining the model when the model
needs to add a new feature to the subset. Concerning the structure of the embedded
approach, the feature selection process is integrated with the classification algorithm and
simultaneously performs feature selection such as random forest, LASSO (Least Absolute
Shrinkage and Selection Operator), and L1 regularization [35]. Embedded methods are
computationally less intensive than wrapper methods. However, they still have high
computational complexity. Furthermore, the selected feature subset result depends on the
chosen learning algorithm. Thus, embedded methods endeavor to find the best feature
subset during model building by selecting each feature individually. Furthermore, they
derive significant advantages in terms of model interaction, accuracy, fewer variables, and
computational cost than previous approaches.

Information Gain (IG) [36] is one of the most widely used approaches in preparing
features from a filter-based approach. That is, IG provides a classification ranking of all
attributes (features) related to the target (class). Then a threshold is assigned to select
several features according to the order obtained. Accordingly, a feature that strongly
correlates with the target is considered a relevant feature and irrelevant (or redundant)
otherwise. However, a weakness of the IG criterion is a bias favoring features with more
values, especially when they are not more informative. Thus, IG between the feature in X
and the variable (target) y is given here in Equation (1):

IG = H(Y)− H(Y|X) = H(X)− H(X|Y) (1)

where H(x) is the entropy of x given y. The entropy of y is defined by Equation (2):

H(y) = − ∑
y∈Y

p(y) log2(p(y)) (2)

where p(y) is the marginal probability of y on all values of Y. Note, Y is a finite set. Moreover,
the conditional entropy of Y given the random variable X is shown in Equation (3):

H(Y|X) = − ∑
x∈X

p(x) ∑
y∈Y

(p(Y|X) log2(p(Y|X)) (3)

where p(y|x) is the conditional probability of y given x.
IG is a symmetrical measure such as IG (x, y) = IG (y, x), as shown in Equation (1).
The information gained about Y after observing X is equal to the information gained

about X after observing Y.
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Gain Ratio (GR) [37] is the non-symmetrical measure introduced to compensate for
the bias of the IG attribute evaluation. The GR formula is given in Equation (4):

GR = IG/(H(X)) (4)

Accordingly, to ensure a high-performing predictive model, we have applied two
feature selection methods, i.e., IG and GR, over the collected dataset. The experiment
has been conducted three times to extract various sets of features. The outcomes are
reported in Table 1. Indeed, feature selection methods are essential for improving model
performance by consuming fewer computing resources, accelerating the training process,
and overcoming the overfitting/underfitting issues.

1.2. Our Contributions

The contributions of this paper include that we:

• Present a filter-based method to optimize the FS process using the IG and GR methods
that use various techniques to obtain only the most essential features.

• Employ the concept of mathematical sets (intersection and union theory) to generate
a hybrid feature selection approach (i.e., called hybrid here since we have combined
two filter-based feature ranking approaches, IG and GR; to extract the minimum
and maximum of the best relevant features). The proposed process consists of two
feature selection modules. The first module uses the intersection rule to select the
most relevant features from the former phase. The second module plays the same role
as the first but instead uses the union rule. The result of these modules is to have the
best relevant features selected, which are then fed to ML classifiers in the next phase
for the ensemble and singular classifiers. In this way, our hybrid introduces a simple,
practical in the context of IoT, and efficient yet effective methodology that requires less
training time still better performance compared to other techniques.

• Employ diverse ML algorithms and ensemble ML algorithms with a majority voting
to create an intelligent IDS scoring a maximum detection accuracy of 99.98% for our
ML ensemble-based hybrid feature selection that employs (i) IMF: Intersection Mathe-
matical set theory FS inspired by the intersection theory concept, and (ii) UMF: Union
Mathematical set theory FS is inspired by the union theory concept. The method works
in a systematic way that has not been published elsewhere in the literature to the best
of our knowledge.

• Providing extensive experimental results to gain insights into the proposed approach
as an effective and general IoT ecosystem IDS solution methodology.

1.3. Paper Organization

The rest of this paper is organized as follows: Section 2 reviews the recent state-of-
the-art research in this subfield poised to secure the IoT ecosystem. Section 3 describes the
proposed anomaly-based IDS. Section 4 discusses the experimental analysis and results.
Section 5 concludes the paper.

2. Related Work

Significant and fruitful efforts have endeavored to address the security concerns of
recent years for the IoT ecosystem. Several new IoT security technologies were established
by pairing artificial intelligence techniques and cybersecurity virtues. Several promising
state-of-the-art studies have been conducted for IoT security using machine learning
(ML) and deep learning (DL) techniques [38–47]. However, only a few were developed
by investigating the impact of using different feature selection approaches to improve
prediction and classification accuracy. For instance, Albulayhi et al. [11] have proposed
and implemented a new minimized redundancy discriminative feature selection (MRD-FS)
technique to resolve the issue of redundant features. The discriminating features have
been selected based on two criteria, i.e., representativeness and redundancy. Their model
was evaluated utilizing the BoT-IoT dataset. Ambusaidi et al. [23] presented a flexible,
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mutual information-based feature selection technique (FMIFS) that chooses the best features
to enhance the classification algorithm. The proposed model was evaluated using three
datasets (NSL-KDD, KDD Cup 99, and Kyoto 2006). The Least Square Support Vector
Machine-based IDS (LSSVM-IDS) was used to measure performance. Ambusaidi et al. [23]
showed 99.79% accuracy, 99.46% detection rate (DR), and 0.13% FPR over the KDD99
dataset. However, their employed datasets are not up-to-date (date back to 2009, 1999,
and 2006 for NSL-KDD, KDD-Cup99, and Kyoto datasets, respectively) and do not fully
represent the IoT cyberattacks.

Similarly, Amiri et al. [24] proposed a modified mutual information-based feature selec-
tion technique (MMIFS) applied with the SVM to improve the accuracy performance of the
classification and to (highly) efficiently detect the various attack types. They demonstrated
how high data dimensionality could be enhanced using the feature selection technique.
Note, high dimensionality, even if applied to a high-quality ML approach, produces poor
detection rate and accuracy performance. MMIFS can reduce features to only eight features
(out of 41). For instance, MMIFS with SVM using only eight features, and DR achieved
86.46%. In the first phase, data normalization and reduction are applied by dividing every
attribute (feature) value by its maximum value. In the next phase, feature selection is
applied based on the imported training data. Further, MMIFS initially takes the feature
set as the empty set. In more detail, it calculates the mutual information of the features
concerning the class target and then picks the first feature with the maximum mutual
information value.

Moreover, Lin et al. [48] proposed an approach integrating k-nearest neighbors with
the k-means algorithms (KNN) based on feature extraction to select the best features and
classify network attack types. Two-dimensional vectors are created. In the first phase, a
clustering algorithm is applied to cluster the training dataset, determining the new feature
value based on two distances. The first is between a current feature and its cluster center
(centroid), and the second is between the current feature and its nearest neighbor. A new
one-dimensional distance based on feature value represents each feature (attribute) in the
training dataset. In the next phase, principal component analysis (PCA) is applied to select
the relevant features and omit irrelevant ones. In a similar context, Khammassi et al. [49]
introduced a wrapper technique for feature selection of their IDS. Their approach uses
logistic regression and a genetic algorithm as an exhaustive search strategy for classification
methods. Moreover, the decision tree (DT) classifier has been applied in their model,
which has enhanced performance: an accuracy of 99.9% and false alarm rate (FAR) of
0.105% on the KDD Cup 99 dataset using only 18 features. They name their approach
the genetic algorithm and logistic regression (GA-LR) wrapper approach. However, their
utilized dataset is not up-to-date (KDD-Cup99 dataset dates back to 1999), consists of a
large number of duplicate samples, and does not fully represent the IoT cyberattacks [40].

Another noticeable work is presented in [50], where the authors propose a feature
reduction method using correlation-based methods and Information Gain (IG) to classify
the network traffic into normal or attack (abnormal). However, the major disadvantage
here is represented in the manual preprocessing performed over the preprocessing phase
to fit the information-gain and correlation-based approaches.

