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In this chapter we present our IoT Reference Architecture. This IoT Reference

Architecture is, among others, designed as a reference for the generation of

compliant IoT concrete architectures that are tailored to one’s specific needs. For

other usages of the IoT Architectural Reference Model see Chap. 3.

The IoT Reference Architecture is kept rather abstract in order to enable many,

potentially different, IoT architectures. Guidance on how to use all the parts of the

IoT Reference Architecture can be found in Chaps. 5, 6, 9, 10, and 11.

Both in devising this chapter and in presenting the outcomes of our deliberations,

we are adhering to the framework of architectural views and perspectives, as

described in the software engineering literature and standards (for more details

see (Rozanski and Woods 2011)). The use of well-known concepts makes it easier

for architects from other domains to feel comfortable in the IoT world and this

framework was thus a rather natural choice. To be more precise, we used the

definitions of views from (Woods 2008), as well as their architectural-perspective

catalogue. We adopted both according to IoT-specific needs. One has to be careful

though, about the definition of views and viewpoints as these differ between

authors. Nonetheless, there are no conceptual differences to traditional approaches

and someone with a background in designing any kind of system should not have a

steep learning curve. Notice though that architectural views and perspectives were

originally defined for concrete architectures and not for reference architectures.

Views that are very use-case dependent, for instance the IoT Physical Entity view

and the context view, are therefore not covered here. For a more detailed discussion

of this aspect see Chap. 5. Furthermore, since a reference architecture covers a wide

range of use cases, it is of course void of use-case-specific details (for instance

usage patterns and the related interactions of the system’s functional components),

such aspects are not covered in the IoT Reference Architecture but have to be

attended during, for instance, the architecture-generation process.

The structure of the chapter is as follows: First, we give a short overview on

architectural views and perspectives. We then go on with presenting views that

constitute the IoT Reference Architecture. The functional view and its viewpoints

are described in great detail. At the time of writing there was indeed so much

information at hand that we decided to only present an overview of the functional

view here and to cover, for instance, the detailed definitions of the functional

components of the functional-decomposition viewpoint in Carrez et al.

(2013). Next, the information view is introduced as well as the deployment and

operational view. The remainder of the chapter is then devoted to architectural

perspectives. We describe four architectural perspectives (evolution and interoper-

ability; performance and scalability; trust, security, and privacy; and availability

and resilience). How architectural perspectives influence the architecting process is

not covered here but in Chap. 6.
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8.1 Short Definition of Architectural Views and
Perspectives

A system architecture, and thus by default, a reference architecture, needs to answer

a wide range of questions. Such questions can, for instance, address:

• Functional elements.

• Interactions of said elements.

• Information management.

• Operational features.

• Deployment of the system.

What the user of an architecture expects, is an architectural description, viz. “a

set of artifacts that documents an architecture in a way its stakeholders can

understand and that demonstrates that the architecture has met their concerns”

(Rozanski 2005b). Instead of providing these artifacts in a monolithic description,

one often chooses to delineate them by so-called architectural views. The idea

behind so doing is to focus on system aspects that can be conceptionally isolated.

Architectural views make both the derivation of the architecture and its validation

easier. The above bullet-point list provides examples of such views. A more

detailed discussion of views and how we adapted them to the reference-architecture

realm is provided in the next section.

In the past it has been found that views are unfortunately not enough for

describing system architectures and that many stakeholder aspirations are rather

of a qualitative nature (Rozanski and Woods 2011). Such qualitative aspirations cut

across more than one view. Such aspirations are referred to architectural

perspectives, of which privacy is but one example. A more detailed discussion of

architectural perspectives is provided in Sect. 8.8.

The joint use of architectural views and perspectives in architecture descriptions

is described in more detail in the pertinent literature (Rozanski and Woods 2011).

8.2 Architectural Views

Views are used during the design and implementation phase of a concrete system

architecture. They are defined in the following way:

A view is a representation of one or more structural aspects of an architecture

that illustrates how the architecture addresses one or more concerns held by

one or more of its stakeholders (Rozanski and Woods 2011).
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A view is composed of viewpoints, which aggregate several architectural

concepts in order to make the work with views easier. The IEEE standard 1471

defines viewpoints as follows:

A viewpoint is a collection of patterns, templates, and conventions for

constructing one type of view. It defines the stakeholders whose concerns are

reflected in the viewpoint and the guidelines, principles, and template models

for constructing its views (IEEE Architecture Working Group 2000).

Some typical examples for viewpoints are:

• Functional view: functional-decomposition viewpoint; interaction viewpoint;

interface viewpoint;

• Information view: information-hierarchy viewpoint; semantics viewpoint;

information-processing viewpoint; information-flow viewpoint.

8.2.1 Usage of Views and Perspectives in the IoT Reference

Architecture

As mentioned in the introduction to this chapter, the IoT Reference Architecture is

use-case- and application- independent and is therefore not compatible to the

concept of views and viewpoints one-by-one. But the idea behind the concept is

nevertheless helpful and was thus adopted for the use within the IoT Reference

Architecture. As discussed above the following views were left out from the IoT

Reference Architecture but are discussed in Chap. 5:

• Physical Entity View and

• Context View.

Concerning the Functional View, of the above three viewpoints, interactions are

not covered in the IoT Reference Architecture, since the number of arrangements of

the Functional Components and also their invocation is practically infinite. Instead,

we chose to cover some typical – but yet high-level – interaction patterns (see

Sect. 8.5).

The same is true for the deployment and operational View. However, there are

aspects to both that are practically invariant over the IoT domain and these aspects

are covered in Sect. 8.7. Also, what is an aspect of the deployment view in one

architecture can be an aspect of the operation view in another architecture. Situating

these aspects in either or is contingent on, among others

• Requirements (usability; institutional rules and traditions; . . .) and

• Design choices made (commission on manufacturing floor; shipment and instal-

lation by experts; operation by experts).
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The following sections present the IoT Functional View, IoT Information View,

and the IoT Deployment and Operational view of the IoT Reference Architecture.

8.2.2 Functional View

8.2.2.1 Devising the Functional View

The functional view is defined by applying the methodology defined in Chap. 5 to

functional decomposition as can be seen in Fig. 8.1.

In a first step, the Unified Requirements are mapped to the different Functional-

ity Groups of the IoT Functional Model.

Next, clusters of requirements of similar functionality are formed and a Func-

tional Component for these requirements defined.

Finally, the Functional Components are refined after discussion with the techni-

cal work packages.

The viewpoints used for constructing the IoT Functional View are hence:

1. The Unified Requirements;

2. The IoT Functional Model.

Once all Functional Components are defined, the default function set, system use

cases, sequence charts and interface definitions are made, which all can be found

back in Carrez et al. (2013).

The Functional View diagram is depicted in Fig. 8.2 and shows the nine

functionality groups of the Functional Model. Note that:

• The Application FG and Device FG are out-of-scope of the IoT-A Reference

Architecture and are coloured in yellow;

• Management FG and Security FG are transversal FGs and are coloured

dark blue.

For each of the Functionality Groups, the Functional Components (FC) are

depicted.

Functional

View

Functional

Model

Unified

Requirements

Steer

Guides

Fig. 8.1 Functional view

process
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In the following sub-sections, the FC’s of each FG will be described in more

detail.

The Functional View presented in this chapter will give a description of the

Functional Components, but will not describe the interactions taking place between

the Functional Components.

The reason is that these interactions are typically depending on Design Choices

which are not made at this level of abstraction.

Chapter 10 will go more into detail and depict some typical interaction

scenarios.

In addition to the description in this chapter, more detailed information such as

requirement mapping, system use cases, interaction diagrams and interface

definitions can be found in Carrez et al. (2013).

8.2.2.2 IoT Process Management

The IoT Process Management FG relates to the integration of traditional process

management systems with the IoT ARM. The overall aim of the FG is to provide the

functional concepts and interfaces necessary to augment traditional (business)

processes with the idiosyncrasies of the IoT world.

The IoT Process Management FG consists of two Functional Components (see

Fig. 8.3 below):

• Process Modelling;

• Process Execution.
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IoT Service
IoT Service

Resolution

Service

Orchestration

Service
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Network

Communication

End To End

Communication

Hop to Hop

Communication

Management Security

Application

Virtual Entity IoT Service

Communication

Configuration
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Authorisation

Key Exchange &

Management

Trust & Reputation

Identity Management

Authentication

Device

Reporting

Member

State

IoT 

Process Management  

Process
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Process

Execution

Service

Choreography

Service

Organisation

Fig. 8.2 Functional-decomposition viewpoint of the IoT Reference Architecture
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The Process Modelling FC provides an environment for the modelling of

IoT-aware business processes that will be serialised and executed in the Process

Execution FC.

The main function of the Process Modelling FC is to provide the tools necessary

for modelling processes using the standardised notation, i.e. using novel modelling

concepts specifically addressing the idiosyncrasies of the IoT ecosystem (Meyer

2012).

The Process Execution FC executes IoT-aware processes that have been

modelled in the Process Modelling FC described above. This execution is achieved

by utilising IoT Services that are orchestrated in the Service Organisation layer.

