
Chapter 7

IoT Reference Model
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7.1 Introduction

The first major contribution of the IoT Architectural Reference Model (IoT ARM) is

the IoT Reference Model itself. Besides models, the IoT Reference Model provides

the concepts and definitions on which IoT architectures can be built. This
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Chapter introduces the IoT Reference Model as a precondition for working with the

Reference Architecture that is introduced in Chap. 8.

The Reference Model consists of several sub-models that set the scope for the

IoT design space and that address architectural views and perspectives discussed in

Chap. 8. As already stated above, the primary and thus the key model is the IoT

Domain Model, which describes all the concepts that are relevant in the Internet of

Things. All other models and the IoT Reference Architecture are based on the

concepts introduced in the IoT Domain Model. While certain models, such as the

IoT Communication Model and the IoT Trust, Security, and Privacy Model might

be less critical in certain application scenarios, the IoT Domain Model is mandatory

for all usages of the IoT ARM. Therefore, it is advised to read Sect. 7.1.3 carefully,

and at least to follow the information given in the Sect. 7.1.2 in order to get an

overview of the different sub-models of the IoT Domain Model and how they relate

to each other. Depending on the individual application of the IoT Domain Model,

the Subsequent sections in this chapter provides details about the other models.

Next, we explain, who the sub-models in the IoT Reference Model relate and

link to each other, and how they form an integrated reference model.

7.2 Interaction of All Sub-Models

The IoT Reference Model aims at establishing a common grounding and a common

language for IoT architectures and IoT systems. It consists of the sub-models shown

in Fig. 7.1, which we explain below. The yellow arrows show how concepts and

aspects of one model are used as the basis for another.

The foundation of the IoT Reference Model is the IoT Domain Model, which

introduces the main concepts of the Internet of Things like Devices, IoT Services

and Virtual Entities (VE), and it also introduces relations between these concepts.

The abstraction level of the IoT Domain Model has been chosen in such a way that

its concepts are independent of specific technologies and use-cases. The idea is that

these concepts are not expected to change much over the next decades or longer.

Based on the IoT Domain Model, the IoT Information Model has been devel-

oped. It defines the structure (e.g. relations, attributes) of IoT related information in

an IoT system on a conceptual level without discussing how it would be

represented. The information pertaining to those concepts of the IoT Domain

Model is modelled, which is explicitly gathered, stored and processed in an IoT

system, e.g. information about Devices, IoT Services and Virtual Entities.

The IoT Functional Model identifies groups of functionalities, of which most are

grounded in key concepts of the IoT Domain Model. A number of these Function-

ality Groups (FG) build on each other, following the relations identified in the IoT

Domain Model. The Functionality Groups provide the functionalities for

interacting with the instances of these concepts or managing the information related

to the concepts, e.g. information about Virtual Entities or descriptions of IoT

Services. The functionalities of the FGs that manage information use the IoT

Information Model as the basis for structuring their information.
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A key functionality in any distributed computer system is the communication

between the different components. One of the characteristics of IoT systems is often

the heterogeneity of communication technologies employed, which often is a direct

reflection of the complex needs such systems have to meet. The IoT Communica-

tion Model introduces concepts for handling the complexity of communication in

heterogeneous IoT environments. Communication also constitutes one FG in the

IoT Functional Model.

Finally, Trust, Security and Privacy (TSP) are important in typical IoT use-case

scenarios. Therefore, the relevant functionalities and their interdependencies and

interactions are introduced in the IoT TSP Model. As in the case of communication,

security constitutes one FG in the Functional Model.

7.3 Domain Model

7.3.1 Definition and Purpose

The IoT-A project defines a domain model as a description of concepts belonging to

a particular area of interest. The domain model also defines basic attributes of these

Fig. 7.1 Interaction of all sub-models in the IoT Reference Model. The sub-models are explained

in the text body
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concepts, such as name and identifier. Furthermore, the domain model defines

relationships between concepts, for instance “Services expose Resources”. Domain

models also help to facilitate the exchange of data between domains

(The Consultative Committee 2006). Besides this official definition, and looking

at our interpretation of it, our domain model also provides a common lexicon and

taxonomy of the IoT domain (Muller 2008). The terminology definitions of IoT-A

are provided online (Sect. 6.7).

The main purpose of a domain model is to generate a common understanding of

the target domain in question. Such a common understanding is important, not just

project-internally, but also for the scientific discourse. Only with a common

understanding of the main concepts it becomes possible to argue about architectural

solutions and to evaluate them. As has been pointed out in literature, the IoT

domain suffers already from an inconsistent usage and understanding of the mean-

ing of many central terms (Haller 2010).

