
 1 

The final publication is available at Springer via http://dx.doi.org/10.1007/s12553-016-0161-3  



2 

Title:Indoor Location IoT Analytics “in the wild”: Active and Healthy Ageing cases. 

 

Evdokimos I. Konstantinidis
1
, Antonis S. Billis

1
, Rob Dupre

2
, Juan Manuel Fernández Montenegro

2
, 

Giuseppe Conti
3
, Vasileios Argyriou

2
, Panagiotis D. Bamidis

1 

 

1
Lab of Medical Physics, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece 

2
Dept of Experimental Cardiology, Heart Failure Center, Academic Medical Center, University of Am-

sterdam, Meibergreef  7, 1105AZ Amsterdam 

3
Trilogis, Rovereto, Italy 

 

 

Corresponding Author: 

Panagiotis D. Bamidis, 

e-mail: pdbamidis@gmail.com 

tel: +302310999310 

fax: +302310999702 

 

ACKNOWLEDGMENT 

This work was supported in part by the UNCAP Horizon 2020 project (grant number 643555), as well as, the business ex-

ploitation scheme of the ICT-PSP funded project LLM, namely, LLM Care which is a self-funded initiative at the Aristotle 

University of Thessaloniki (www.llmcare.gr). 

 

 

 

  

mailto:pdbamidis@gmail.com
http://www.llmcare.gr/


 3 

Abstract 

Recently much research has been conducted on early detection of cognitive and physical status deterioration in elderly 

adults. Primarily the focus is on gait analysis methodologies exploiting average speed, however this presents an issue when 

used for context aware applications. Additionally data capture tends to be in short bursts over a long period, allowing for 

localized temporal factors, such as short term injury, to potentially skew measurements. As such this work collects gait and 

trajectory IoT data from elderly adults in senior homes ("in the wild") over a sustained period of time (1 year). Density based 

clustering algorithms are then applied to the data to provide long-term insights into how the high density regions change over 

time. The data is collected, analyzed and made available by the indoor analytics client utilizing available processing re-

sources and delivers the analytics outcome even when it is hosted in hardware with constrained resources. Promising results 

are obtained from the long-term study, suggesting that this form of evaluation has strong potential in the analysis of cogni-

tive and physical status deterioration. 

 

Keywords— indoor location, IoT analytics, active and healthy ageing, gait analysis 

  



4 

1. INTRODUCTION 

Gait pattern analysis in elderly adults can be used as early predictors for cognitive decline [1], functional limitation and 

even mortality [2]. Additionally movement properties such as walking speed has been utilized as a means of predicting ad-

verse events among elderly, such as falls [3][4]. Several other gait features have been extracted and explored as information 

of important diagnostic value, such as limb motion, body transfer, step length, step height and number of steps [1]. Due to 

increasing interest by the geriatric research and clinical community attempts of creating normative databases [5] and inclu-

sion of several tasks in geriatric assessment batteries have been made lately so as to measure gait velocity [6].  

In order for a system to analyze movement automatically the position of the subject must be tracked over a defined period 

of time. This provides the core data from which relevant features concerning a walking activity can be extracted. The field of 

indoor positioning systems and services [7] by which this core data is captured has received much research in recent times. 

Some such Indoor 3D Location Sensing Technologies [8] include: RF signal strength [9], WiFi apps [9], active RFID [10], 

Ultra Wide Band (UWB) or Li-Fi. Another popular approach includes the processing of depth image information extracted 

by contemporary commercial devices such as Microsoft Kinect sensor [11]. 

Recently research has been done in indoor location classification techniques, intelligent monitoring approaches, and mov-

ing object tracking in real-life contexts [12]. Additionally machine learning methods have been utilized to estimate indoor 

location and movement speed [13], while time-series analysis has been used to identify abnormalities in continuous assess-

ment of video trajectories [14].  

Context aware trajectory analysis is another relevant area of research. Using clustering algorithms which automatically 

recognize low and high density regions [15], it may provides more detailed information about behavioral patterns relating to 

activities of daily living and habit variation.. In that context, the Density-Based Spatial Clustering of Applications with Noise 

(DBScan) is an effective algorithm which has proven to be fairly robust when applied to noisy environments [16].  

With the constant development of more intelligent sensors and devices, as well as data stemming from applications such 

as interventions for elderly people [17], the data produced by the Internet of Things (IoT) increases in volume and variety. 