The Process Execution FC is responsible for deploying process models to the

execution environments: activities of IoT-aware process models are applied to

appropriate execution environments, which perform the actual process execution

by finding and invoking appropriate IoT Services.

The Process Execution FC also aligns application requirements with service

capabilities. For the execution of applications, IoT Service requirements must be

resolved before specific IoT Services can be invoked. For this step, the Process

Execution FC utilises components of the Service Organization FG.

Finally, the Process Execution FC can run applications: after resolving IoT

Services, the respective services are invoked. The invocation of a service leads to

a progressive step forward in the process execution. Thus, the next adequate process

based on the outcome of a service invocation will be executed.

8.2.2.3 Service Organisation

The Service Organisation FG (see Fig. 8.4) is the central Functional Group that acts

as a communication hub between several other Functional Groups. Since the

primary concept of communication within the IoT ARM is the notion of a Service,

the Service Organisation is used for composing and orchestrating Services of

different levels of abstraction.

The Service Organisation FG consists of three Functional Components:

• Service Orchestration;

• Service Composition;

• Service Choreography.

IoT 

Process Management  

Process

Modeling

Process

Execution

Fig. 8.3 IoT process

management
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The Service Orchestration FC resolves the IoT Services that are suitable to

fulfil service requests coming from the Process Execution FC or from Users.

Its only function is to orchestrate IoT Services: resolve the appropriate services

that are capable of handling the IoT User’s request. If needed, temporary resources

will be set up to store intermediate results that feed into Service Composition or

complex event processing.

The Service Composition FC resolves services that are composed of IoT

Services and other services in order to create services with extended functionality.

The Functional Component has two main functions: (1) support flexible service

compositions and (2) increase quality of information.

To support flexible service compositions, the Service Composition FC must

provide dynamic resolution of complex services, composed of other services.

These combinable services are chosen based on their availability and the access

rights of the requesting user.

Quality of information can be increased by combining information from several

sources. For example, an average value – with an intrinsically lower uncertainty –

can be calculated based on the information accessed through several resources.

The Service Choreography FC offers a broker that handles Publish/Subscribe

communication between services. One service can offer its capabilities at the FC

and the broker function makes sure a client interested in the offer will find the

service with the desired capabilities.

Also service consumers can put service requests onto the Choreography FC

while a suitable service is not available at the time when the request was issued. The

service consumer will get notified as soon as a service became available that fulfils

the service request issued before.

Service

Orchestration

Service

Composition

Service

Choreography

Service

Organisation

Fig. 8.4 Service

organisation

170 M. Bauer et al.



8.2.2.4 Virtual Entity

The Virtual Entity FG (see Fig. 8.5) contains functions for interacting with the IoT

System on the basis of VEs, as well as functionalities for discovering and looking

up services that can provide information about VEs, or which allow the interaction

with VEs. Furthermore, it contains all the functionality needed for managing

associations, as well as dynamically finding new associations and monitoring

their validity.

The Virtual Entity FG consists of three Functional Components:

• VE Resolution;

• VE & IoT Service Monitoring;

• VE Service.

The VE Resolution FC is the Functional Component which provides the

functionalities to the IoT User to retrieve associations between VE’s and IoT

Services.

This includes the discovery of new and mostly dynamic associations between

VE and associated services. For the discovery qualifiers, location, proximity, and

other context information can be considered. If no association exists, the associa-

tion can be created.

The User can also subscribe or unsubscribe to continuous notifications about

association discovery that fit a provided specification of the VE or of the Service. In

case of a notification, a callback function will be called.

Similar, the User can subscribe or unsubscribe to notifications about association

lookup.

The VE Resolution FC also allows to lookup VE-related services, i.e. search for

services exposing resources related to a VE.

Finally, the VE Resolution FC allows managing associations: insert, delete and

update associations between a VE and the IoT Services that are associated to

the VE.

The VE & IoT Service Monitoring FC is responsible for automatically finding

new associations, which are then inserted into the VE Resolution FC. New

VE Service

VE & IoT

Service Monitoring

VE Resolution

IoT 

Process Management

Process

Modeling

Process

Execution

Virtual Entity
Fig. 8.5 Virtual entity
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associations can be derived based on existing associations, Service Descriptions

and information about VE’s.

The functions of the VE & IoT Service Monitoring FC are to assert static

associations, i.e. create a new static association between VE’s and services

described by the provided association, discover dynamic associations, i.e. create a

new dynamic or monitored association between VE’s and Services, update the

association and delete the association from the VE Resolution framework.

Finally, the VE Service FC handles with entity services. An entity service

represents an overall access point to a particular entity, offering means to learn

and manipulate the status of the entity. Entity services provide access to an entity

via operations that enable reading and/or updating the value(s) of the entities’

attributes. The type of access to a particular attribute depends on the specifics of

that attribute (read only/write only or both).

A specific VE service can provide VE history storage functionality, to publish

integrated context information (VE context information – dynamic and static), VE

state information, VE capabilities.

The two functions currently defined for the VE Service FC are to read and set an

attribute value for the entity.

It is not required to have an explicit register for Virtual Entities, but the VE

Resolution FC could be extended to be used in this way. The important aspect is to

agree on how to assign identifiers to Virtual Entities. For modelling any other aspect

of the Virtual Entity, a Virtual Entity service can be used that gives you access to all

information about a Virtual Entity. This can be current sensor information, as well

as historic information. Historic information would typically be stored in a data-

base, which can be modelled as a Network Resource (see Sect. 7.3.3).

8.2.2.5 IoT Service

The IoT Service FG (see Fig. 8.6) contains IoT services as well as functionalities for

discovery, look-up, and name resolution of IoT Services. It consists of two Func-

tional Components:

• IoT Service;

• IoT Service Resolution.

An IoT Service exposes one Resource to make it accessible to other parts of the

IoT system. Typically, IoT Services can be used to get information provided by a

resource retrieved from a sensor device or from a storage resource connected through

a network. An IoT Service can also be used to deliver information to a resource in

order to control actuator devices or to configure a resource. Resources can be

configurable in non-functional aspects, such as dependability security (e.g. access

control), resilience (e.g. availability) and performance (e.g. scalability, timeliness).
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IoT Services can be invoked either in a synchronous way by responding to

service requests or in an asynchronous way by sending notifications according to

subscriptions previously made through the service.

A particular type of IoT Service can be the Resource history storage that

provides storage capabilities for the measurements generated by resources.

The main functions of the IoT Service FC are to (1) return information provided

by a resource in a synchronous way, (2) accept information sent to a resource in

order to store the information or to configure the resource or to control an actuator

device and (3) subscribe to information, i.e. return information provided by a

resource in an asynchronous way.

The IoT Service Resolution FC provides all the functionalities needed by the

user in order to find and be able to contact IoT Services. The IoT Service Resolution

also gives services the capability to manage their service descriptions (typically

stored in a database as one entry), so they can be looked up and discovered by the

user. The user can be either a Human User or a software component.

Service Descriptions are identified by a service identifier and contain a service

locator that enables accessing the service. Typically they contain further informa-

tion like the service output, the type of service or the geographic area for which the

service is provided. The exact contents, structure and representation depend on

design choices taken, which is left open at the Reference Architecture level.

Examples for service models (structure) and a service description representations

can be found in (Martı́n D2.1 2012).

The functionalities offered by the IoT Service Resolution FC in brief are:

• Discovery functionality finds the IoT Service without any prior knowledge such

as a service identifier. The functionality is used by providing a service specifica-

tion as part of a query. What can be queried based on a service specification

depends on what is included in the service description. As described above, this

may include the service output, the service type and the geographic area for

which the service is provided. The representation of the service specification will

IoT Service
IoT Service

Resolution

VE Service

VE & IoT

Service Monitoring

VE Resolution

IoT 

Process Management

Process

Modeling

Process

Execution

IoT ServiceVirtual Entity
Fig. 8.6 IoT service
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also be linked to the service description, e.g. if the service description is

represented in RDF, a service specification based on SPARQL would be

appropriate;

• Lookup is a functionality which enables the User to access the service descrip-

tion having prior knowledge regarding the service identifier;

• Resolution function resolves the service identifiers to locators through which the

User can contact the Service. A service locators are typically also included in the

service description, the resolution function can be seen as a convenience func-

tion that reduces the amount of information that has to be communicated,

especially if the service description is large and the contained information is

not needed;

• Other functionalities provided by the IoT Service Resolution FC are the man-

agement of the service descriptions. IoT Services can update, insert or simply

delete the service descriptions from the IoT Service Resolution FC. It is also

possible that these functions are called by the functional components of the

Management FG and not by the IoT Services themselves.

8.2.2.6 Communication

The Communication FG (see Fig. 8.7 below) is an abstraction, modelling the

variety of interaction schemes derived from the many technologies belonging to

IoT systems and providing a common interface to the IoT Service FG.

The Communication FG consists of three functional components:

• Hop To Hop Communication;

• Network Communication;

• End To End Communication.