The domain model is an important part of any reference model since it includes a

definition of the main abstract concepts (abstractions), their responsibilities, and

their relationships. Regarding the level of detail, the Domain Model should separate

out what does not vary much from what does. For example, in the IoT domain, the

device concept will likely remain relevant in the future, even if the types of devices

used will change over time and/or vary depending on the application context. For

instance, there are many technologies to identify objects: RFID, bar codes, image

recognition etc. But which of these will still be in use 20 years from now? And

which is the best-suited technology for a particular application? Since no one has

the answers to such and related questions, the IoT Domain Model does not include

particular technologies, but rather abstractions thereof.

Before we discuss the main abstractions and relationships of the IoT Domain

Model in detail, let us go back to our recurring example that we introduced in Sect.

4.2 in order to get an understanding of what it means to formulate central concepts

of a use case with the help of the IoT Domain Model.

Figure 7.2 shows an instance diagram of central aspects of the use case scene in

Sect. 4.2. This example was cast in the language of the IoT Domain Model and then

illustrated by use of UML. Information about UML can be found elsewhere in the

literature (Fowler 2003) or by searching for terms such as “UML tutorial” on the web.

As we can see in Fig. 7.2, the important entities that are relevant for our use case

are depicted with blocks of different colours. For instance, there is our truck driver

“Ted” represented by as a yellow box (viz. instance), and the temperature sensor

(that triggers an alarm after Ted had turned off the engine of the truck) is

represented as a blue instance. Already at this stage we can easily deduct that

there is some colour-coding involved that reflects an aspect of the respective entity.

What these colours exactly stand for is discussed in detail in the next Sections.

There is also a categorisation in textual form, as the entity name that we know from

our recurring example is succeeded by an entity category such as Sensor in the case

of the humidity or temperature sensors and Human User in the case of Ted. What

these entity categories mean and how they relate to each other is discussed in detail

in the next sections.
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In addition to the coloured boxes, the diagram also shows arrows with verbs that

connect the boxes. If we look very closely to the arrows, we see that they have

different terminators such as diamond shapes or traditional arrow shapes. These

shapes illustrate different kinds of relationships between the objects that are

connected by them. In a similar way as the category names and the colour coding

of the objects are related to each other, the verbs indicate information about the

relationships shown with the arrows. These are all concepts of the UML notation

that will be discussed in the next section.

Even without understanding all of the concepts in detail, we can already under-

stand that the IoT Domain Model helps us structuring an application scenario. We

can use a concise graphical representation to show that for instance Ted, our truck

driver, is a Human User that uses an Android application in order to subscribe to an

Alarm service. This Android Application is an Active Digital Artefact (ADA). We

do not yet know what this exactly means, but as the reader will progresses through

this document and possibly other documents that make use of the IoT Domain

Model, Active Digital Artefacts will come up again and again. By providing a

standardised vocabulary for naming things that relate to the same abstract concepts,

we facilitate and streamline communication of the IoT ARM users.

While several other parts of the IoT Reference Model, for instance the IoT

Information Model, directly depend on the IoT Domain Model, and also several

Sensor Node : 

Device

lookupAssociations : 

Service

resolveService : 

Service

Measurement 

Service : Service

AndroidApp : 

Active Digital 

Artefact

Temperature 

Sensor : 

Sensor

Humidity Sensor : 

Sensor

Alarm : 

On-Device 

Resource

Load Carrier : 

Physical Entity

is attached to

monitorsmonitors

is attached to

hosts

exposes

subscribes invokes

invokes

Fig. 7.2 Example, instantiated IoT Domain Model for the Red Thread Example (see Sect. 4.2)
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views (as we will see in the next chapter), it should already be noted that the IoT

Domain Model also takes a central role in the process of generating concrete

architectures beyond merely providing a common language. As discussed in

Chap. 6, Sect. 6.3, there is a special view called IoT Context View that is central

in the process of generating concrete architectures. This view is an amalgam of the

IoT Domain Model “traditional” context view. The latter is an architecture view

that is usually generated at the very beginning of the architecture process. It

describes “the relationships, dependencies, and interactions between the system

and its environment (the people, systems, and external entities with which it

interacts)” (Rozanski and Woods 2011).

7.3.2 Main Abstractions and Relationships

7.3.2.1 Interpreting the Model Diagram

This section describes the IoT Domain Model used in the IoT-A project. It was

developed by refining and extending two models found in the literature (Haller

2010; Serbanati et al. 2011). The goal behind the IoT Domain Model is to capture

the main concepts and the relationships that are relevant for IoT stakeholders. After

a short introduction to the pertinent UML language (next Section), we expatiate the

IoT terminology and concepts in Sect. 7.1.3.3. A discussion about guidelines and

best practices on how to use the IoT Domain Model are provided in Chap. 9.