However, this data is far from perfect, more often the streams provided by these devices are heterogeneous, imperfect, un-

structured, unprocessed and in real time. This presents the need for specific analytics to extract the meaningful information 

[18]. To this end, ANGELS for distributed analytics in IoT have been suggested towards reducing the analysis load of cloud-

based large data centers which form the basis of the “big-data” problem [19]. Utilizing this concept, IoT data analysis in the 

field by distributed IoT analyzers forms the basis for the practicality of long-term observations of this nature.  

The work presented in this paper extends and introduces the authors’ previous work on density based clustering on indoor 

(location) transitions [20][21] in real seniors’ homes. Within this work, the CAC framework and Indoor Analytics Client are 

implemented over a long-term data capture period of about 12 months. The results of the high density region analysis are 

presented in the form of both a short and long term analysis, demonstrating the insights that can be gained through evalua-

tions of this type. Utilizing this method has two main advantages. Firstly the system requires no direct input by the subject 
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under observation, for example no tracking or monitoring hardware to be worn and maintained. Additionally the passive 

nature of the monitoring method helps to ensure that the data collected is as ecologically valid as possible.  

The aim of this paper is to present the realization of IoT analytics on indoor body localization. The main parts of the im-

plementation constitute the scheduled on site data analysis on extracting high density regions, communication of analysis 

results to other IoT objects (any hardware and software) through a Rest API and processing of long term observations. Re-

sults of the indoor localization algorithm are presented in the form of identified regions and processing time. In this work, 

the Microsoft Kinect was selected as the indoor location sensor. However, any other sensor producing indoor location infor-

mation could be utilized within the framework. The remainder of this paper is structured as follows. The Methodology sec-

tion outlines the architecture of the Indoor Analytics, outlining each individual component, information of the experiments 

carried out and the data collection methodology. The Results section presents an evaluation of the methodology, reviewing 

the efficiency of the algorithm's performance with respect to volume of the data input, as well as the outcome of the analysis 

of the long-term study of seniors' home installations. A discussion on the current research work in the field, along with re-

search limitations and further envisaged work follows at the end of the paper. 

2. METHODS 

The work presented in this paper relies on the indoor density based clustering analysis of location tracking using Kinect 

methods presented in [20]. The realization of this work is in the context of the Internet of Things (IoT) analysis domain (c.f. 

Fig. 1). More specifically, streamed Kinect-captured body trajectories are received and recorded by a client as a set of (x,y) 

locations of the body’s center of mass [12]. The client then periodically applies a density based clustering algorithm [20] to 

the generated datasets, resulting in High Density Regions (HDR) of human activity. This information, as well as previous 

analyses', is then made available by the client through the Rest API interface, for consumption by any hardware or software 

as required. 

2.1. CAC-framework Kinect connectivity and IoT 

Following the publish/subscribe messaging pattern, widely adopted by many IoT implementations, the Controller Applica-

tion Communication (CAC) [22] is a cross device/platform  communication framework. Built on top of WebSockets, com-

munication between controllers and applications is achieved using JSON messages. Given that the CAC focuses on gaming 

controllers such as Kinect, Wii Balance Board and Remote Control as well as wearable devices such as Emotiv amongst 

others, the framework’s real time communication streaming and data exchanging is adapted for high throughput. Each con-

troller attached to the CAC framework publishes their respective data, which are then delivered to any service/application 

which has subscribed to that specific data client in the same session [23]. In this work, the client application utilizes the Mi-

crosoft Kinect SDK, communicating with a Kinect and streams the skeleton and RGB information to a CAC framework 

server. The indoor Analytics Client then receives the corresponding data packets ready for further evaluation. 
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Fig. 1 Architectural design of the Indoor Analytics approach in the IoT domain 

2.2. Indoor Analytics Client 

The Indoor Analytics Client is implemented in NodeJS and is based partially on the Node.js CAC-framework client de-

scribed in [20]. Realizing a CAC client API [23] (more information at http://www.cac-framework.com), the Indoor Analytics 

Client subscribes to the skeleton streaming channel made available via the CAC framework. The position of the skeleton’s 

center of mass along with a timestamp, skeleton id and the corresponding position of some of the body joints such as ankles, 

knees, hips, hip center, spine, shoulders and shoulder center [24] are saved into csv files.  