In contrast, Sindhu et al. [51] proposed a wrapper approach to select relevant features
and remove irrelevant features from the whole feature set to achieve higher detection
accuracy using the neurotree method. They conducted their model as follows: (1) removing
redundant features to make an unbiased detector composed of ML algorithms, (2) employ-
ing a wrapper-based feature selection algorithm to identify a suitable subset of features,
and (3) combining neurotree with IDS to achieve better detection accuracy. These three
phases of wrapper-based features selection have been used to achieve a lightweight IDS
system and employ a neural ensemble decision tree iterative procedure to select features and
optimize performance. A total of six decision tree classifiers for the proposed model are
used: random tree, decision stump, naive Bayes’ tree, C4.5, random forest, and repre-
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sentative tree model have been performed to build the detection model of an anomalous
network pattern.

Sung et al. [25] removed one feature at a time to represent their experiments on
two selected ML algorithms (SVM and neural network). Then, they applied this process
to the intrusion detection dataset of the Defense Advanced Research Projects Agency
(DARPA-ID-1998 dataset) to evaluate their proposal. In terms of the five-class classification
(target variables) in this dataset, it was found, experimentally, that using only 34 of the
“most important” features, rather than the complete 41-feature set, resulted in a statisti-
cally insignificant change in performance (i.e., accuracy) for intrusion detection. While
in [52], Li et al. presented a wrapper-based feature selection method to build a lightweight
IDS (i.e., useful in the IoT ecosystem). They performed two strategies: the first strategy is a
modified random mutation hill climbing (RMHC) as the search strategy and the second
strategy is a modified linear SVM as an evaluation criterion. The proposal attempts to
accelerate feature selection yielding reasonable detection rates which is generally the case.

Additionally, Peng et al. in [32] suggested a minimal-redundancy-maximal-relevance
criterion (mRMR) for first-order incremental feature selection. This standard uses a feasible
methodology for selecting features at a meager cost. Using three different classifiers,
they have used maximal relevance standards to compare with their proposed approach.
Their experiments showed that an mRMR feature selection could meaningfully improve
the classification accuracy. The technique can be used in both continuous and discrete
datasets. Ullah and Mahmoud [53] have presented anomaly detection techniques and
characterized different attack categories. Moreover, they have generated a new IoT dataset
(IoTID20). In [54], Qaddoura et al. presents an IDS proposal addressing the class imbalance
that includes three stages (i.e., integrated clustering, classification, and oversampling
techniques). Oversampling is used to tackle the lack of a minority class problem. However,
they neglected to choose features carefully. In [55], Yang and Shami have proposed an
optimized adaptive sliding windowing (OASW) approach to secure IoT data streams.
However, they did not improve their feature selection approaches. Krishna et al. [56]
have also discussed various supervised feature selection methods such as filter methods,
sequential forward processing using three ML methods namely random forest (RF), SVM,
and eXtreme gradient boosting (XGBoost).

Although previous studies [3,11,15–27] revealed that the detection accuracy of anomaly-
based IDSs is considered the main challenge in the IoT ecosystem due to the constantly
evolving nature of the IoT environment. However, we are convinced that most studies
are not conducted to improve the feature selection approaches. Thus, this paper proposes
a novel feature selection approach for machine learning-based IDS towards obtaining
resilient performance within the diverse IoT ecosystem. In other words, our current paper
presents a machine learning-based solution that uses a hybrid feature selection approach to
attain a higher detection rate with a low false-positive rate. Table 1 summarizes the salient
features of the works surveyed in the literature review.

Identified Literature Gaps and Open Challenges

Even though there are a large number of studies in this field, the reviewed state-of-art
models indicate that the redundancy of features and high dimensionality are still open
challenges. Herein, therefore, we propose an effective model for optimal feature extraction
and reduction of training time complexity. Most studies focus on improving the IDS model
to classify the result into the binary classification or the multi classification. In general, the
IDS models that fits both attack, non-attack classes, and a high-dimensionality environment
are still weak and incomplete. Existing anomaly detection models suffer from a high rate
of false alarms. Currently, these studies suggest that any pattern which deviates from the
normal pattern is an anomaly, even when this is not the case (i.e., a false indicator). This
prediction error is due to the negative correlation in irrelevant features.
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Table 1. Summary of different feature selection approaches.

Reference Feature Selection
Approach

Number of
Features Detection Model Environment Datasets Performance

Metrics

[23] FMIFS Candidate
Features Selected LS-SVM IoT system

KDD Cup 99 d,
NSL-KDD, Kyoto

2006+
DR, FPR, Accuracy

[24] MMIFS Candidate
Features Selected SVM

Discrete,
Continuous
environment

KDD Cup 99

Falsepositve rate
(FPR), false

detection rate (DR),
Accuracy

[25] - Candidate
Features Selected SVM, ANN Continuous

environment DARPA
Accurecy, False

positive rate, False
negative rate

[32] mRMR, wrappers,
Max, MaxRel

Candidate
Features Selected NB, SVM, LDA

Discrete and
continuous

environment

HDR, ARR, NCI,
LYM Lowest Error Rate

[48] PCA 6 and 19 KNN with K-means,
CANN

Continuous
environment KDD Cup 99 Accuracy, Detection

rate, False alarm

[49] Wrapper, GA, LR
15, 16,
17, 18,
20, 22

logistic regression, a
genetic algorithm,

decision tree
IoT system KDD Cup 99 Accuracy, Recall,

DR, FAR

[50] Correlation (CR), (IG) 25 ANN IoT system NSL-KDD
Confusion matrix,
Recall, Precision,

FPR, TPR, Accuracy

[51] Wrapper, GA
11, 9, 16,

20, 22, 36,
34, 41

random tree,
decision stump,

naive Bayes, C4.5,
random forest, and
representative tree

Continuous
environment KDD Cup 99

TP Rate, FP Rate,
Precision, Recall,

F-Measure

[52] Wrapper, RHMC Candidate
Features Selected SVM IoT system KDD Cup 99 False positive rate

[53] Shapiro-Wilk Candidate
Features Selected

SVM, Gaussian NB,
LDA, LR, Descion

Tree, Random forest
(RF), Ensemble

IoT system IoTID20 Accurecy, presion,
Recall, F score

[54] - -

SVM, Gradient
Descent (SGD), LR,

NB, SLFN,
oversampling

IoT system IoTID20 Accuracy, Precision,
Recall, G-mean

[55] - - lightGBM, OASW IoT system IoTID20,
NSL-KDD

Accuracy, Precision,
Recall

Thus, based on our literature survey and the identified gaps, our study here investi-
gates and proposes an (more) intelligent IDS system that treats and removes redundant
features from the dataset in an earlier phase of the process. We also study the effects of
redundant features on the characterization of the general representation of the data. Accord-
ingly, this study’s outcome has both reduced the higher false-alarm rates compared to those
found in the literature, as well as reduced training time complexity through dimensionality
reduction. Key to this study is the application of a unique feature selection method that
combines two entropy-based techniques (IG and GR) to select the best features.

3. Proposed Anomaly-Based IDS for IoT Ecosystem

Identifying and selecting relevant features in the dataset has become crucial to improv-
ing ML model performance, especially for anomaly-based IDS. To address the challenge
of improving an anomaly-based IDS in the IoT ecosystem, we deal with node data at-
tributes to identify relevant and redundant features. Redundant features affect the models’
performance and make those models less reliable [11,28,32]. We assume that the current
FS techniques do not always guarantee the best relevant features or eliminate redundant
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features. Therefore, we’ve aimed to find new strategies in dealing with the discovery of
useful features and concurrently the removal of unsupportive features. Existing methods
may be easily implemented in the practical sense, but at the same time, they can and do
consume lots of resources.

To address the selection of relevant features in the IoT ecosystem, this paper defines
a new hybrid feature selection mechanism, as described above, utilizing the combination
of two entropy-based mechanisms [57] to extract the best features, namely: information
gain (IG) and gain ratio (GR). These two techniques are filter-based approaches that use
a ranking to score each feature. Given the score, we can select the most relevant features
and, conversely, omit irrelevant (i.e., redundant) features from the feature vectors. We have
conducted numerous experiments using these approaches by tuning the number of features
for each training session.