The Hop To Hop Communication FC provides the first layer of abstraction

from the device’s physical communication technology. The functional component

is an abstraction to enable the usage and the configuration of any different link layer

technology.

Its main functions are to transmit a frame from the Network Communication FC

to the Hop To Hop Communication FC and from a Device to the Hop To Hop

Communication FC. The arguments for the frame transmission can be set; examples

of arguments include: reliability, integrity, encryption and access control.

The Hop To Hop Communication FC is also responsible for routing a frame.

This function allows routing a packet inside a mesh network such as for instance

802.15.4 (mesh-under routing). Note that this function is not mandatory for all

implementations of the Hop To Hop Communication FC. It is required only for

meshed link layer technologies.

Finally, the Hop To Hop Communication FC allows to manage the frame queue

and set the size and priorities of the input and output frame queues. This function

can be leveraged in order to achieve Quality of Service.
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The Network Communication FC takes care of enabling communication

between networks through Locators (addressing) and ID Resolution. The FC

includes routing, which enables linking different network address spaces. Moreover

different network technologies can be converged through network protocol

translations.

The functions of the Network Communication FC are to transmit a packet from

the Hop To Hop Communication FC to the Network Communication FC and from

the End To End Communication FC to the Network Communication FC. The

arguments for the packet transmission can be configured and examples of

arguments include: reliability, integrity, encryption, unicast/multicast addressing

and access control.

The Network Communication FC enables as well network protocol translation

where it allows translating between different network protocols. Examples would

be to translate IPv4 to IPv6 and ID to IPv4. Note that this function is necessary to

implement a Gateway.

In case a packet needs to be routed, the Network Communication FC allows

finding the next hop in a network. It also allows dealing with multiple network

interfaces. The function is not mandatory for all implementations of the Network

Communication FC. It is required only on devices with multiple network interfaces.

Another function of the Network Communication FC is to resolve the locator-to-

ID where it allows getting a locator from a given ID. The resolution can be internal

based on a lookup table or external via a resolution framework.

Finally, the Network Communication FC can manage the packet queue and

setup the size and priorities of the input and output packet queues. This function

can be leveraged in order to achieve QoS.

The End To End Communication FC takes care of the whole end-to-end

communication abstraction, meaning that it takes care of reliable transfer, transport

and, translation functionalities, proxies/gateways support and of tuning configura-

tion parameters when the communication crosses different networking

environments.

The End To End Communication FC is responsible to transmit a message from

the Network Communication FC to the End To End Communication FC and from

(IoT) Service to the End To End Communication FC. The arguments for the

message can be configured and examples include: reliability, integrity, encryption,

access control and multiplexing.

A second function of the End To End Communication FC is to cache and proxy.

The Cache and Proxy function allows to buffer messages in the End To End

Communication FC.

Network

Communication

End To End

Communication

Hop to Hop

Communication

Communication

Fig. 8.7 Communication
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Another function of the FC is to translate end-to-end protocol. The Translate End

To End Protocol function allows to translate between different End To End

Protocols. An example would be to translate HTTP/TCP to COAP/UDP. Note

that this function is necessary to implement a Gateway.

A last function of the FC is to pass the context of protocol translation between

gateways. The context could be related to addressing, methods specific for a

RESTful protocol, keying material and security credentials.

8.2.2.7 Security

The Security FG (see Fig. 8.8) is responsible for ensuring the security and privacy

of IoT-A-compliant systems.

It consists of five functional components:

• Authorisation;

• Key Exchange & Management;

• Trust & Reputation;

• Identity Management;

• Authentication.

The Authorization FC is a front end for managing policies and performing

access control decisions based on access control policies. This access control

decision can be called whenever access to a restricted resource is requested. For

example, this function is called inside the IoT Service Resolution FC, to check if a

user is allowed to perform a lookup on the requested resource. This is an important

part of the privacy protection mechanisms.

The two default functionalities offered by the Authorization FC are firstly, to

determine whether an action is authorized or not. The decision is made based on the

Authorisation

Key Exchange &

Management

Trust & Reputation

Identity Management

Authentication

Security
Fig. 8.8 Security
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information provided from the assertion, service description and action type.

Second functionality is to manage policies, such as adding, updating or deleting

an access policy.

The Authentication FC is involved in user and service authentication. It checks

the credentials provided by a user, and, if valid, it returns an assertion as result,

which is required to use the IoT Service Client. Upon checking the correctness of

the credentials supplied by a newly joining node, it establishes secured contexts

between this node and various entities in its local environment.

The two functionalities provided by the Authentication FC are (1) to authenti-

cate a user based on provided credential and (2) to verify whether an assertion

provided by a user is valid or invalid.

The Identity Management FC addresses privacy questions by issuing and

managing pseudonyms and accessory information to trusted subjects so that they

can operate (use or provide services) anonymously.

Only one default function is attributed to this FC: to create a fictional identity

(root identity, secondary identity, pseudonym or group identity) along with the

related security credentials for users and services to use during the authentication

process.

The Key Exchange and Management (KEM) FC is involved to enable secure

communications between two or more IoT-A peers that do not have initial knowl-

edge of each other or whose interoperability is not guaranteed, ensuring integrity

and confidentiality.

Two functions are attributed to this FC:

• Distribute keys in a secure way. Upon request, this function finds out a common

security framework supported by the issuing node and a remote target, creates a

key (or key pair) in this framework and then distributes it (them) securely.

Security parameters, including the type of secure communications enablement,

are provided.

• Register security capabilities. Nodes and gateways that want to benefit from the

mediation of the KEM in the process of establishing secure connections can

make use of the register security capabilities function. In this way the KEM

registers their capabilities and then can provide keys in the right framework.

The Trust and Reputation Architecture FC collects user reputation scores and

calculates service trust levels.

Again, two default functions are attributed to the FC:

• Request reputation information. This function is invocated at a given remote

entity to request reputation information about another entity. As input

parameters, a unique identifier for the remote entity (subject), as well as the

concrete context (what kind of service) is given. As a result a reputation bundle

is provided;

• Provide reputation information. This function is invocated at a given remote

entity to provide reputation information (recommendations or feedback) about

another entity. As input parameters, a unique identifier for the entity to be
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assessed (subject), as well as the concrete context, the given score and a

timestamp are given. As a result, the corresponding reputation is provided.

8.2.2.8 Management

Section 7.5.2.5 provides a high-level discussion for the role and the goals of the

Management FG, but it does not specify how to functionally parse this group. For

guidance on this question we turned to FCAPS, which offers a comprehensive high-

level framework for network management (Flextronics 2005). It was, among others,

incorporated into an ITU-T recommendation (ITU-T 1997) and it has already been

considered for Smart-Grid applications, which are just one example for IoT

(Greenfield 2009). The letters F C A P S stand for the functionalities Fault,
Configuration, Accounting (Administration), Performance, and Security.

Of these functionalities, Fault, Configuration, and Performance cover all the

important goals of the Management FG. In this document we choose to make

Security a separate functionality group in order to emphasise its importance for

IoT. FCAPS was designed with telecommunication applications in mind, while

subscriber-based services will be just one of many business models for the IoT.

Therefore accounting functionalities will be covered by primary services. However,

for administration purposes we introduce the functional components State FC and

Member FC. Performance functionality is related to the monitoring of the state of

the system and to the adaptation of its configuration, and is therefore incarnated into

the Fault, State and Configuration Functional Components. (see Fig. 8.9) illustrates

how the high-level goals motivating the creation of a Management FG (see Sect. 7.

5.2.5) map onto the chosen functional components (Table 8.1).

IoT systems differ from pure networking solutions in that they also offer

low-level services and support for business administration. An IoT system is thus

much more complex than a communication system, and we chose to make the

management of FG-specific FCs part of that very FG, while the Management FG is

responsible for cross-functionality-group task (see Appendix UNI.703). In other

words, it is responsible for the composition and tracking of actions that involve

several of the “core FGs” (i.e. not including Device and Application FG). The

requirement grounding for the Management FG is based on the extrapolation of a

number of communications requirements to system-wide management and

behaviours (these requirements can be found in the description of the individual

functional components). In addition, if the interaction of the Application and/or

Device FG necessitates the composition and tracking of at least two core FGs, such

actions are also candidates for the sphere of responsibility of the Management FG.

By exclusion, the following management activities are thus out of the scope of

the Management FG. First, activities that only pertain to a single functionality

group. An example for this is the management of authorisations in the Security

FG. Second, the management of interactions between functionality groups that do

not require “external” intervention. An example for the latter are requests between

two FGs that can be managed by the requesting FG itself.
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The Management FG (see Fig. 8.9) consists of five Functional Components:

• Configuration;

• Fault;

• Reporting;

• Member;

• State.

The Configuration FC is responsible for initialising the system configuration

such as gathering and storing configuration from FC’s and Devices. It is also

responsible for tracking configuration changes and planning for future extension

of the system.