The Indoor Analytics Client can initiate an analysis execution at a specific time of the day or at specific intervals. The 

RAM constraints refer to the total number of points that can be analysed each time, and facilitates the removal of intermedi-

ate points allowing the analysis process to be more efficient in terms of computational power. This has proven to be very 

effective when the Indoor Analytics Client is deployed on the Raspberry PI 2 (equipped with 1GB of RAM). 

Each execution produces a number of High Density Regions(HDR's) which are saved in JSON format along with the size 

of each region (the number of points included in this region with respect to the total number of points) as well as the 

timestamp of the execution. Additionally a figure illustrating the points and the extracted HDRs is also created. Given that 

node.js can be executed on any hardware and software, the Indoor Analytics Client can be hosted on most of the IoT sup-

ported hardware and software, including Raspberry. 

2.3. Processing Algorithms 

The HDR are calculated and an optimal convex polygon that surrounds the points of each calculated HDR. HDR's are 

computed using the Density-Based Spatial Clustering (DBScan) which has the advantages of being data insensitive and suit-

able for applications with large, even noisy, datasets [16]. The algorithm groups the neighborhood points according to the 

minimum distance between two neighboring points (eps parameter) and the minimum neighborhood points that are sufficient 

to constitute a cluster (minPts parameter). The output of the algorithm gives a number of High Density Regions (clusters) 

[16]. For this work the minPts parameter is proportional to the total number of points [20]. The smallest convex polygon that 

http://www.cac-framework.com/
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surrounds the points of each calculated HDR is based on a convex hull [25]. This algorithm is applied to all DBScan clusters 

producing an equal number of convex polygons to defined HDRs. 

Additionally, utilizing previously clustered HDR's and their associated convex hulls as points, the process can be repeat-

ed. Given that the initial analysis of the positional data is calculated once per day, a secondary analysis allows trends in long-

term observations to be assessed. For example on a per month basis IoT Analytics API. The Indoor Analytics Client exposes 

a set of Rest API functions providing access to the calculated HDRs. Given that the outcome of every execution of the algo-

rithms is stored to a file, the API exposes a history of the last calculated HDRs. Table 1 presents an example output of the 

Indoor Analytics Client API along with information about two extracted clusters. The hull polygon is defined by a number of 

points forming a polygon surrounding the HDR points. 

Table 1 Indoor analytics client API output (IP:8085/getclusters/0) 

{"ms":1446737356000, 
"datetime":"20151105-152916", 

"AllClusterInfo":[ 

 {"ID":0, 
 "Size":940, 

 "ProportionString":"94.15%", 

 "HullPolygon":[ 
  ["1.28","2.58"], 

  ["1.24","2.60"], 

  ...........}, 
 {"ID":2, 

 "Size":36, 

 "ProportionString":"3.62%", 

 "HullPolygon":[ 

  ["-1.24","3.23"], 

  ["-1.27","3.24"], 
  ...........} 

 ]} 

 

2.4. Experiment 

The Indoor Analytics Client was deployed to seniors’ homes as part of the USEFIL project [26]. The CAC-framework 

server and Microsoft Kinect, integral components of the USEFIL system, had already been deployed to seniors’ homes [26]. 

Kinect was used to monitor the senior’s daily activity while the CAC-framework supported the simultaneous communication 

of the extracted skeleton features, the Clothes Change Detection component [27] and the FitForAll exergaming platform 

[28].  

The experiment run across five seniors’ homes for a period of ~12 months capturing their daily transitions in their living 

room. In each case, the above setup was utilized. The data for each day run through the framework and the resultant HDR's 

and respective convex hulls calculated. These computed HDR's are then analyzed again using the Indoor Analytics Client to 

provide clustering on a monthly basis, allowing the inference of trends that change over longer periods.  
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3. RESULTS 

The analysis was conducted on two levels. The daily and the monthly (aggregated) analysis. The analysis results of 6 days 

for 2 homes are presented as an indicative example of the daily analysis. In addition, the analysis for a specific day for one 

senior’s home was carried out with respect to the points involved in the calculation, juxtaposing the involved points, the 

required processing time and the respective results. 

Table 2 presents the datasets containing information about the number of the HDRs calculated, the number of total daily 

points, and the proportion of points out of the total points for the three predominant regions. Technical issues at home I in 

day 4 prohibited the client to collect data and generated the corresponding datasets. 