We applied these two IG/GR approaches independently to extract top-ranked features
from the two datasets in phase 2A of Figure 1. The top-ranked features are divided into
the following categories: the top 60 ranked features in the first implementation and the
top 20 ranked features in the second implementation from the whole IoTID20 dataset. In
NSL-KDD, we have extracted the top 20 ranked features and all features. In the first dataset
(IoTID20), we have performed the IG and GR approaches four times to extract four groups
of relevant features. The first two groups consist of the top 20 ranked features, and the
other two groups consist of the top 60 ranked features from the whole dataset separately.
Whereas, in the second dataset (i.e., NSL-KDD), we have only one group of top 20 ranked
features because we used all features in the second group of the experiment. Each approach
(IG, GR) has extracted two groups of best features (60 features and 20 features) from the
whole dataset. Each approach was executed two times separately. The two groups of
the top 20 ranked features have been sent to Phase 2B of Figure 1 to obtain the final best
relevant features. For the other groups (i.e., top 60 ranked features of IoTID20 and all
features of NSL-KDD), these are sent to phase 3 directly. The rationale behind using the top
60 ranked versus all the features (in the NSL-KDD case) is for comparison purposes with
our proposed hybrid model that we claim extracts the lowest optimum number of features.
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Subsequently, the two groups of the top 60 ranked features, hereby referred to as
Top60 sets, were used to train ANN, kNN, Bagging, and J48 modules of our proposed
hybrid approach. The same two groups were also used to train the ensemble learning
technique, which is specified in Phase 3 of Figure 1. We do not pass the Top60 groups on to
phase 2B. This reveals the quality of the effect of adding the concept of mathematical set
theory on the top 20 ranked features to compare with the top 60 ranked features and the
top 20 ranked features. To determine the best and most relevant features to use in practice,
the top 20 selected features belonging to IG and the top 20 selected features belonging to
GR are combined using the two mathematical set theories (i.e., UMF/IMF) to produce the
hybrid feature selection (see Equations (6) and (8)) method. These combined features are
then carried over to the model training in Phase 3.

3.1. IoT Network Traffic Apposite

The Internet of Things (IoT) consists of particular limitations such as connectivity
limitation, computational capacity, and energy budget [58]. These peculiar characteristics
makes it significantly different from other continuous environments. The data are created
from a wide range of sources such as different sensors and other types of internet-connected
devices. It is usually expressed as multimodal or heterogeneous. IoT data are basically
big data because of their volume, velocity, variety, and veracity [59]. Herein, we are
obliged to overcome these issues. The basic steps involve three main phases, including
(i) data preprocessing, (ii) dimensionality reduction (feature selection) with proposing
the hybrid feature selection approach (improving the choice of relevant features), and
(iii) ensemble ML algorithms (model training), as shown in Figure 1. Data typically
must be refined in the early stage before being used to train the system, especially when
starting with a dataset built from a heterogeneous IoT ecosystem. Initially, data preprocessing
is performed to prepare the data in a proper format for the learning phase by applying
several consecutive preprocessing operations over the dataset such as data scaling, data
conversion, removing unwanted/invalid data, and fixing missing values. Our model has
been embedded into the ensemble framework, as shown in Figure 1, to provide more
consistent and reproducible results in such a dynamic environment. The main phases are
detailed in the following subsections.

3.2. Data Pre-Processing

According to Figure 1, this phase comprises steps that are needed to improve the
classification results. The process proceeds as follows: (i) duplicate instances are removed,
(ii) missing values, NaN are replaced by zero, (iii) non-numeric values are converted to
numeric values, (iv) the values are scaled between (0, 1). In this way, phase 1 achieves
the consistency needed for the feature selection step. Thus, the filtered dataset obtained
from the preprocessing data phase 1 is used for the feature selection phase and further
classification into normal and attack classes as the final decision.

3.3. Dimensionality Reduction

This step represents phase 2 (A and B) of Figure 1. Our hybrid feature selection ap-
proach utilizes a filter-based approach that includes two selection modules. The first uses
the intersection rule, while the second uses the union rule. As mentioned above, both the
IG and GR attribute selectors are used to reduce feature vectors’ high dimensionality and
accordingly select the best features (Note, IG is called “info gain attribute evaluator” and
GR is called “gain ratio attribute evaluator” in Weka). We choose IG and GR because they
are widely used in many different domains. Moreover, they present a similar knowledge
bias for selecting features to match our mathematical set theory requirements. Both are
considered as one of the best and most popular feature selection approaches. In contrast,
different ranking approaches require more memory to load the computational result. Fea-
ture selection plays a significate role in improving a classifier/predictive system because
it reduces time complexity and enhances model performance measures [11,60]. To design
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our hybrid feature selection approach (IMF and UMF as introduced in the definition in
Section 1.2 including the details in Section 3.3), we utilize the concept of mathematical
set theory to “smooth” the selection of relevant features in a reliable way for building an
Anomaly-based IDS model (Note, features with scores close to “1” are deemed to positively
affect model performance (more relevant), while “0” indicates a negative impact (meaning
irrelevant and/or redundant).

Using IG and GR to produce two groups of relevant features, is the first attempt
to extract the best most relevant features in our process per Figure 1. Moreover, in our
experiments, the first group consisted of 60 features, and the second consisted of 20 derived
from the whole IoTID20 dataset. Furthermore, there is zero correlation between the two
groups because all group productions were run independently. In other words, starting
with the same full set of features, both IG and GR approaches were used to extract these
features one at a time in an iterative fashion resulting in the two groups of 20 and 60.
Thus, achieving the first step of phase 2 in Figure 1 (dimensionality reduction) discovering
relevant features and eliminating irrelevant features.

3.4. Validation Phase

To validate the steps described above, the top 20 features groups coming from IG and
GR are only sent to phase 2B of Figure 1 (subset feature selection, to determine the best
features based on IG and GR used together). In contrast, for comparison purposes, we
did not pass the top 60 features group to this phase 2B. That is, the top 60 features groups
are used to compare with our other results (see Table 2 for the comparison). In phase 2B
Figure 1, we establish our hybrid approach utilizing set theory to merge the output of
IG with GR and produce a new group of features that represent the final best relevant
features. In the end, these features that we obtained in phase 2B, and the other features (the
top 60 features and the top 20 features) that are obtained in phase 2A are now used to train
the ML models, as shown in Phase 3 of Figure 1.

Table 2. Results from the ranking features process applied to the IoTID20 dataset.

Approach # Features Extracted Features

IG 20 7, 1, 5, 3, 8, 82, 25, 22, 73, 71, 12, 69, 11, 60, 15, 80, 13, 59, 23, 44: 20

IG 60 7, 1, 5, 3, 8, 82, 25, 22, 73, 71, 12, 69, 11, 60, 15, 80, 13, 59, 23, 44, 14, 47, 4, 61, 19, 83, 18, 26, 32, 42,
46, 17, 45, 43, 35, 41, 48, 49, 54, 2, 33, 21, 16, 24, 81, 27, 6, 36, 28, 30, 31, 34, 20, 29, 70, 10, 51, 74, 9, 68

GR 20 16, 34, 5, 3, 54, 8, 22, 13, 35, 15, 60, 73, 14, 49, 48, 69, 11, 6, 25, 32

GR 60 16, 34, 5, 3, 54, 8, 22, 13, 35, 15, 60, 73, 14, 49, 48, 69, 11, 6, 25, 32, 82, 1, 83, 12, 71, 7, 26, 23, 4, 80, 42,
19, 61, 59, 47, 33, 18, 27, 44, 46, 81, 28, 24, 17, 41, 36, 30, 45, 43, 20, 51, 29, 31, 76, 79, 78, 2, 21, 77, 10

IG ∩ GR 11 5, 8, 25, 22, 73, 69, 11, 60, 15, 13, 3
IG ∪ GR 28 7, 1, 5, 3, 82, 25, 22, 73, 71, 12, 69, 11, 60, 15, 80, 13, 59, 23, 44, 16, 34, 54, 35, 14, 49, 48, 6, 32

3.5. Hybrid Approach

In phase 2B of Figure 1, the hybrid approach uses the concept of mathematical set
theory to select the minimal set of the best features from predetermined selected features
based on IG and GR. We can define the four mathematical equations as follows:

Intersection rule (M→ g1∩ g2) (5)

IMFeatues (IMF) = IG∩ GR (6)

Union rule (U → g1∪ g2) (7)

UMFeatues (UMF) = IG∪ GR (8)

where g1, g2 are a subset of the whole feature set (F) where g1, g2� F. For instance, g1
holds the relevant features extracted using IG, while g2 holds the relevant features extracted
using GR. Hence, the union (U) chooses all elements (features) that are located either in g1



Appl. Sci. 2022, 12, 5015 11 of 30

or g2, whereas the intersection (M) selects the elements (features) that are found only in
both sets (g1 and g2).