UML is used to graphically illustrate the model (Fowler 2003). Generalisation is

used to depict an is-a relationship and should not be misinterpreted as sub-classing.

Only the most important specialisations are shown, others are possible however.

For example, not every Device can be characterised as a Tag, a Sensor, or an

Actuator. The specialisations are, however, generally disjoint, if not noted

otherwise.

Please note that generalisations/specialisations are modelled using a solid line

with a large hollow triangle.

The notation indicates that class A is the Parent or super-class, while class B and

class C are child or subclasses. Objects represented by class B and class C “inherit”

the attributes of the object represented by class A (their parent), while having

additional unique attributes of their own. This relationship is referred to as the

is-a relationship – an object in class B or class C is-a type of class A (see Fig. 7.3).

This notation is not to be confused with an “aggregation or composition

relationships”. Rather, a terminating “open diamond” indicates an aggregation

relationship, whereas a “filled diamond” indicates a composition relationship.

The notation in Fig. 7.4 states that class A is an aggregation of (or contains) objects

of class B and a composition of objects of class C. In other words, class A has-a

class B and also class C is-part of class A. Aggregation and composition are rather

similar, however the lifetime of objects of class C is determined by class A

118 M. Bauer et al.

http://dx.doi.org/10.1007/978-3-642-40403-0_6
http://dx.doi.org/10.1007/978-3-642-40403-0_6
http://dx.doi.org/10.1007/978-3-642-40403-0_9


(“A brain is part of a student” -> composition), whereas the lifetime of objects of

class B is independent from class A (“A student has a school”).

Finally, an “open arrow” is used to denote a “one-way” association. The notation

shown in Fig. 7.5 indicates that every object in class A is associated with zero or

more objects in class B, and that every object in class B is associated with exactly

one object in class A. However more importantly, this notation indicates that a class

A object will “know” class B objects with which it is associated, and that a class B

object will “not know” the class A object with which it is associated, ref. Sensor and

Physical Entity in Fig. 7.7.

The cardinalities (“asterisk”, “1”, etc.) are to be read as follows: from the source

read the relation and the cardinality on the target gives the multiplicity with which

the source can be in that relation with the target. For the inverse relation, the

cardinality at the source is relevant. For example (see Fig. 7.7), a Tag identifies

no or one (0..1) Physical Entity – whereas a Physical Entity may be identified by

0 or more Tags. A Virtual Entity may contain 0 or more other Virtual Entities,

whereas a Virtual Entity can optionally be contained in at most one other Virtual

Entity. Concepts depicting hardware are shown in blue, software in green, animate

beings in yellow, and concepts that fit into either multiple or no categories in brown.

7.3.2.2 The Concepts of the IoT Domain Model

The most generic IoT scenario can be identified as that of a generic User needing

to interact with a (possibly remote) Physical Entity (PE) in the physical world

Class A

Class B Class C

Fig. 7.3 UML generalization

Class A

Class B Class C

Fig. 7.4 UML aggregation and composition
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(see Fig. 7.6). In this short description we have already introduced the two key

entities of the IoT. The User is a human person or some kind of a Digital Artefact

(e.g., a Service, an application, or a software agent) that needs to interact with a

Physical Entity.

In the physical environment, interactions can happen directly (e.g., by moving a

pallet from location X to Y manually). In the IoT though, we want to be able to

interact indirectly or mediated, i.e., by calling a Service that will either provide

information about the Physical Entity or act on it. When a Human User is accessing

a service, he does so through a service client, i.e., software with an accessible user

interface. For the sake of clarity, the service client is not shown in Fig. 7.7. For the

scope of the IoT Domain Model, the interaction is usually characterised by a goal

that the User pursues. The Physical Entity is an identifiable part of the physical

environment that is of interest to the User for the completion of her goal. Physical

Entities can be almost any object or environment; from humans or animals to cars;

from store or logistics chain items to computers; from electronic appliances to

jewellery or clothes.