As such, the main functions of the Configuration FC are to retrieve a configura-

tion and to set the configuration:

• The retrieve configuration function allows to retrieve the configuration of a

system, either from history (latest known configuration) or from the system

(current configuration, including retrieval of the configuration of one or a

group of Devices), enabling tracking of configuration changes. The function

Configuration

Fault

Reporting

Member

State

Management
Fig. 8.9 Management

Table 8.1 Mapping of the high-level roles of the Management FG (see Sect. 7.5.2.5) onto

functional components

Management FCs

High-level goals Fault Configuration Reporting Member State

Cost reduction X X X X

Attending unforeseeable usage issues X X X X X

Fault handling X X X X X

Flexibility X X X X
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can also generate a configuration log including descriptions of Devices and FCs.

A filter can be applied to the query;

• The set configuration function is mainly used to initialise or change the system

configuration.

The goal of the Fault FC is to identify, isolate, correct and log faults that occur

in the IoT system. When a fault occurs, the respective functional component notifies

the Fault FC. Such notification triggers, for instance, are the gathering of more data

in order to identify the nature and severity of the problem. Another action can

encompass bringing backup equipment on-line.

Fault logs are one input used for compiling error statistics. Such statistics can be

used for identifying fragile functional components and/or devices. Also, “perfor-

mance thresholds can be set in order to trigger an alarm.” (Wikipedia 2012a).

Performance data is provided by the State FC.

The Fault FC contains functions to handle a fault, to monitor a fault and to

retrieve a fault.

The role of the function that handles a fault is to react to fault detection by

generating alarms, logging faults, or applying corrective behaviours. Generated

alarms can be disseminated to other FCs. This function can also analyse faults and,

if requested, start an action sequence that tackles the fault, possibly interfacing with

the changeState() function of the State FC. This usually includes command

messages sent to other FCs. This function can also set the system back to a previous

state by calling the setConfiguration() function in the Configuration FC. One

of the actions this might entail is setting back the system to a previous configuration.

Faults can also be monitored by the Fault FC. This function is mainly used in

subscription mode where it monitors the errors of the system and notifies

subscribers of matching events.

Finally, the Fault FC provides access to the Fault History. For this access, a filter

function can be applied.

The Member FC is responsible for the management of the membership and

associated information of any relevant entity (FG, FC, VE, IoT Service, Device,

Application, User) to an IoT system.

It is typically articulated around a database storing information about entities

belonging to the system, including their ownership, capabilities, rules, and rights.

This FC works in tight cooperation with FCs of the Security FG, namely the

Authorisation and Identity Management FCs.

The Member FC has three default functions: the continuous monitoring of

members, the retrieve member function which allows retrieving members of the

system complying with a given filter and also allows to subscribe to updates of the

membership table fitting a specified filter (e.g. to be notified of all updates to entities

belonging to a given owner) and finally the update member function which allows

to update member metadata in the membership database and to register or

unregister member metadata in the membership database.

The Reporting FC can be seen as an overlay for the other Management FCs. It

distils information provided by them. One of many conceivable reporting goals is to
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determine the efficiency of the current system. This is important since by

“collecting and analysing performance data, the [system] health can be monitored.”

(Wikipedia 2012a). Establishing trends enables the prediction of future issues. This

FC can also be utilised for billing tasks.

There is only one default function for the FC: retrieve a report. This function

generates reports about the system. Can either return an existing report from the

Report History, or generate a new on through calls on the other Management FCs.

The State FC monitors and predicts state of the IoT system. For a ready

diagnostic of the system, as required by Fault FC, the past, current and predicted

(future) state of the system are provided. This functionality can also support billing.

The rationale is that Functions/Services such as Reporting need to know the current

and future state of the system. For a ready diagnostic of the system one also needs to

know its current performance.

This FC also encompasses a behaviour functionality, which forces the system

into a particular state or series of states. An example for an action for which such

functionality is needed is an emergency override and the related kill of run-time

processes throughout the system. Since such functionality easily can disrupt the

system in an unforeseen manner this FC also offers a consistency checks of the

commands issued by the changeState functionality in the State FC.

The functions of the State FC are to change or enforce a particular state on the

system. This function generates sequence of commands to be sent to other FCs. This

function also offers the opportunity to check the consistency of the commands

provided to this function, as well as to check predictable outcomes (through the

predictState function).

A second function is to monitor the state. This function is mainly used in

subscription mode, where it monitors the state of the system and notifies subscribers

of relevant changes in state.

Other functions of the FC are to predict the state for a given time, to retrieve the

state of the system through access to the state history and to update the state by

changing or creating a state entry.

8.2.2.9 Mapping of Functional View to the Red Thread Example

In this section, the “Red Thread” example will be mapped on the Functional View

and the main Functional Components used for the example are highlighted as can

be seen in Fig. 8.10:

In Fig. 8.10, Functional Components which are used only once, such as during

the instantiation of the process model or configuration of devices are indicated in

light yellow.

Functional Components which are used at runtime of the use case are indicated

in orange.

The example of this section can be described only at a high level, since a

concrete architecture and implementation are needed to go into further detail.

Also the design choices of the concrete architecture need to be considered.
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In this example, the embedded sensors (Temperature Sensor) continuously

measure the environmental conditions within the truck. The measurement data is

available to Ted’s IoT-Phone (On-board Logistics Application) since the

IoT-Phone is subscribed to the service exposing the measurement data
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(IoT Service). In order to subscribe to the data, the association between the service

exposing the data and the Load carrier needs to be resolved (VE Resolution and IoT

Service Resolution). The communication from sensor to IoT-Phone makes use of

the network protocol stack of the IoT Communication Model (End To End Com-

munication, Network Communication, Hop to Hop Communication, Key Exchange

& Management). All transactions take place in a secure way, meaning that no

operations are allowed unless authentication (Authentication) took place and

explicit authorisation is obtained for the particular operation (Authorisation).

It is beyond the scope of this section but an illustration of the adaption of the

ARM to a specific case and implementation can be found in (Meyer et al. 2013).

8.2.3 Information View

One of the main purposes of connected and smart objects in the IoT is the exchange

of information between each other and also with external systems. Therefore the

way how to define, structure, store, process, manage and exchange information is

very important. The information view helps to generate an overview about static

information structure and dynamic information flow.

Based on the IoT Information Model, this view gives more details about how the

relevant information is to be represented in an IoT system. As we describe a

reference architecture as opposed to a specific system architecture, concrete repre-

sentation alternatives are not part of this view.

Going beyond the IoT Information Model, the information view also describes

the components that handle the information, the flow of information through the

system and the life cycle of information in the system.

The current version of the Information View focuses on the description, the

handling and the life cycle of the information and the flow of information through

the system and the components involved. Given the current level of detail, we will

provide a viewpoint only for modelling the type system of Virtual Entities.

8.2.3.1 Information Description

Description of Virtual Entities

The Virtual Entity is the key concept of any IoT system as it models the Physical

Entity or the Thing that is the real element of interest. As specified in the IoT IM,

Virtual Entities have an identifier (ID), an entityType and a number of

attributes that provide information about the entity or can be used for changing

the state of the Virtual Entity, triggering an actuation on the modelled Physical

Entity. The modelling of the entityType is of special importance. The

entityType can be used to determine what attributes a Virtual Entity instance

can have, defining its semantics. The entityType can be modelled based on a

8 IoT Reference Architecture 183



flat type system or as a type hierarchy, enabling sub-type matching. Figure 8.11

shows a flat entityType model for aspects of the red thread scenario with boxes

and pallets as concrete load carriers. Figure 8.12 shows a hierarchical

entityType model for the same scenario. Here more abstract entityTypes

have been introduced like Human and LoadCarrier. The entityType

Human has an attribute name, which is inherited by all sub-types, i.e. by Driver,

Worker and Manager.

For modelling entityType hierarchies, ontologies or UML class diagrams

can be used. Of course, this choice is related to the design choice on how the overall

Virtual Entity information is represented.

Viewpoint for Modelling entityType Hierarchies

EntityTypes are similar to classes in object-oriented programming, so UML class

diagrams as shown above are suitable for modelling entityTypes. As shown in

Fig. 8.12 the generalization relation can be used for modelling sub-classes of

entityTypes, creating a hierarchy of several entityTypes inheriting attributes from

its super-classes. Alternatively, ontology languages like OWL1 also provide the

means for modelling classes and sub-classes, so they can also be used for modelling

type hierarchies. This is especially useful, if information in the IoT system is to be

modelled using ontologies.

Service Descriptions

Services provide access to functions for retrieving information or executing

actuation tasks on IoT Devices. As a basis for finding and interacting with services,

services need to be appropriately described, which is done in the form of Service

Descriptions. Service Descriptions contain information about the interface of the

service, both on a syntactic as well as a semantic level, e.g. the required inputs, the

provided outputs or the necessary pre-conditions as well as post-conditions. Further-

more, the Service Description may include information regarding the functionality

of the resources, e.g. the type of resource, the processingmethod or algorithm etc., or

information regarding the device on which the resource is running, e.g. it’s hardware

Driver

+ licenseNumber
+ name

Worker

+ name
+ workPlace

Manager

+ groupName
+ name

Box

+ ID
+ stackable

Pallet

+ ID

Fig. 8.11 Example for flat entityType model

1 http://www.w3.org/TR/owl2-overview/
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or its geographical location. Different specification languages for describing

services are available, so again, there are different design choices.