In phase 2A in Figure 1, we demonstrate feature selection via IG, GR, and filter-based
ranking methods. The output of phase 2A is the extraction of two sets of features: top 60
and top 20. These two feature sets are generated independently, i.e., feature ranking from
the top 60 is not carried over to the top 20. In phase 2B in Figure 1, we demonstrate the
hybrid approach by implementing the intersection and union set theory rules. These rules
are labeled IMF and UMF, respectively, for the intersection and union operations. The
IMF and UMF rules are described by Equations (5)–(8). The hybrid approach is a manual
process to produce IMF and UMF approaches (11 and 28 features from the IoTID20 dataset,
and 15 and 25 features from the NSL-KDD dataset) from the top 20 ranked feature set
produced by Phase 2A. Phases 2A and 2B together produce six different feature selection
sets, which are: top 60 (via IG), top 60 (via GR), top 20 (via IG), top 20 (via GR), 11 IMF and
28 UMF. Due to the use of both traditional and hybrid feature selection approaches, we can,
to increase the efficiency of our feature selection process, reduce the computational costs
of the learning process (i.e., training and testing workflows). Corresponding features for
each of the six feature sets are listed in Table 2. Also, Table 3 shows the results of ranking
features from the NSL-KDD dataset.

Table 3. Results of ranking feature NSL-KDD.

Approach # Features Extracted Features

- 41 All Feaure
IG 20 1, 3, 4, 5, 6, 12, 23, 25, 26, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40
GR 20 2, 3, 4, 5, 6, 8, 10, 11, 12, 13, 23, 25, 26, 29, 30, 33, 34, 37, 38, 39

IG ∩ GR 15 3, 4, 5, 6, 12, 23, 25, 26, 29, 30, 33, 34, 37, 38, 39

3.6. Model Training

In this phase, our machine learning models are trained. We use two different ML
categories to improve the performance of the anomaly-IDS model, namely individual
classifiers, and ensemble classifiers with majority voting. The models utilize the proposed
hybrid feature selection technique at the training and the testing phases to generate the final
set of selected features. The IoTID20 dataset containing only these features is then used to
train the ML models. As we have stated above, these subsets of features are: 60% ranked
features of IG, 60% ranked features of GR, 20% ranked features of IG, 20% ranked features
of GR, IMF (11 features), and UMF (28 features). Specifically, the proposed anomaly-based
IDS uses the following ML techniques:

• ANN (called MLP in the Weka tool) stands for artificial neural network and is a set of
neuron nodes arranged in hidden layers designed to recognize patterns imitating the
human brain.

• kNN (called IBk or instance-based learner in the Weka Tool) stands for the k-nearest
neighbor and is a simplified supervised machine learning algorithm that can be used
to address classification or regression tasks. kNN depends on deriving the distance
metric between a predicted sample and k-stored samples to provide the classification
decision based on the maximum value of the distance of nearest neighbors.

• C4.5 (called J48 in the Weka tool) is an ML algorithm that is used to generate a decision
tree. C4.5 is an extension of the ID3 (iterative dichotomies 3) algorithm. It implements
the model to consist of a root node, branch nodes, and leaf nodes. C4.5 has some
advantages over ID3, including handling both continuous and discrete attributes,
handling missing values without human intervention, handling attributes with various
costs (i.e., loss function), and providing an optional task to prune the tree after creation.

• Bagging (bootstrap aggregating) fits well for an imbalanced dataset. It reduces variance
which helps to avoid overfitting. It can be applied to a different domain. Bagging is a
type of ensemble algorithm.
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• Ensemble Method: The ensemble method aims to select the final best decision by
using majority voting on the outputs from individual classifiers (ANN, kNN, C4.5,
and Bagging). With six feature-reduced sets, we established six ensemble methods to
construct the final anomaly-based IDS.

4. Experimental Results and Discussion

In this section, we present and discuss our experimental results using different scenar-
ios and evaluation metrics for the various machine learning models and features selection
techniques that we choose as most relevant for the IoT ecosystem.

4.1. The Datasets

We have conducted the experiment using the IoTID20 [53] and the NSL-KDD [61]
datasets to evaluate the performance of the hybrid feature selection approach. The IoTID20
dataset consists of various types of IoT attacks (i.e., DDoS, DoS, Mirai, ARP Spoofing, etc.)
as well as normal (benign traffic). The IoTID20 dataset was collected from the IoT ecosystem
of a smart home. The smart home was designed to incorporate multiple interconnected
components including AI Speakers (SKTNGU), Wi-Fi cameras (EZVIZ), laptops, smart-
phones, tablets, a wireless access point (Wi-Fi), and a Wi-Fi router. The cameras and AI
speakers were represented as the IoT victim equipment, and the other equipment were
represented as the attacking devices. The testbed has been implemented to simulate differ-
ent actual attacks in the IoT ecosystem using the Network Mapper (Nmap) tool. Figure 2
represents the testbed environment where the IoTID20 dataset [62] was generated and
collected. Figure 3 shows a taxonomy of the dataset and the number of instances for each
target of the dataset. The IoTID20 dataset has 86 features and contains 625,784 instances.
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NSL-KDD dataset is the second dataset that we have utilized for the validation of this
work. It is the improvement of the KDD99 by removing the redundant and duplicate data
from the original KDD99 dataset. It contains 41 features (32 continuous and 9 nominal
attributes) to describe each activity in an IoT system and the targets (classes), converting
five types of Normal, Probe, DoS, R2L, U2R. The advantages of NSL-KDD are focused on
minimizing the level of difficulty that exists in the original dataset KDDcup99. However, it
has the same problems regarding the real network representation. The NSL-KDD dataset
is widely used in realm of intrusion detection, and other related areas. The description of
NSL-KDD dataset is shown in Figure 4.
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4.2. Evaluation Metrics

To evaluate the performance of the proposed IDS, we have used eight evaluation
metrics including:

• The confusion matrix that is used to report the number of correctly predicted samples
(represented in two factors TP and TN) and the number of incorrectly predicted
samples (represented as FP and FN). The predicted values can be described as positive
and negative values, whereas the actual values can be described as true and false
values. The two-class confusion matrix is shown in Figure 5.

• The accuracy indicates the model’s power to classify the result of benign instances
correctly, as shown in Equation (9):

ACC =
TP + TN

TP + TN + FP + FN
(9)
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• The recall is known as sensitivity or detection rate and indicates the model’s power to
correctly identify attacks (the actual values) as shown in Equation (10):

Recall =
TP

TP + FN
(10)

• The precision indicates the model’s power to be correctly predictive, which means how
many positive predictions (attacks) are predicted correctly, as shown in Equation (11):

Precision =
TP

TP + FP
(11)

• The F1-measure plays a trade-off between recall and precision in all instances to
improve contradiction of recall and precision, as shown in Equation (12):

F1−Measure =
2 ∗ Recall ∗ Precision

Recall + Precision
(12)

• The False Positive Rate (FPR) indicates the model’s power to calculate the percentage of
misclassified attack instances as normal. This is represented as follows in Equation (13):

FPR =
FP

FP + TN
(13)

• Receiver operating characteristics area under the curve (ROC AUC) which is used as a
measure of the usefulness of a test in general at various threshold settings. The greater
area the more useful test (ranges from 0.0% to 100%).

• Training Time is the amount of time duration measured in seconds (s) that the ML
model takes to train the model using a specific dataset.