In addition, the analysis for a specific day for one senior’s home was carried out with respect to the points involved in the 

calculation, juxtaposing the involved points, the required processing time and the respective results. 

Table 2: Experimental datasets presenting the number of total daily points, the number of the HDRs and the proportion of 

points for the three more predominant regions. 

 Day # 

points 

# HDR 1
st
 % 

HDR 

2
nd

 % 

HDR 

3
rd

 % 

HDR 

H
o

m
e 

1
 

1 101288 6 50.13 28.69 7.67 

2 229936 3 59.86 35.72 1.31 

3 371415 4 61.02 21.91 12.18 

4 - - - - - 

5 555945 6 74.53 15.58 2.93 

6 301023 5 36.30 21.30 19.19 

H
o

m
e 

2
 

1 370492 9 16.60 15.00 7.23 

2 604353 5 39.70 34.69 7.14 

3 531090 4 40.64 29.98 22.00 

4 361404 5 62.03 8.67 7.06 

5 223661 4 60.57 21.16 3.42 

6 272196 3 48.87 20.18 15.69 

 

Fig. 2 illustrates the outcome of the CAC frameworks analysis for 6 individual days across two sites. Each green dot rep-

resents the seniors’ position captured using the Kinect, each red area represents a high density region calculated by the In-

door Analysis Client. These visualizations present an intuitive view of single days’ activity. Depiction I-4 corresponds to the 

day with the technical issues. 
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Fig. 2 Illustrative depiction of the daily trajectories and HDRs extracted for senior’s home I and II daily (1-6). 

Table 3 shows time required for the DBScan analysis computation. Analysis is given for the three predominant regions, 

with respect to the number of the involved points, for the second senior's home for the first day. Fig. 3 illustrates those same 

HDRs. The analysis refers to the second senior's home for the first day (c.f. In addition, the analysis for a specific day for 

one senior’s home was carried out with respect to the points involved in the calculation, juxtaposing the involved points, the 

required processing time and the respective results. 

Table 2 II-1) where the total recorded points were 370492. The analysis of a dataset (II-1) with respect to the points in-

volved in the calculation (c.f. Table 3 and Fig. 3) shows that the accuracy of the results and the extracted information is 

slightly affected by the number of the involved points. Contrary, the calculation time is parabolically increasing, reaching 

about 2h for 50000 points. 

Table 3: Time required for the DBScan analysis alongside the outcome of the three more predominant regions with respect to 

the number of the involved points. 

#points Time 

(ms) 

1
st
 % 

HDR 

2
nd

 % 

HDR 

3
rd

 % 

HDR 

991 5947 16.15 14.53 7.77 

4812 82267 16.67 15.23 7.09 

8420 232808 17.09 15.33 7.51 

16839 900465 17.10 15.38 15.18 

28505 2733849 16.78 15.43 15.08 

46320 7015289 16.51 15.65 15.45 
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Fig. 3 Illustrative depiction of HDRs with number of points used and computation time in minutes required for the analysis 

to finish. 

In addition to the above analysis of a single day’s data, a review is given of data captured over a ~12 month period. In this 

case, the outputted daily HDR's are used as points in a secondary pass of the Density-Based Spatial Clustering (DBScan) 

algorithm to produce HDR's on a monthly basis. Again, convex hulls are produced for each HDR highlighting points of 

interest in the environment for that month. Fig. 4 demonstrates a month-by-month review of observations made in a single 

residence.  
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Fig. 4 Month by month presentation of the monthly aggregated clusters. 
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4. DISCUSSION 

This long-term study applied a density based clustering algorithm on indoor body transitions in real seniors’ homes over a 

period of ~12 months. The importance in terms of value and accuracy of the algorithm application on such data has been 

presented in a previous author’s work where: data collected through trials carried out both in the Thessaloniki Active And 

Healthy Ageing Living Lab (Thess-AHALL), an adherent member of the European Network of Living Labs located in the 

Lab of Medical Physics in the Aristotle University of Thessaloniki in Greece [20], as well as in real seniors homes [21]. A 

software client subscribes, listens, collects and applies a density clustering algorithm on real IoT indoor position data, 

streamed at the time of occurrence, analyzes the data and exposes the so called IoT analytics results through a Rest API feed-

ing back the environment with meaningful information. The high density regions, constituting the outcome of the IoT analyt-

ics, are then available to any IoT hardware and software. A secondary pass of the high density region analysis is then applied 

to give a less granular evaluation of the data. 