Associations Between Virtual Entities and Services

Services can provide information or enable actuation, but the services themselves

may not be aware of e.g., which Virtual Entities can provide what information or

can enable what kind of actuation. This information is captured by associations that

relate to the Virtual Entity and the Service. The association includes the attribute of

the Virtual Entity for which the Service provides the information or enables the

actuation as a result of a change in its value.

8.2.3.2 Information Handling

Information in the system is handled by IoT Services. IoT Services may provide

access to On-Device Resources, e.g. sensor resources, which make real-time

EntityType

LoadCarrier

+ ID
+ size
+ weight

Human

+ name

Box

+ stackable

Pallet

WoodenPallet PlasticPallet

+ colour

Driver

+ licenseNumber

Worker

+ workPlace

Manager

+ groupName

Fig. 8.12 Example for hierarchical entityType model
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information about the physical world accessible to the system. Other IoT Services

may further process and aggregate the information provided by IoT Services/

Resources, deriving additional higher-level information. Furthermore, information

that has been gathered by the mentioned IoT Services or has been added directly by

a user of the IoT system can be stored by a special class of IoT Service, the history

storage. A history storage may exist on the level of data values directly gathered

from sensor resources as a resource history storage or as a history storage providing

information about a Virtual Entity as a Virtual Entity history storage.

IoT Services are registered to the IoT system using Service Descriptions. Service

Descriptions can be provided by the services themselves, by users or by special

management components that want to make the service visible and discoverable

within the IoT system. The IoT Service Resolution is responsible for managing

Service Descriptions and providing access to Service Descriptions. In detail, the

IoT Service Resolution provides an interface for discovering Service Descriptions

based on service specifications given by the requestor, for looking up a Service

Description based on the identifier of a service and for resolving a service identifier

to a service locator. The latter can also be seen as a convenience function as the

Service Description also contains the currently valid service locator.

Associations can be registered with the VE Resolution by services that know for

what Virtual Entities they can provide information. The registration can be done by

users, by special management components, or by the VE & IoT Service Monitoring

component. The VE & IoT Service Monitoring component automatically derives

the Associations based on information existing in the system, including Service

Descriptions and other associations.

8.2.3.3 Information Handling by Functional Components

The following section describes how information is handled and exposed by the

functional components in an IoT-system and shows the information flows between

the functional components.

Before going into detail Fig. 8.13 shows the information flow through the

Functional Components based on the recurring example from Sect. 4.2. From the

actuator on device level the temperature information is transferred to the IoT

Service and afterwards to the VE Service. The VE Service itself is described in

Sect. 7.4.2. From the VE Service the temperature value is transferred to the

AndoidApp via the Subscribe/Notify-pattern.

General Information Flow Concepts

There are four message exchanges patterns considered for information exchange

between IoT-A functional components. The first message exchange pattern is the

Push-pattern, the second one is the Request/Response-pattern; the third one is the
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Subscribe/Notify-pattern, and the fourth one is the Publish/Subscribe-pattern. All

patterns are explained in the following.

Push

The Push-pattern (see Fig. 8.14) is a one-way communication between two parties

in which a server sends data to a pre-defined client that receives the data. The server

hereby knows the address of the client beforehand and the client is constantly

awaiting messages from the server. The communication channel in this pattern is

pre-defined and meant to be applied in scenarios in which the communication

partners do not changed often. For example the server can be a constrained device

that sends data to a gateway dedicated to this device. The gateway is listening

constantly to the device and is consuming the data received from this device.

The Request/Response-pattern (see Figs. 8.15 and 8.16) is a synchronous way of

communication between two parties. A client sends a request to a server. The server

will receive the request and will send a response back to the client. The client is

waiting for the response until the server has sent it.

The server needs some time to prepare the response for the client. In the

meanwhile another client might send a request. When the server is still busy with

preparing the response for the first client it cannot produce the response for the

second client. The second client will be placed into a queue until the server is ready

to prepare its response. Such scenario might lead to unacceptable response times.

Subscribe/Notify

The Subscribe/Notify-pattern (see Figs. 8.17 and 8.18) allows an asynchronous way

of communication between two parties without the client waiting for the server

response. The client just indicates the interest in a service on the server by sending a

subscribe-call to the server. The server stores the subscription together with the

address of the client wants to get notified on and sends notifications to this address

whenever they are ready to be sent.

One advantage of the Subscribe/Notify-pattern over the Request/Response-

pattern is the non-blocking behaviour of the subscribe method. The clients can

Fig. 8.14 Push-pattern
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continue with other task and need to process the notification only when it arrives.

Another big advantage on the server side is that notifications can be multiplied and

sent off to clients if the clients have subscribed to the same kind of notifications. To

implement the Subscribe/Notify-pattern a server is required that is more powerful

compared to the one required for the Request/Response-pattern. The server has to

keep records about its subscribers and the kind of subscriptions if it allows several

of them.

Fig. 8.15 Request/Response-pattern for one client

Fig. 8.17 Subscribe/Notify-pattern for one client

Fig. 8.16 Request/Response-pattern for clients
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Publish/Subscribe

The Publish/Subscribe-pattern (see Figs. 8.19 and 8.20) allows a loose coupling

between communication partners. There are services offering information and

advertise those offers on a broker component. When clients declare their interest

in certain information on the broker the component will make sure the information

flow between service and client will be established.

Services can publish information to the broker regardless how many clients are

interested in this information; if no client has subscribed to it the broker does not

forward the notification to any client, if more clients have subscribed to the same

information the broker will multiply the information and send out notification to

each subscriber.

Information Flow Through Functional Components

User Requests Information from IoT Service

Figure 8.21 shows the information request from a user to an IoT Service and the

corresponding response.

User Gets Information from Virtual Entity-Level Service

Virtual Entity-level service provides access to Virtual Entity information,

augmenting sensor information with entity information (entityId, entityType or

several attributes), thus changing the abstraction level. Figure 8.22 shows the

Subscribe/Notify-pattern, which can be used to get updates about an Attributes

value.

Fig. 8.18 Subscribe/Notify-pattern for two clients
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Service Gets Sensor Value from Device

The Sensor Device in Fig. 8.23 pushes an updated sensor value using the Functional

Component Flow Control & Reliability to an IoT Service. Besides the Push-pattern

Request/Response and Subscribe/Notify-pattern are possible. Figure 8.24 shows a

similar situation but the information is pushed up to the VE Service.

Sensor Information Storage

Figure 8.25 shows the special case of using an information storage device which

stores additional, e.g. historic, values. The IoT Service DataStorage requests values

and the StorageDevice sends the corresponding response. The storage policy of the

Storage Device is application-specific, e.g. stores values only for certain duration,

stores values with reduced granularity over time or in an averaged or aggregated

form. Such a storage device can also be used from the VE Service level.

Fig. 8.19 Publish/Subscribe-pattern

Fig. 8.20 Publish/Subscribe-pattern two clients
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IoT Service Resolution

The Functional Component IoT Service Resolution hosts the Service Descriptions

that are needed for looking up and discovering IoT Services. Thus the resolution

component offers methods to insert, update, and delete Service Descriptions (see

Fig. 8.26) according to the availability of IoT Services. The methods are meant to

be invoked by the IoT Services itself, e.g. upon their deployment, dynamic change

of location due to mobility or their undeployment from the system. It is also

Fig. 8.21 User requests IoT service

Fig. 8.22 User subscribes for updates of VE-attribute
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possible for the Service Management component to invoke these methods in order

to maintain the system. For deleting a Service Description its Service ID needs to be

given.

Fig. 8.23 Information flow from sensor device to IoT service using the push-pattern

Fig. 8.24 Information flow from sensor device to VE service using the push-pattern
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The IoT Service Resolution component offers three methods to find IoT Services

(see Figs. 8.27 and 8.28):

Fig. 8.25 Usage of sensor information storage device

Fig. 8.26 Insert, update, and delete Service Description
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1. Look-up of Service Description based on service identifier;

2. Discovery of Service Descriptions based on service specification;

3. resolution of service identifier to service locator (contained in Service

Description).

Figure 8.27 shows the different methods in a Request/Response manner, the

component also offers similar functionality realised as Subscribe/Notify-pattern.

The information flow is similar to the one according to Request/Response, but

additionally identifiers for subscriptions and locators for call-back interfaces are

exchanged as shown in Fig. 8.28.

Fig. 8.27 Request lookup, discover, and resolve IoT Services

Fig. 8.28 Subscribe to lookup, discover, and resolve IoT Services
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VE Resolution

Associations between Virtual Entities and IoT Services are inserted into VE

Resolution by IoT Services, the Service Management components or the VE &

IoT Service Monitoring. They can later be updated and eventually deleted, e.g.,

when the IoT Service is undeployed. The message exchange is shown in Fig. 8.29.

The VE Resolution component allows retrieving of associations between Virtual

Entities and IoT Services based on VE identifier and VE service specification

through a lookup request as well as discovery of Associations based on VE

specification and VE service specification as depicted in Fig. 8.30.