4.3. Experimental Results and Analysis

In this research, to develop and validate the proposed system, distinct computing
specifications/tools have been used and configured. At the software level, we have used
the Weka Tool [63] and Python running on a 64-bit Microsoft Windows 10 operating system,
to implement and evaluate our hybrid feature selection scheme as well as to conduct
our experiments with various machine learning methods. We have used 10-fold cross-
validation to train/validate each model. At the hardware level, we implemented and
evaluated our models using a high-performance computing platform with an Intel ®Xeon®

CPU E3-1241 v3 @3.5GHz with 16 GB of memory and a 4 GB GPU (graphical processing
unit). Moreover, we have downloaded the IoTID20 dataset from [53]. Accordingly, we have
evaluated the proposed model’s performance using relevant features obtained through
the concept of mathematical set theory. In addition, we made a comparison with various
relevant features that are obtained through using existing ranking methods (IG, GR).

Initially, Table 2 provides the experimental evaluation outcomes for the five different
machine learning-based IDS models utilizing six feature selection approaches (namely
IG_60, GR_60, IG_20, GR_20, IMF_11, and UMF_28). The comparison in the table consid-
ers seven performance indicators including detection accuracy, false-positive rate (FPR),
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detection precision, detection recall, f1-measure, the area under the curve (AUC), and the
training time duration (in seconds). Note that feature selection approaches are abbreviated
based on the number of selected features for each approach; for example, IG_60 stands for
information Gain with 60 features.

According to the comparison results reported in the table (i.e., Table 4), several per-
formance metrics using the ensemble classifier and individual classifier with a different
number of relevant features were selected using IG, GR, IMF, and UMF filter-based feature
selection techniques. Consequently, the reported results show that the Bagging classi-
fier has achieved the best performance factors over other ML-based approaches scoring
an average performance indication of higher than 99.88% in terms of accuracy, recall,
precision, F1-Score, and ROC, for all feature selection strategies. Conversely, the lowest
performance results belong to the ANN-based-IDS which requires more features, is affected
by irrelevant features, and negatively impacted by the ensemble classifier. Whereas, our
ensemble learning-based IDS has achieved better, more promising results when removing
the redundant (irrelevant) features.

Table 4. Performance evaluation results for the different feature selection approaches concerning five
ML models by using IoTID20.

Metrics Classifier IG_60 GR_60 IG_20 GR_20 IMF_11 UMF_28

Accuracy (%)

ANN 99.39 98.83 99.57 99.08 99.07 99.07
C4.5 99.88 99.85 99.80 99.90 99.80 99.91

Bagging 99.89 99.88 99.90 99.89 99.90 99.91
kNN 99.65 99.65 99.64 99.70 99.80 99.66

Ensemble 99.81 99.74 99.73 99.56 99.98 99.98

False Positive Rate (%)

ANN 0.076 0.113 0.157 0.148 0.134 0.134
C4.5 0.014 0.016 0.013 0.015 0.013 0.011

Bagging 0.013 0.015 0.013 0.014 0.013 0.012
kNN 0.030 0.030 0.024 0.023 0.015 0.027

Ensemble 0.027 0.038 0.039 0.040 0.008 0.008

Precision (%)

ANN 99.40 98.80 99.60 99.10 99.10 99.10
C4.5 99.90 99.90 99.90 99.90 99.90 99.90

Bagging 99.90 99.90 99.90 99.90 99.90 99.90
kNN 99.70 99.60 99.60 99.70 99.80 99.70

Ensemble 99.80 99.70 99.70 99.60 99.90 99.90

Recall (%)

ANN 99.40 98.80 99.60 99.10 99.10 99.10
C4.5 99.90 99.90 99.90 99.90 99.90 99.90

Bagging 99.90 99.90 99.90 99.90 99.90 99.90
kNN 99.70 99.70 99.60 99.70 99.80 99.70

Ensemble 99.80 99.70 99.70 99.60 99.90 99.90

F1-Measure (%)

ANN 99.40 98.80 99.60 99.00 99.00 99.00
C4.5 99.90 99.90 99.90 99.90 99.90 99.90

Bagging 99.90 99.90 99.90 99.90 99.90 99.90
kNN 99.70 99.70 99.60 99.70 99.80 99.70

Ensemble 99.80 99.70 99.70 99.60 99.90 99.90

AUC (%)

ANN 98.40 98.60 98.20 93.90 90.80 90.80
C4.5 99.60 99.50 99.60 99.60 99.60 99.80

Bagging 99.90 99.90 99.90 99.90 99.90 99.90
kNN 97.10 98.60 98.60 99.20 99.50 99.00

Ensemble 98.50 98.00 97.90 96.50 99.90 99.90

Training Time (s)

ANN 870.23 920.53 295.16 310.50 42.40 42.40
C4.5 350.19 360.61 150.15 153.72 44.15 44.18

Bagging 360.22 370.18 155.28 154.99 50.28 50.28
kNN 240.02 240.01 80.05 80.03 30.02 30.03

Ensemble 919.91 940.07 309.86 322.40 56.75 56.75

The majority voting approach of an ensemble classifier takes all individual classifiers
into account. Unfortunately, the well-known overhead costs can be observed, namely
that model training time increases with the number of features for all ML-based IDSs.
Conversely, the ensemble classifier using our proposed feature selection approach (IMF
and UMF) has achieved higher performance outcomes than individual classifiers can, for
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the same features. The difference is due to the IMF and UMF combination that can actually
select the best (or better) features. The result of using our IMF/UMF ensemble learning
classifier will be discussed further in the coming paragraphs. We have reproduced our
experiments on another benchmark dataset, namely the NSL-KDD, for further validation,
of our proposed hybrid method. The comparison from the results of these NSL-KDD
experiments are reported in the Table 5. We can observe that the results extracted from the
NSL-KDD dataset are similar in behavior to the results we obtained through the IoTID20
dataset. To improve the quality and efficiency of the model performance, we again found it
necessary to consider improving the extraction of relevant features and eliminate irrelevant
redundant features. These results give an indication that the current feature selection
approaches are not able to extract the best relevant features and eliminate irrelevant feature;
thus, we come to a trade-off between the two best entropy feature selection approaches to
improve the lack in each.

Table 5. Performance evaluation results for the different feature selection approaches with respect to
five ML models using NSL-KDD.

Metrics Classifier All Features IG_20 GR_20 IMF_15 UMF_25

Accuracy (%)

ANN 99.37 97.60 96.56 97.69 97.79
C4.5 99.40 99.59 99.44 99.30 99.70

Bagging 99.39 99.79 99.83 99.79 99.79
kNN 99.20 99.39 98.90 99.20 99.68

Ensemble 99.66 99.56 99.56 99.80 99.84

False Positive Rate (%)

ANN 0.007 0.025 0.038 0.025 0.024
C4.5 0.006 0.004 0.006 0.007 0.003

Bagging 0.006 0.002 0.002 0.002 0.002
kNN 0.008 0.006 0.011 0.008 0.003

Ensemble 0.004 0.005 0.005 0.002 0.002

Precision (%)

ANN 99.4 97.6 96.7 97.7 97.8
C4.5 99.4 99.6 99.4 99.2 99.7

Bagging 99.4 99.8 99.8 99.8 99.8
kNN 99.2 99.4 98.9 99.3 99.7

Ensemble 99.7 99.6 99.6 99.8 99.8

Recall (%)

ANN 99.4 97.6 96.6 97.7 97.8
C4.5 99.4 99.6 99.4 99.3 99.7

Bagging 99.4 99.7 99.8 99.8 99.8
kNN 99.2 99.4 98.9 99.2 99.7

Ensemble 99.7 99.6 99.6 99.8 99.8

F1-Measure (%)

ANN 99.4 97.6 96.6 97.7 97.8
C4.5 99.4 99.6 98.9 99.3 99.4

Bagging 98.8 99.8 99.8 99.8 99.7
kNN 99.2 98.8 98.9 99.2 99.4

Ensemble 99.7 99.6 99.1 99.8 99.8

AUC (%)

ANN 99.8 99.0 98.8 97.9 98.6
C4.5 99.6 99.8 99.8 99.8 99.8

Bagging 99.2 100 100 100 100
kNN 99.3 99.2 98.9 99.4 99.8

Ensemble 99.6 99.6 100 1 1.00

Training Time (s)

ANN 814 300 280 90 210
C4.5 180 200 180 40 110

Bagging 190 160 160 50 150
kNN 150 90 90 40 90

Ensemble 550 350 285 60 200

Additionally, Figure 6, along with Table 6 using the IoTID20 dataset and Figure 7,
along with Table 7 using the NLS-KDD dataset, summarizes the empirical outcomes of
our model via different features selection methods. As can be clearly noticed, UMF and
IMF-based IDSs exhibit better performance for all performance measures (i.e., accuracy,
precision, recall, f1-measure, ROC area) over the other selected related studies. This result
is attributed to the concept of set theory (intersection and union) that aims to choose the
best features. A feature that is present in both approaches (IG and GR) or at least one of
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them indicates this feature is more relevant while at the same time, non-redundant. To sum
things up, dimensionality reduction approaches improve the performance classification,
but we must be assured that only relevant features are selected, and thus we offer our study
here as an example of this claim.
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Figure 6. Graphical representation of performance metrics of IoTIDS20 using ensemble with various
selected feature sets.