Given the unavoidable trade-off of the real life settings, the authors investigated the correlation between processing time 

and algorithm performance. As such, the implementation skips some intermediate points to reduce the processing time of the 

algorithm, whilst still taking into account a representative portion of the points. It is worth mentioning that, according the 

results, although the processing time increases parabolically with the number of points involved in the calculation, the result 

is slightly differentiated. This could be attributed to the robustness of the DBScan algorithm along with the percentage value 

of the minPts parameter  which is proportional to the total number of the points [16]. Similarly, the eps parameter  could be 

also configured according to the dataset. This can be justified by the facts that body gait and posture are possessed by known 

and predictable conditions.  

As the CAC framework [22] is built upon high throughput and pub/sub architecture, the facility is provided whereby 

events are made available to the IoT streaming channel, from the IoT data streams, at the time they occur. This provides the 

opportunity for other IoT objects to analyze in real-time concurrently. In addition, any location data source able to cooperate 

with such a framework, apart from Kinect which was utilized in the USEFIL project [26], could be the source of the work 

presented in this paper since the analysis is applied on the location of the senior. The indoor analytics client collects, inte-

grates and processes all the activities as the data is being produced, without disrupting the activity of existing sources, com-

munication channels or storage systems. The extracted HDRs and the percentage of points per region, formed as JSON, can 

be consumed by any hardware and software that has access to the Indoor Analytics Client through the Rest API. Such an 

approach enables big data analytics on the field at meaningful time intervals rather than subsequent analysis of the entire 

dataset.  

To the best of the authors’ knowledge [20], was the first study applying the DBScan algorithm [29], on real seniors’ 

homes indoor location datasets. This, in conjunction with the application of the approach to real senior’s homes for about a 

year make the outcome of this work even more important for consideration of future studies. As a step further, such analysis 

could become the base for further insights into context aware indoor gait analysis providing more fine-grained information to 

Decision Support Systems on the field [30]. This is clearly beyond current literature which merely focuses on average in-
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home gait speed [31][32]. Moreover, context aware gait velocity will be calculated for the seniors and will be compared 

against average speed. 

Additionally with the extension to long term data, collected from real seniors’ homes, long-term insights about the high 

density regions and their changes over time can be extracted. This ability to collect data over longer uninterrupted periods 

presents many advantages over long-term intermittent observations, such as minimizing the effect that temporary changes in 

subjects’ health might have on the overall study. The privacy concerns of having a Kinect camera sensor present in the sen-

iors homes are a documented issue [31][33], however these concerns are alleviated due to the Kinects introduction as a gam-

ing sensor [34] for the FitForAll exergaming platform [28] given the beneficial role of the serious games that the seniors are 

informed about [35].  

Similarly, in the context of the UNCAP project [36], the intension is to collect a large dataset of both outdoor and indoor 

positions that will be studied following the approach outlined in this work. The piloting phase involves 11 different struc-

tures across Europe including nursing homes, care centers as well as in residence deployments for the elderly living at their 

homes. Here position monitoring is used in real time, to trigger alarms and to interact with home automation systems. Out-

door localization data is acquired using GPS while indoor localization is achieved by leveraging on various different tech-

nologies: UWB, Zigbee, Kinect and capacitive floors to name a few. The variety of different positioning systems adopted, 

together with the collection of both indoor and outdoor data, represents a very interesting scenario for the work presented in 

this paper. 

4.1. Limitations and further steps 

This study does have several limitations. The position of the Kinect may have slightly changed over time. The results do 

not correspond to exactly the same months among the seniors that deters further correlation analysis among the seniors’ 

patterns. In addition, although the minPts parameter of the DBScan algorithm is configured with respect to the total number 

of involved points, eps is set as a constant number that should be addressed in future work. Finally, the authors consider 

compliance and contribution to the IndoorGML which is an Open Geospatial Consortium (OGC) standard for an open data 

model and XML schema for indoor spatial information [37].  

5. CONCLUSIONS  

The work presented in this paper is an innovative step forward in the analysis of "wild" data. Providing an effective means 

of capturing long term localization data facilitated by IoT analytics and creating unfiltered high density regions. The increase 

in accessibility to robust data of this type provides an interesting and very promising new area of research, which might 

prove to be very useful for identifying early decline symptoms from simple daily living sensor recordings. 
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