The VE Resolution component provides a information flow while applying the

Subscribe/Notify-pattern. With this identifiers for subscriptions and locators for

call-back interfaces are exchanged additionally as shown in Fig. 8.31.

8.2.3.4 Information Life Cycle

Information provided by sensor resources is transient in nature and may not even be

measured or observed without a specific request. Information stored by a storage

resource may be permanently stored there or have an expiry date after which the

information is to be removed. For this purpose a storage resource may have to

implement mechanisms that remove such information on a regular basis. It is also

possible to adapt the granularity of information that is stored over time, i.e., for a

certain time interval all the information is stored, for a further time interval only a

fraction of the information is kept whereas the rest is discarded. Such a scheme may

Fig. 8.29 Insert, update, and delete Association
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allow the definition of multiple such time intervals and also requires specific

underlying mechanisms that can implement the scheme.

To avoid keeping Service Descriptions of services that no longer exist, a time-

out mechanism needs to be implemented by the IoT Service Resolution. After the

time-out has been reached without a renewal of the Service Description, the Service

Description should automatically be removed. This in turn requires that the

components originally providing the Service Description renew the registration of

the Service Description before the time-out is reached. The same applies for

associations stored by the VE Resolution.

Fig. 8.30 Request lookup and discover Associations

Fig. 8.31 Subscribe to lookup and discover Associations

8 IoT Reference Architecture 197



8.2.4 Deployment and Operation View

Connected and smart objects in the IoT can be realized in many different ways and

can communicate using many different technologies. Moreover, different systems

may need to communicate the one to each other in a compliant way. Hence the

Deployment and Operation view is very important to address how actual system can

be realized by selecting technologies and making them communicate and operate in

a comprehensive way.

The Deployment and Operation view aims at providing users of the IoT Refer-

ence Model with a set of guidelines to drive them through the different design

choices that they have to face while designing the actual implementation of their

services. To this extent this view will discuss how to move from the service

description and the identification of the different functional elements to the selec-

tion among the many available technologies in the IoT to build up the overall

networking behaviour for the deployment.

Since a complete analysis of all the technological possibilities and their combi-

nation falls beyond the scope of this view, this section will identify those categories

that have the strongest impact on IoT systems realization. In particular, starting

from the IoT Domain Model, we found three main element groups (see Fig. 8.32):

Devices, Resources, and Services highlighted in red, blue and yellow, respectively.

Each of them poses a different deployment problem, which, in turn, reflects on the

operational capabilities of the system.

In particular, the viewpoints used in the Deployment and Operation view are the

following:

1. The IoT Domain Model diagram is used as a guideline to describe the specific

application domain; to this extent UML diagrams can be used to further detail

the interaction among the many elements composing the target application;

2. The Functional Model is used as a reference to the system definition; in particu-

lar it defines Functional Groups such as IoT Services and Connectivity groups

which are fundamental for a correct definition of the system;

3. Network connectivity diagrams can be used to plan the connectivity topology to

enable the desired networking capability of the target application; at the deploy-

ment level, the connectivity diagram will be used to define the hierarchies and

the type of the sub-networks composing the complete system network;

4. Device Descriptions (such as datasheets and users manuals) can be used to map

actual hardware on the service and resource requirements of the target system.

First of all, devices in IoT systems include the whole spectrum of technologies

ranging from the simplest of the radiofrequency tags to the most complex servers.

The unifying characteristics are mainly two-fold: on the one hand, every device is

connected with one another forming a part of the IoT; and, on the other hand, every

device is “smart”, even though with different degree of complexity, in that it

provides computational capabilities. These two characteristics are the subject of

the first choices a system designer has to make. Note that, for a given device to be
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fully interoperable in an IoT-A compliant system, it must respect the functionality

definitions of the Functional Model. However, legacy systems that do not fully

support the FM, may implement wrappers and adaptation software to comply to the

model.

Selecting the computational complexity for a given device is somewhat intrinsic

to the target application. However, choosing among the different connectivity types

is not as straightforward as different choices may provide comparable advantages,

but in different areas. For the same reason, it is possible to realize different systems

implementing the same or similar application from the functional view which are

extremely different from the deployment and operation view. In this section, we

will simply detail the main options for device connectivity; further details about

deployment configurations can be found in the Reference Manual (see Chap. 9).

The impact of those configurations onto the architectural perspectives described in

Fig. 8.32 Domain model elements grouped according to their common deployment aspects
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Sect. 8.8 is discussed in Chap. 6. The following list provides a few of the typical

technologies that can be found in IoT systems:

• Sensor & Actuator Networks;

• RFIDs and smart tags;

• WiFi or other unconstrained technologies;

• Cellular networks.

As a consequence of the coexistence of different communication technologies in

the same system, the second choice the system designer must account for is related

to communication protocols. In particular, connectivity functionalities for IoT

system are defined in this document in Communication FG of the FM; in addition,

in order to better understand the application, it is important to describe it within the

Functional View. Although, IoT-A and WP3 in particular suggest a communication

protocol suite aimed at the interoperability among different technologies with IP as

the common denominator, the system designer may be forced to make suboptimal

choices (Rossi 2012, 2013). In particular, we identified the following possibilities:

1. IoT protocol suite: This is the main direction supported by this project and

providing the best solution for interoperability;

2. Ad-hoc proprietary solutions: Whenever the performance requirements of the

target application are more important than the system versatility, ad hoc

solutions may be the only way to go;

3. Other standards: Depending on the target application domain, regulations may

exist forcing the system designer to adopt standards, different from those

suggested by the IoT protocol suite, that solved a given past issue and have

been maintained for continuity.

After having selected the devices and their communication methods, the system

designer has to account for services and resources, as defined in the IoT Service FG

section. These are pieces of software that range from simple binary application and

increasing their complexity up to full blown control software. Both in the case of

resources and for services the key point here is to choose where to deploy the

software related to a given device. The options are as follows:

1. On smart objects: This choice applies to simple resource definitions and

lightweight services, such as web-services that may be realized in few tens or

hundreds of bytes;

2. On gateways: Whenever the target devices are not powerful enough to run the

needed software themselves, gateways or other more capable devices have to be

deployed to assist the less capable ones;

3. In the cloud: Software can be also deployed on web-farms. This solution

improves the availability of the services, but may decrease the performance in

terms of latency and throughput.

Note that this choice has to be made per type of resource and service and

depending on the related device. As an example, a temperature sensor can be

deployed on a wireless constrained device, which is capable of hosting the
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temperature resource with a simple service for providing it, but, if a more complex

service (for instance, when the Service Organisation FG is called in) is needed, the

software has to deployed on a more powerful device as per option 2 or 3.

On the same line, it is important to select where to store the information

collected by the system, let their data be gathered by sensor networks or through

additional information provided by users. In such a choice, a designer must take

into consideration the sensitiveness (e.g.: is the device capable of running the

security framework), the needed data availability and the degree of redundancy

needed for data resiliency. The foreseen options are the following:

1. Local only: Data is stored on the device that produced it, only. In such a case, the
locality of data is enforced and the system does not require complex distributed

databases, but, depending on the location of a given request, the response might

take longer time to be delivered and, in the worst case scenario, it may get lost;

2. Web only: No local copy is maintained by devices. As soon as data is sent to the

aggregator, they are dispatched in databases;

3. Local with web cache: A hierarchical structure for storing data is maintained

from devices up to database servers.

Finally, one of the core features of IoT systems is the resolution of services and

entities, which is provided by the Entity and Service Resolution FCs, respectively

and is in charge of semantically retrieving resources and services, discovering new

elements and binding users with data, resources, and services. In particular, this is

performed adopting the definitions of the Virtual Entity FG. This choice, while one

of the most important for the designer, has only two options:

1. Internal deployment: The core engine is installed on servers belonging to the

system and is dedicated to the target application or shared between different

applications of the same provider;

2. External usage: The core engine is provided by a third party and the system

designer has to drive the service development on the third party APIs.

Differently from the other choices, this is driven by the cost associated to the

maintenance of the core engine software. In fact, since it is a critical component of

the system, security, availability and robustness must be enforced. Hence, for small

enterprises the most feasible solution is the external one.

8.2.4.1 Deployment Example

Coming back to our “Red Thread” example, this section analyses the system

deployment for the “Transport monitoring with Smart Load Carriers” scenario.

First of all, we need to define the purpose of the application(s), the functionalities

and their requirements for a correct operating behaviour and the data that needs to

be treated.
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Purpose: the application measures several environmental parameters of the load

carrier such as the light, the temperature and the humidity of the truck and monitors

the status of the several installed devices.

Functionalities:

• Monitoring: the application needs to provide the users with means to access

information gathered by many sensors installed in the truck;

• Controlling: the application needs to provide users with means to modify the

behaviour of the many installed devices;

• Alarm: the application needs to provide users with means to configure alarms to

be triggered when a given condition is verified (e.g.: the temperature rises over a

threshold value).