Table 6. Performance metrics of IoTID20 using ensemble with various selected features.

Feature Approach Accuracy
(%)

Precision
(%)

Recall
(%)

F1-Measure
(%)

ROC Area
(%)

60 IG-Ensemble 99.81 99.80 99.80 99.80 98.50
60 GR-Ensemble 99.74 99.70 99.70 99.70 98.00
20 IG-Ensemble 99.73 99.70 99.70 99.70 97.90
20 GR-Ensemble 99.56 99.60 99.60 99.60 96.50
28 UMF 99.98 99.90 99.90 99.90 99.90
11 IMF 99.98 99.90 99.90 99.90 99.90
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Figure 7. Graphical representation of performance metrics of NSL-KDD using ensemble with various
selected features.
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Table 7. Performance metrics of NSL-KDD using ensemble with various selected features.

Feature Approach Accuracy
(%)

Precision
(%)

Recall
(%)

F1-Measure
(%)

ROC Area
(%)

41 ALL Feature 99.66 99.7 99.7 99.7 99.6
20 IG-Ensemble 99.56 99.6 99.6 99.6 99.6
20 GR-Ensemble 99.56 99.6 99.6 99.91 100
25 UMF 99.80 99.8 99.8 99.8 100
15 IMF 99.80 99.8 99.8 99.8 100

Figure 8 shows the report of the confusion matrix of our proposed binary classification
using the NSL-KDD benchmark dataset after the training / testing phase of five ML
classifiers. The diagonal line of each confusion matrix reports the number of correctly
classified instances, and reverse diagonal line reports the number of incorrectly classified
instances. For instance, Figure 8 (box 1) shows the confusion matrix of the ANN with all
features (41) considering attack or non-attack target. The 67,042 instances are classified
correctly as an abnormal class whereas the 310 instances are classified incorrectly as an
abnormal class. The 482 instances are classified incorrectly as a normal (non-attack) class
whereas the 58,145 instances are classified correctly as a normal class. In regards to this
particular experiment, using NSL-KDD with five ML classifiers, the confusion matrices
demonstrate that our proposed feature selection approach (IMF and UMF) with any ML
classifier is the most suitable model.
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Figure 9 shows the confusion matrix of the proposed model for multi-classification
challenges using the five various ML classifiers with four FS approaches including our
hybrid FS (proposed approach). We used IoTID20 dataset in this experiment. The main
diagonal line reports the number of correct instances for each confusion matrix, and other
cells represent the incorrect classification instances. For instance, Figure 8 (box 1) shows
the classification results of ANN with top 60 ranked feature using IG approach. The
47,907 Mirai instances are classified correctly; 10 Mirai instances are predicted as DoS,
1289 Mirai instances are predicted as Scan, and 663 Mirai instances are predicted as MITM-
ARP Spoofing. The 7040 Dos instances are predicted correctly; 52 DoS instances are wrongly
classified as Mirai, 1 Dos instance is wrongly classified as Scan, and 7 DoS instances are
wrongly classified as MITM-ARP Spoofing. The 8462 Scan instances are predicted correctly;
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574 Scan instances are wrongly classified as Mirai, 2 Scan instances are wrongly classified
as Dos, 92 Scan instances are wrongly classified as MITM-ARP Spoofing, and Scan instance
are wrongly classified as Normal. The 2839 MITM-ARP Spoofing instances are predicted
correctly; 1242 MITM-ARP Spoofing instances are wrongly classified as Mirai, 8 MITM-ARP
Spoofing instances are wrongly classified as DoS, 103 MITM-ARP Spoofing instances are
wrongly classified as Scan, and 4 MITM-ARP Spoofing instance are wrongly classified as
Normal. The 4747 normal instances are predicted correctly, and there are no (none) wrongly
classified samples. Figure 10 corresponding with Table 8 presenting the accuracy results of
the five various ML with different FS approaches for multi-classification using the IoTID20
dataset. In the overall observation, the ML classifiers give better, more suitable results with
our proposed feature selection method (IMF, UMF). Figure 10, along with Table 8, shows the
accuracy of our study by utilizing the five various ML models with different FS approaches
including our hybrid FS approach for multi-classification challenges using the IoTID20
dataset. Figure 10, along with Table 8, shows that our proposed model achieved a higher
accuracy of 99.70% with Ensemble using 11 and 28 features to detect the multi-classes
compared to other models using different number of features.

Table 8. Accuracy results yielded by the five various ML with different FS approaches for multi-
classification using the IoTID20 dataset.

Classifiers Accuracy Classifiers Accuracy Classifiers Accuracy Classifiers Accuracy

FS Approach
Name

Information
Gain # Gain Ratio # Intersection # Union #

M
od

el

IG-ANN 94.60 GR-ANN 93.86 IMF-ANN 92.80 ANN UMF 94.00
IG-C.4.5 99.54 GR-C.4.5 99.10 IMF-C.4.5 99.59 C 4.5 UMF 99.60

IG-Bagging 99.48 GR-Bagging 98.95 IMF-Bagging 99.58 Bagging UMF 99.60
IG-kNN 98.48 GR-kNN 98.43 IMF-kNN 98.76 kNN UMK 99.10

IG-Ensemble 99.60 GR-Ensemble 99.14 IMF-Ensemble 99.70 Ensemble UMF 99.70

Tables 9–12 summarize values for different statistical parameters used in the multi-
classification problem. Five various ML algorithms have been used with four different
strategies of FS approaches. We utilized five various ML and four different ways of the FS
approach to derive these performance results. The FS approaches are IG and GR and hybrid
FS (IMF and UMF). As we mentioned above, these approaches were created to select the
top 60 ranked features and the best 11 and 28 features using the IoTID20 dataset. Table 9
represents the results of using IG; Table 10 represents the results of using GR; Table 11
represents the results of using intersection theory; Table 12 represents the results of using
union theory. In Table 9, we can observe that values of (i) false positive rate (FP) and
(ii) precision, (iii) recall, (iv) F-measure, and (v) ROC for each individual target (Mirai, DoS,
Scan, MAS: abbreviation for MITM ARP Spoofing, normal) and the accuracy overall of
the model with each different ML algorithm. For instance, in Table 9, Ensemble with IG
approach gives a small false-positive rate for each prediction target which is good for the
model since a high FP rate will compromise system security by authorizing malicious data
to move into the network. Moreover, the FP rate will significantly increase overheads as
well as consume system resources and time. Moreover, our feature selection approaches
(intersection and union) as shown in Tables 11 and 12 represent the best overall results.
For example, in Table 12, Ensemble with union theory, we succeed in reaching the lowest
(i.e., very nearly zero) possible value of FP rate for each class (target): 0.007 for Mirai, 0 for
DoS, o for Scan, 0.001 MITM ARP Spoofing, and 0 for normal which is excellent for an IDS
deployed into an IoT ecosystem. However, it is not possible to reduce all FP rates to zero in
the IDS model because there is the well-known trade-off between these parameters.
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Figure 10. Accuracy results yielded by the five various ML with different FS approaches for multi-
classification using the IoTID20 dataset.

4.4. Comparison Analysis of Results

To verify the effectiveness of the proposed solution approaches, we compare our
model with several published methods that used the same evaluation datasets in term of
binary classification and multi-classification. Figure 11, along with Table 13, compares the
performance of our proposed models for binary classification with other state-of-art models
using IoTID20. The comparison reveals that our proposed approaches achieve higher
performance results (accuracy, precision, recall, f1-measure) than previously published
approaches performed with different feature selection strategies. The proposed techniques
(IMF, UMF) achieve the highest classification accuracy with 99.98% compared to the pub-
lished benchmarks. Moreover, the proposed model using both IMF and UMF achieves
very high-performance precision, recall, and f1-measure. Moreover, we have verified the
quality of the proposed model in comparison with other state-of-art models using the
second dataset (i.e., NSL-KDD) in term of binary classification (detection model) as shown
in Figure 12, along with Table 14. The proposed techniques (IMF, UMF) also achieved the
highest classification accuracy with 99.79%. Hence, the proposed model is more efficient
compared to the existing state-of-the-art models presented in previous works [53–56] for
the IoTID20 dataset and [42,64–74] for the NSL-KDD dataset. This is attributed to the
effectiveness of high dimensionality reduction by removing irrelevant features. Figure 13,
along with Table 15, shows a performance comparison of our detection model with other
state-of-the-art models using the NSL-KDD dataset. From Figure 13, along with Table 15,
we observe that our proposed model has a very good accuracy result. From Figure 13,
along with Table 15, we can observe that the Intersection (IMF) theory and union (UMF)
theory provide the same detection accuracy 99.79%.
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Table 9. Summary of calculated statistical parameters for test IoTID20 dataset using IG with top-ranked 60 features.

(A) IG-ANN 60 (C) IG-Bagging 60 (E) IG-Ensemble 60
Parameters Mirai Dos Scan MAS Normal Parameters Mirai Dos Scan MAS Normal Parameters Mirai Dos Scan MAS Normal

FP Rate 0.074 0 0.21 0.011 0 FP Rate 0.011 0 0 0 0 FP Rate 0.008 0 0 0.001 0
Precision 96.2 99.7 85.9 78.8 99.9 Precision 99.5 100 99.7 97.8 100 Precision 99.6 100 99.7 98.2 100

Recall 96.1 99.2 92.7 67.7 100 Recall 99.8 99.9 98.5 96.4 99.9 Recall 99.9 99.9 98.7 97.4 100
F-Measure 96.2 99.4 89.1 72.8 99.9 F-Measure 99.6 99.9 99.1 97.1 100 F-Measure 99.7 99.9 99.2 97.8 100
ROC Area 97.8 99.8 96.9 75 100 ROC Area 100 100 99.9 100 100 ROC Area 99.5 99.9 99.3 98.6 100
Accuracy 96.2 99.5 89.3 73.3 100 Accuracy 99.7 100 99.1 97.1 100 Accuracy 99.8 100 99.2 97.8 100

(B) IG-C4.5 60 (D) IG-kNN 60
Parameters Mirai Dos Scan MAS Normal Parameters Mirai Dos Scan MAS Normal

FP Rate 0.008 0 0.001 0.002 0 FP Rate 0.017 0 0.003 0 0
Precision 99.6 100 99.5 97.4 100 Precision 99.2 99.8 98.1 93.7 100

Recall 99.8 99.9 98.8 97.4 100 Recall 99.3 99.3 98.1 93.3 100
F-Measure 99.7 99.9 99.1 97.4 100 F-Measure 99.2 99.6 98.1 93.5 100
ROC Area 99.7 99.9 99.6 99.3 100 ROC Area 98.9 99.7 99.1 96.7 100
Accuracy 99.7 100 99.2 97.4 100 Accuracy 99.3 99.6 98.1 93.5 100

Table 10. Summary of calculated statistical parameters for test IoTID20 dataset using GR with top-ranked 60 features.

(A) GR-ANN 60 (C) GR-bagging 60 (E) GR-Ensemble 60
Parameters Mirai Dos Scan MAS Normal Parameters Mirai Dos Scan MAS Normal Parameters Mirai Dos Scan MAS Normal

FP Rate 0.094 0 0.021 0.011 0 FP Rate 0.022 0 0.001 0 0 FP Rate 0.017 0 0 0.002 0
Precision 95.3 99.8 85.3 76.6 99.8 Precision 98.9 100 99.2 95.9 100 Precision 99.1 1 99.2 96.6 100

Recall 95.9 99.1 89.6 63.2 100 Recall 99.7 99.8 97.6 90.7 99.8 Recall 99.7 99.9 98.1 92.2 100
F-Measure 95.6 99.4 87.4 69.3 99.9 F-Measure 99.3 99.9 98.4 93.2 99.9 F-Measure 99.4 99.9 98.7 94.3 100
ROC Area 98.2 99.4 96.9 95.7 100 ROC Area 97.9 100 99.9 99.8 100 ROC Area 99 99.9 99 96 100
Accuracy 95.6 99.5 87.5 69.9 99.9 Accuracy 99.3 99.9 98.4 93.3 99.9 Accuracy 99.4 50.5 98.7 94.4 100

(B) GR-C4.5 60 (D) GR-kNN 60
Parameters Mirai Dos Scan MAS Normal Parameters Mirai Dos Scan MAS Normal

FP Rate 0.016 0 0.002 0.002 0 FP Rate 0.022 0 0.005 0 0
Precision 99.2 99.9 98.7 95.6 100 Precision 98.9 99.8 96.5 92.8 100

Recall 99.6 99.9 98.3 92.2 100 Recall 99 99.6 96.9 91.4 100
F-Measure 99.4 99.9 98.5 93.9 100 F-Measure 98.9 99.7 96.7 92.1 100
ROC Area 99.6 100 99.6 98.7 100 ROC Area 99 99.8 98.8 97.3 100
Accuracy 99.4 99.9 98.5 93.9 100 Accuracy 99 99.7 96.7 92.1 100
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Table 11. Summary of calculated statistical parameters for test IoTID20 dataset using Intersection theory with the best 11 features.

(A) IMF ANN (C) IMF Bagging (E) IMF Ensemble
Parameters Mirai Dos Scan MAS Normal Parameters Mirai Dos Scan MAS Normal Parameters Mirai Dos Scan MAS Normal

FP Rate 0.135 0 0.023 0.006 0 FP Rate 0.008 0 0.001 0 0 FP Rate 0.007 0 0 0.001 0
Precision 93.4 99.8 84.1 79.7 99.9 Precision 99.6 100 99.5 98.1 100 Precision 99.7 100 99.7 98.9 100

Recall 96.1 99 89.4 42.1 99.9 Recall 99.8 99.8 98.9 97.3 99.9 Recall 99.9 99.9 99 97.5 100
F-Measure 94.7 99.4 86.6 55.1 99.9 F-Measure 99.7 99.9 99.2 0.98 99.9 F-Measure 99.8 99.9 99.3 98.2 100
ROC Area 97.1 99.8 97.1 89.9 100 ROC Area 100 100 100 99.9 100 ROC Area 100 100 100 99.9 100
Accuracy 99.8 99.9 99.3 97.9 99.9 Accuracy 99.4 99.6 98.5 95 100 Accuracy 99.8 100 99.4 98.2 100

(B) IMF C4.5 (D) IMF kNN
Parameters Mirai Dos Scan MAS Normal Parameters Mirai Dos Scan MAS Normal

FP Rate 0.006 0 0.001 0.001 0 FP Rate 0.018 0 0.003 0 0
Precision 99.7 100 99.3 97.8 100 Precision 99.1 99.7 98 93.2 100

Recall 99.8 99.9 99 97.4 100 Recall 99.2 99.4 98 92.7 99.9
F-Measure 99.7 99.9 99.1 97.6 100 F-Measure 99.2 99.6 98 93 100
ROC Area 99.8 100 99.7 99.2 100 ROC Area 98.9 99.7 99 96.4 100
Accuracy 99.8 100 99.2 97.6 100 Accuracy 99.2 99.6 98 93 100

Table 12. Summary of calculated statistical parameters for test IoTID20 dataset using union theory with the best 28 features.