Requirements:

• Lifetime: all the installed devices must operate unassisted for more than 2 years;

• Robustness: a maximum data loss of 5 % of the information is tolerated and no

command nor alarm loss can be tolerated;

• Responsiveness: a maximum delay of 10 s is tolerated when issuing a command

and for alarm reporting. A maximum delay of 15 min is tolerated for data

reporting in steady state condition.

Data: all the information managed by the system is not sensitive and does not

require for high security.

As a second step, the system integrator must define the Virtual Entities and the

Services to be used in the application. To keep the example simple, we will define a

single Service and a single Virtual Entity only. The service will be in charge of

monitoring the sensing units and to provide users with interface to access the data.

We will call this service “Monitoring service”. For what concerns the Virtual Entity

we choose to represent a room in the house as a Virtual Entity, which is connected

to the room Physical Entity and with the resources provided by the Sensors (Device)

installed in the truck.

Basically, the application can be simply implemented by allowing the Service to

query the Resources of the associated Virtual Entities periodically. However, many

possibilities are left to the integrator for the actual deployment of the application.

Resources: it is clear that Resources must provide a connection between the

sensing Devices and the Service, but the actual software harmonizing the Sensor

behaviour with the service language can be run either on the sensing Device itself,

in a gateway device connecting the house network with the external network, or

directly in the cloud. The most versatile solution is to run the Resource software

directly on the Device in order to enable any other Service to query directly the

Device for the needed information; however, depending on the actual hardware

capabilities, the other two solutions can be considered.

Service: it must be possible to access the monitoring service from anywhere

there is an Internet connection, and, in particular, from within the house. Note that,

users using the service from within the house may be less tolerant to delays. A

typical service deployment in this case is to have two paired services providing the
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same monitoring functionality: one is running in a local server and is able to

directly query the devices in order to fetch up to date information, the second is

running in the cloud and provides accessibility from the Internet. Note that the local

service is also maintaining an information database of the data gathered in the

house; database, which is only accessed by the service in the cloud.

Finally, the system integrator must make decisions about connectivity and data

management: since the time requirements of the application are quite loose, low

power devices can be chosen and low data rate connection can be selected for the

sensing devices.

The first and foremost requirement is the addressability of every Service/

Resource regardless of the Device hosting it. This can be achieved by supporting

IP addressing and its compressed version defined by 6LoWPAN is currently the

most feasible way to implement this in constrained devices. In addition, to make

Resources and Services unambiguously addressable, unique identifier must be

provided. To this extent many solutions have been proposed, but, in order to obtain

the widest interoperability, it is preferable HTTP mappable solutions, such as

CoAP. In such a way it is possible to implement very simple Services on the

most constrained Device by providing web-service like interaction capabilities to

every resource and functionality offered.

However, if the above baseline solution is not realizable, it is important to mimic

its behaviour as close to the source device is located. To this extent Resources,

Services or both can be deployed on other devices such as aggregator servers,

gateways and proxies of the network. In such a way, it is the more powerful Device

providing Resource and Service in the correct format that will interact with

Services and Users on behalf of the final Device; also, this device must ensure

the synchronization between the mimicked functionalities and their actual

counterparts. This workaround allows for the integration of any possible

technologies in the IoT, however it does not grant the full compliance to all the

IoT-A unified requirement list.

However, in order to make the sensing devices interoperable with both, the local

and the cloud services, connectivity gateways or proxies must be considered. A few

possible realizations are the following:

• Cabled sensors with Ethernet/xDSL gateway

– Pros: reliable, possibility to use the same cable for connectivity and power.

– Cons: high installation costs.

• Wireless sensors (802.15.4) with Ethernet/xDSL gateway

– Pros: low cost, easy and cheap installation, moderate robustness, good

lifetime.

– Cons: may suffer from data losses.

• Low power WiFi sensors with WiFi/xDSL gateway

– Pros: moderate costs, easy gateway implementation, easy and cheap installa-

tion, higher data rate is possible.

– Cons: shorter lifetime than 802.15.4.
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The figure (Fig. 8.33) shows the deployment example above, highlighting the

several physical devices involved (dark green), the different network type involved

(solid horizontal lines) and the software installed per device (white/cyan rounded

boxes, cyan is for mandatory parts while cyan is for optional elements).

Although this example is quite simple, it can be used as a building block for

more complex scenarios. In particular it is important here to understand how to

separate the different networks in the system, where to deploy each functionality

and which connectivity type to use per sub-network.

8.3 Perspectives

Architectural decisions often address concerns that are common to more than one

view, or even all of them. These concerns are often related to non-functional or

quality properties. We are following the approach described by Rozanski and

Woods (2011), that suggests special perspectives to address these aspects of a

concrete architecture. They emphasize the importance of stakeholder requirements

just like we do within our project. Therefore we are adopting their definition of

perspective for usage within IoT-A:

Fig. 8.33 Transport monitoring example with possible deployment choices highlighted
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An architectural perspective is a collection of activities, tactics, and

guidelines that are used to ensure that a system exhibits a particular set of

related quality properties that require consideration across a number of the

system’s architectural views (Woods and Rozanski 2005).

where a quality property is defined as:

A quality property is an externally visible, non-functional property of a

system such as performance, security, or scalability (Rozanski and Woods

2011).

The stakeholder requirements clearly show a need of addressing non-functional

requirements. Based on them, we identified the perspectives which are most

important for IoT-systems:

• Evolution and Interoperability;

• Availability and Resilience;

• Trust, Security and Privacy and

• Performance and Scalability.

As these requirements are requiring some kind of quality for a real system, the

perspectives aim more on the concrete system architecture, than at a Reference

Architecture.

We got 18 requirements concerning the Evolution and Interoperability perspec-

tive, 15 concerning Availability and Resilience, more than 20 related to Trust,

Security and Privacy, and 17 more related to Performance and Scalability. As can

be seen from the definition above there is a close relationship between Perspectives,

Views and Guidelines.

We will generally follow the structure as suggested by Rozanski and Woods, to

describe the perspectives, but adjusted according to our needs. Each perspective

contains the following information:

Desired Quality The desired quality that the perspective is addressing

IoT-A

Requirements

The IoT-A requirements presented in Appendix this perspective addresses

Applicability The Applicability of the perspective, e. g. the types of systems to which the

perspective is applicable

Activities A set of possible activities that are suggested to achieve the desired qualities.

We are reusing existing literature, as well as, our own identified best

practices here.

Tactics Here we list Architectural Tactics, which an architect can use when

designing the system.
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An architectural tactic is defined as follows:

An architectural tactic is a design decision for realizing quality goals at the

architectural level.

It can already be seen from the definition of tactic that there is a close relation-

ship to the design decisions as outlined in Chap. 6. We therefore will list high level

design choices as architectural tactics whenever feasible.

We think that taking advantage of perspectives makes a lot of sense for every

software architect, even more in the IoT-domain where a lot of Quality parameters

have to be taken into account. Perspectives provide a framework for reusing

knowledge: It is absolutely necessary to apply a systematic approach to ensure

that a certain system fulfils the required quality properties. The use of Perspectives,

combined with Views and Guidelines is a step towards that. In the Guidelines

chapter in Sect. 9.4 we present a suggested usage of the perspectives in conjunction

with Design Choices.

8.3.1 Evolution and Interoperability

The Evolution and Interoperability perspective addresses the fact that requirements

change and software evolves sometimes rapidly and need to interoperate not only

with today’s technologies, but also needs to be prepared to interoperate with later

technologies. Interoperability therefore plays especially in IoT a crucial role. The

vision of the Internet of Things is still evolving itself. There are, for example, not

yet all used technologies mature enough, and there are for sure many more

technologies to come in the future (Table 8.2).

8.3.2 Performance and Scalability

This perspective addresses two quality properties which are closely related: Perfor-

mance and Scalability. Both are, compared to traditional information systems, even

harder to cope with in a highly distributed scenario as we have it in IoT (Table 8.3).

8.3.3 Trust, Security and Privacy

This chapter addresses fundamental properties of IoT systems for what concerns

their relation to the user. They are inter-related and, often, the evaluation or the

improvement of one of these qualities is necessarily related to the others.

206 M. Bauer et al.

http://dx.doi.org/10.1007/978-3-642-40403-0_6
http://dx.doi.org/10.1007/978-3-642-40403-0_9


8.3.3.1 Trust

Trust in the IoT environment is a fundamental yet difficult to obtain quality. As the

security one, this quality is highly dependent on the computation and communica-

tion performance of the system. In the frame of IoT moreover, M2M subjects must

be enabled to evaluate this quality in order to obtain autonomous systems

(Table 8.4).

8.3.3.2 Security

Security is an essential quality of an IoT system and it is tightly related to specific

security features which are often a basic prerequisite for enabling Trust and Privacy

qualities in a system (Table 8.5).

8.3.3.3 Privacy

There are usually different concepts conveyed with the term privacy, some being

more from the technical side and some more from the legal perspective, without

forgetting ethical aspects (Table 8.6).