(A) UMF ANN (C) UMF bagging (E) UMF Ensemble
Parameters Mirai Dos Scan MAS Normal Parameters Mirai Dos Scan MAS Normal Parameters Mirai Dos Scan MAS Normal

FP Rate 0.09 0 0.021 0.012 0 FP Rate 0.009 0 0 0 0 FP Rate 0.007 0 0 0.001 0
Precision 95.5 99.7 85.8 75.6 99.6 Precision 99.6 100 99.7 98.6 100 Precision 99.7 100 99.7 98.8 100

Recall 96 99.1 91.2 60.9 99.9 Recall 99.9 99.8 98.8 97.2 99.8 Recall 99.9 99.9 99 97.7 100
F-Measure 95.8 99.4 88.4 67.5 99.8 F-Measure 99.7 99.9 99.3 97.9 99.9 F-Measure 99.8 99.9 99.3 98.2 100
ROC Area 98.2 99.7 97 95.9 100 ROC Area 100 100 100 97.8 100 ROC Area 100 100 100 99.9 100
Accuracy 95.8 99.4 88.5 68.3 99.8 Accuracy 99.8 99.9 99.3 97.9 99.9 Accuracy 99.8 100 99.4 98.3 100

(B) UMF C4.5 (D) UMF kNN
Parameters Mirai Dos Scan MAS Normal Parameters Mirai Dos Scan MAS Normal

FP Rate 0.009 0 0 0.001 0 FP Rate 0.013 0 0.002 0 0
Precision 99.6 100 99.7 98.6 100 Precision 99.3 99.8 98.5 95.2 100

Recall 99.9 99.8 98.8 97.2 99.8 Recall 99.5 99.4 98.4 94.7 100
F-Measure 99.7 99.9 99.3 97.9 99.9 F-Measure 99.4 99.6 98.4 94.9 100
ROC Area 100 100 100 99.9 100 ROC Area 99.2 99.7 99.2 97.4 100
Accuracy 99.8 99.9 99.3 97.9 99.9 Accuracy 99.4 99.6 98.5 95 100
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Table 13. The comparison results of our detection model performance and related works of IoTID20.

Reference Model Accuracy (%) Precision (%) Recall (%) F1-Measure (%)

[53] SVM 40 55 37 16
[53] Ensemble 87 87 87 87
[54] SVM 97 - - -
[54] Ensemble 94 - - -
[54] SLFN 98 - - -
[56] XGBoost 99.79 - 98 1
[56] SVM 98.76 - 98.00 98.00

Proposed UMF 99.98 99.90 99.90 99.90
Proposed IMF 99.98 99.90 99.90 99.90
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Table 14. The comparison of accuracy result of our detection model performance and related works
of NSL-KDD.

Reference Model Accuracy (%)

[64] SVM-RBF 97.2
[64] MLP-AS 97.8
[65] Ensemble Stacking 81.2
[66] DAGMM 88.5
[66] DAGMM-EIF 90.5
[68] GRU 98.7
[69] DLNID 90.7
[70] GTO-BSA 95.6
[71] DLHA 87.5
[42] adaptive Ensemble 85.2
[72] Standard LSTM 87.2
[72] BidLSTM 91.4
[73] SVM 82.4
[74] ANN 81.2

Proposed UMF 99.8
Proposed IMF 99.8
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Table 15. The comparison results of our multi classification model performance and related works of
IoTID20 dataset.

Reference Model Accuracy (%)

[54] SLFN-SVM-SMOTE 93.5
[54] SLFN 98.4
[75] SMOTE + LSTM 86.2
[75] LSTM 79.5
[75] kNN 86.5
[53] Ensemble 87
[76] Autoencoder 94.7
[77] RF 97.9
[78] ensemble 98.7

Proposed UMF 99.7
Proposed IMF 99.7

Based on the obtained results of these experiments summarized in the tables and
figures above, accuracy performance increased via reducing feature dimensionality us-
ing IMF-Ensemble and UMF-Ensemble as compared to using only the classification via
the IG or GR approach. Furthermore, independent (individual) classifiers achieved bet-
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ter classification accuracy using optimum top-ranked features (IMF, UMF) compared to
features selection obtained by the IG and GR approaches. For instance, the Bagging clas-
sifier achieved the highest accuracy (%99.91) by using the UMF approach (28 optimum
top-ranked features) compared to the various numbers of selected features. In the ANN
classifier, the accuracy classification fluctuates up and down by applying various feature
selection approaches. There is a noticeable increase in the accuracy performance of the
ensemble classifier when compared to individual classifiers. In terms of selected features, a
small number of relevant features are not required to achieve the higher accuracy whereas
many relevant features do not assure that a lower classification accuracy will result.

Based on the obtained results from the IoTID20 dataset, the proposed UMF and IMF re-
sults in the improvement of Anomaly-based IDS for accuracy, precision, recall, f1-measure,
ROC area of 99.98, 99.90, 99.90, 99.90, 99.90, respectively. The improvement in the perfor-
mance of IMF-ensemble or UMF-ensemble is because IMF and UMF filter-based approaches
use an optimum (min, max) number of top-ranked features relevant for classification. UMF
and IMF do not show any fluctuation in the performance since UMF, and IMF incorporates
the best features produced by both IG and GR approaches. Furthermore, the model with
UMF and IMF is not prone to underfitting when the number of features decrease. According
to the results shown in Table 13, the proposed model is superior and competent in compari-
son to the results stated for models reported in [53–56] using IoTId20 dataset. Furthermore,
we used the NSL-KDD dataset for validating our binary classification detection model.
Table 14 indicates that the proposed model is superior and competent in comparison to the
results stated for the models reported in [42,64–74]. Figure 13, along with Table 15 repre-
sent a comparison between our multi classification model performance versus the related
works with respect to the IoTID20 dataset. Finally, while our proposed study evaluates the
anticipated predictive models using diverse evaluation metrics, some related works failed
to evaluate all metrics since they did not consider the choice of different features. Indeed,
access to the best features with a minimum of features is extremely important to improve
accuracy and conserve resources and reduce training time complexity.

5. Summary and Conclusions

This paper proposes a feature selection approach using the concept of mathematical
set theory for machine learning-based IDS to extract efficient subsets of features. The
developed machine learning-based IDS scheme has 3-phases: a data preprocessing phase, a
dimensionality reduction, and feature selection phase, and a model training and classifi-
cation phase. The dimensionality reduction phase has two subphases. In phase 2:A, we
ranked the features using IG and GR filter-based approaches to produce the top 60 ranked
and top 20 ranked subsets of features for the IoTID20 dataset as well as for all features
and top 20 ranked for the case of the NSL-KDD dataset. In the second subphase of dimen-
sionality reduction, we developed a hybrid feature selection approach using intersection
and union rules. The second subphase produces a features subset that is optimized for
performance via the elimination of redundant features. The model training/classification
phase applies five ML algorithms, namely bagging, ANN, J48, kNN, Ensemble algorithms
to classify the generated subsets of traffic features into normal or intrusion classes as binary
classification as well as multi-classes for the purpose of multi-classification. The advantage
of the ensemble-based hybrid approach is that the selected feature subsets provide optimum
results. Even though dimensionality has been reduced, the resultant features produce an
optimum classification. These results give us an indication that the current feature selection
approaches are unable to extract the relevant features and eliminate irrelevant features;
thus, we come to a trade-off between the two best entropy feature selection approaches to
improve the inadequacies of each one.

To conclude, the ensemble method has provided better results in classification per-
formance for both the IoTID20 and NSL-KDD datasets compared to related works and
individual ML algorithms. This is the result from eliminating irrelevant features before the
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training process. The experiments demonstrated a significant improvement in the realms
of accuracy, precision, recall, f1-measure, and the ROC area.

In the future, we seek to deploy our proposed system to be used by an IoT gateway
device for the delivery of detection and classification services against various cyber-attacks
and intrusions within a network of IoT devices (e.g., a network of Advanced RISC Ma-
chine (ARM) or Arduino raspberry Pi nodes). Further investigation regarding resource
consumption can be characterized and reported as additional evaluation parameters to
enhance our studies of the proposed IoT-IDS testbed. This can include the analysis of
energy consumption, inferencing overhead, memory utilization, and processing complexity
using resource aware IoT nodes with tiny system elements.
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