Table 8.2 Evolution and interoperability (adopted from (Rozanski and Woods 2011)), extended

with IoT specific aspects

Desired Quality The ability of the system to be flexible in the face of the inevitable change

that all systems experience after deployment, balanced against the costs

of providing such flexibility

IoT-A

Requirements

UNI.003, UNI.010, UNI.012, UNI.023, UNI.042, UNI.047, UNI.048,

UNI.071, UNI.093, UNI.094, UNI.096, UNI.417, UNI.422, UNI.432,

UNI.509, UNI.701, UNI.712, UNI.720

Applicability Important for all systems to some extent; more important for longer- lived

and more widely used systems. IoT systems are expected, as an emerging

technology, to be highly affected by evolution and interoperability issues

Activities Characterize the evolution needs

Assess the current ease of evolution

Consider the evolution trade-offs

Rework the architecture

Tactics Contain change

Create extensible interfaces

Apply design techniques that facilitate change

Apply metamodel-based architectural styles

Build variation points into the software

Use standard extension points

Achieve reliable change

Preserve development environments
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8.3.4 Availability and Resilience

As we are dealing with distributed IoT systems, where a lot of things can go wrong,

the ability of the system to stay operational and to effectively handle failures that

could affect a system’s availability is crucial (Table 8.7).

8.4 Conclusion

The chapter has given an overview about the current state of the IoT Reference

Architecture that is proposed to be applied to any IoT-architecture. The IoT

Reference Architecture abstracts from domain specific use cases; it rather focuses

on the domain agnostic aspects that IoT Architectures may have in common. It does

Table 8.3 Performance and scalability (adopted from (Rozanski and Woods 2011)), extended

with IoT specific aspects

Desired Quality The ability of the system to predictably execute within its mandated per-

formance profile and to handle increased processing volumes in the

future if required

IoT-A

Requirements

UNI.008, UNI.026, UNI.027, UNI.028, UNI.066, UNI.089, UNI.101,

UNI.102, UNI.234, UNI.511, UNI.512, UNI.615, UNI.706, UNI.708,

UNI.711, UNI.716, UNI.717

Applicability Any system with complex, unclear, or ambitious performance requirements;

systems whose architecture includes elements whose performance is

unknown; and systems where future expansion is likely to be significant.

IoT systems are very likely to have unclear performance characteristics,

due to their heterogeneity and high connectivity of devices

Activities Capture the performance requirements

Create the performance models

Analyze the performance model

Conduct practical testing

Assess against the requirements

Rework the architecture

Tactics Optimize repeated processing

Reduce contention via replication

Prioritize processing

Consolidate related workload

Distribute processing over time

Minimize the use of shared resources

Reuse resources and results

Partition and parallelize

Scale up or scale out

Degrade gracefully

Use asynchronous processing

Relax transactional consistency

Make design compromises
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not mean that every IoT-architecture has to implement every feature listed here, but

in this report we have covered functional as well as non-functional aspects that are

important to support in today’s IoT-solutions on one hand and that are important to

the stakeholders we have interviewed on the other hand. Following our architectural

methodology we presented several views and perspectives of the IoT Reference

Architecture.

The Functional View describes the functional building blocks of the architecture

and the Deployment and Operation View explains the operational behaviour of the

functional components and the interplay of them.

The Information View shows how the information flow is routed through the

system and what requests are needed to query for or to subscribe to information

offered by certain functional components.

The perspectives listed in this chapter tackle the non-functional requirements

IoT-architectures might have. The perspectives are categorised according to the

non-functional requirements that have been extracted from the unified requirements

(UNIs) presented in Appendix. As a result of the requirement analysis we have

categorised the required system attributes into the four perspectives “Evolution and

Interoperability”, “Performance and Scalability”, “Trust, Security and Privacy”,

and “Availability and Resilience”.

Table 8.4 Trust perspective (extension of concepts originally found in (Rozanski and Woods

2011))

Desired Quality A complex quality related to the extent to which a subject expects (subjec-

tively) an IoT system to be dependable regarding in all the aspects of its

functional behaviour

IoT-A

Requirements

UNI.062, UNI.065, UNI.099, UNI.407, UNI.408, UNI.602, UNI.604,

UNI.605, UNI.620, UNI.622

Applicability Relevant to the systems that share the use of resources with subjects that are

not a priori trusted

Activities Capture trust requirements

Perform risk analysis

Check interoperability requirements and their impact on trust between het-

erogeneous subjects

Define trust model

Consider risks derived from malicious or unintentional misuse of IoT

systemsa

Tactics Harden root of trust

Ensure physical security and implement tampering detection

Ensure and check data freshness

Consider the impact of security/performance trade-offs on trust

Use (trusted) infrastructural Trust and Reputation Agents for scalability

Use security imprinting

Check system integrity often

Balance privacy vs. non-repudiation (accountability)
aFor example, simulating traffic by broadcasting car-to-infrastructure signals or inducing emer-

gency maneuvers in ships or planes by simulating adverse environmental conditions. Generally, it

is possible to make a fictional situation credible if the assumption that Physical and Virtual Entities

are always and securely synchronized is overlooked
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For each of the perspectives we list a number of tactics to achieve the desired

attribute of the system, e.g. anonymous usage. The tactics are state-of-the art

methodologies commonly used in today’s systems architectures.

In Chap. 6 we present examples of Design Choices for the respective tactics

listed in the perspectives section as example solutions for non-functional architec-

tural requirements. The Design Choices will help the architect with selecting

suitable solutions for non-functional architectural problems to focus on the

domain-specific functional aspects.

Table 8.5 Security perspective (adopted from (Rozanski and Woods 2011), extended with IoT

specific aspects)

Desired Quality Ability of the system to enforce the intended confidentiality, integrity and

service access policies and to detect and recover from failure in these

security mechanisms

IoT-A

Requirements

UNI.062, UNI.407, UNI.408, UNI.410, UNI.412, UNI.413, UNI.424,

UNI.502, UNI.507, UNI.604, UNI.609, UNI.611, UNI.612, UNI.617,

UNI.618, UNI.624, UNI.719

Applicability Relevant to all IoT systems

Activities Capture the security requirements

Check interoperability requirements for impacts on security processes

between heterogeneous peers

Conduct risk analysis

Use infrastructural Authentication components that support more Identity

Frameworks for scalability and interoperability

Use infrastructural or federated Key Exchange Management to secure com-

munication initiation and tunnelling between gateways for

interoperability

Use an Authorization component to enable interoperability with other

systems

Define security impact on interaction model

Address all aspects of Service and Communication Security

Integrate the trust model and support privacy features

Identify security hardware requirements

Consider performance/security trade-offs

Validate against requirements

Tactics Use an extended Internet Threat Model for which takes into account specific

IoT communication vulnerabilities

Harden infrastructural functional components

Authenticate subjects

Define and enforce access policies

Secure communication infrastructure (gateways, infrastructure services)

Secure communication between subjects

Secure peripheral networks (data link layer security, network entry, secure

routing, mobility and handover)

Avoid wherever possible wireless communication

Physically protect peripheral devices or consider peripheral devices as

available to malicious users in the attacker model

Avoid Over-The-Air device management; if necessary secure properly
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Table 8.6 Privacy perspective (adopted from (Rozanski and Woods 2011), extended with IoT

specific aspects)

Desired Quality Ability of the system to ensure that the collection of personally identifying

information be minimized and that collected data should be used locally

wherever possible

IoT-A

Requirements

UNI.001, UNI.002, UNI.410, UNI.412, UNI.413, UNI.424, UNI.501,

UNI.606, UNI.611, UNI.623, UNI.624

Applicability Relevant to all IoT systems

Activities Capture the privacy requirements

Conduct risk analysis

Evaluate compliancy with existing privacy frameworks.

Tactics Use an Identity Management component that supports pseudonymization

Avoid transmitting identifiers in clear especially over wireless connections

Minimize unauthorized access to implicit information (e.g. deriving location

information from service access requests)

Validate against requirements

Consider the impact of security/performance trade-offs on privacy

Enable the user to control the privacy (and thus security and trust) settings

Balance privacy vs. non-repudiation (accountability)

Table 8.7 Availability and resilience (adopted from (Rozanski and Woods 2011), extended with

IoT specific aspects)

Desired Quality The ability of the system to be fully or partly operational as and when

required and to effectively handle failures that could affect system

availability

IoT-A

Requirements

Uni.040, UNI.050, UNI.058, UNI.060, UNI.064, UNI.065, UNI.092,

UNI.230, UNI.232, UNI.233, UNI.601, UNI.604, UNI.610, UNI.616,

UNI.718

Applicability Any system that has complex or extended availability requirements, com-

plex recovery processes, or a high profile (e.g., is visible to the public)

Activities Capture the availability requirements

Produce the availability schedule

Estimate platform availability

Estimate functional availability

Assess against the requirements

Rework the architecture

Tactics Select fault-tolerant hardware

Use high-availability clustering and load balancing

Log transactions

Apply software availability solutions

Select or create fault-tolerant software

Design for failure

Allow for component replication

Relax transactional consistency

Identify backup and disaster recovery solution

Open Access This chapter is distributed under the terms of the Creative Commons Attribution

Noncommercial License, which permits any noncommercial use, distribution, and reproduction in

any medium, provided the original author(s) and source are credited.
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