Physical Entities are represented in the digital world by a Virtual Entity. This

term is also referred to as “virtual counterpart” in the literature (Römer et al. 2002),

but using the same root term “entity” in both concepts clearer shows the relation-

ship of these concepts. There are many kinds of digital representations of Physical

Entities: 3D models, avatars, database entries, objects (or instances of a class in an

object-oriented programming language), and even a social-network account could

be viewed as such a representation, because it digitally represents certain aspects of

its human owner, such as a photograph or a list of his hobbies. However, in the IoT

context, Virtual Entities have two fundamental properties:

• They are Digital Artefacts. Virtual Entities are associated to a single Physical

Entity and the Virtual Entity represents this very Physical Entity. While there is

generally only one Physical Entity for each Virtual Entity, it is possible that the

same Physical Entity can be associated to several Virtual Entities, e.g., a

different representation per application domain. Each Virtual Entity must have

one and only one ID that identifies it univocally. Virtual Entities are Digital

Artefacts that can be classified as either active or passive. Active Digital

Artefacts (ADA) are running software applications, agents or Services that

may access other Services or Resources. Passive Digital Artefacts (PDA) are

passive software elements such as database entries that can be digital

Class A Class B

1 *

Fig. 7.5 UML association

Physical EntityUser

0..*

interacts
with

0..*

Fig. 7.6 Basic abstraction

of an IoT interaction
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representations of the Physical Entity. Please note that all Digital Artefacts can

be classified as either Active or Passive Digital Artefacts;

• Ideally, Virtual Entities are synchronised representations of a given set of

aspects (or properties) of the Physical Entity. This means that relevant digital

parameters representing the characteristics of the Physical Entity are updated

upon any change of the former. In the same way, changes that affect the Virtual

Entity could manifest themselves in the Physical Entity. For instance, manually

locking a door might result in changing the state of the door in home automation

Device
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Entity

Human 
User

Service

On-Device 
Resource

SensorActuator

Network 
Resource

Resource

User

Passive 
Digital 
Artefact

Active 
Digital 
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Colour Scheme
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0..*

contains

0..1

1

1

0..*
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Fig. 7.7 UML representation of the IoT Domain Model
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software, and correspondingly, setting the door to “locked” in the software might

result in triggering an electric lock in the physical world.

At this point it should be noted that while Fig. 7.6, at first sight, seems to suggest

only a Human User interacting with some Physical Entities, it also covers interac-

tion between two machines: in this case, the controlling software of the first

machine is an Active Digital Artefact and thus a User, and the second machine –

or a Device in the terms of the IoT Domain Model – can be modelled as a Physical

Entity. We introduce the concept of an Augmented Entity as the composition of one

Virtual Entity and the Physical Entity it is associated to, in order to highlight the

fact that these two concepts belong together. The Augmented Entity is what

actually enables everyday objects to become part of digital processes, thus, the

Augmented Entity can be regarded as constituting the “thing” in the Internet of

Things.

It should be noted that there might be many types of users, as we have discussed

before. A Human User is a specialisation of the general concept. However, different

kinds of Users, such as maintenance people, owners, or security officers are

plausible as well. It is also worth noting that we have not included different roles

in the IoT Domain Model, for same reason that we have also not introduced

different types of Users. Within the development of concrete architectures, it is

very likely that the Users will take on different roles and these should be modelled

accordingly. As the underlying taxonomies will vary with the use cases addressed,

we do not prescribe a specific taxonomy here. Especially in the enterprise domain,

where security roles are fundamental to practically every single IoT architecture,

one common option for modelling roles can be found in (Raymond 1995). We will

briefly revisit up this taxonomy within the context of the process management

Section (see Sect. 7.1.5.2.1).

The relationship between Augmented, Physical and Virtual Entities is shown in

Fig. 7.7, together with other terms and concepts that are introduced in the remainder

of this section.

The relation between Virtual Entity and Physical Entity is usually achieved by

embedding into, by attaching to, or by simply placing in close vicinity of the

Physical Entity, one or more ICT Devices that provide the technological interface

for interacting with, or gaining information about the Physical Entity. By so doing

the Device actually extends the Physical Entity and allows the latter to be part of the

digital world. This can be achieved by using Devices of the same class, as in the

case of certain similar kinds of body-area network nodes, or by using Devices of

different classes, as in the case of an RFID tag and reader. A Device thus mediates

the interactions between Physical Entities (that have no projections in the digital

world) and Virtual Entities (which have no projections in the physical world),

generating a paired couple that can be seen as an extension of either one, i.e. the

Augmented Entity. Devices are thus technical artefacts for bridging the real world

of Physical Entities with the digital world of the Internet. This is done by providing

monitoring, sensing, actuation, computation, storage and processing capabilities. It

is noteworthy that a Device can also be a Physical Entity, especially in the context
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of certain applications. An example for such an application is Device management,

whose main concern is the Devices themselves and not the entities or environments

that these Devices monitor.

From an IoT point of view, the following three basic types of Devices are of

interest:

• Sensors provide information, knowledge, or data about the Physical Entity they

monitor. In this context, this ranges from the identity of the Physical Entity to

measures of the physical state of the Physical Entity. Like other Devices, they

can be attached or otherwise embedded in the physical structure of the Physical

Entity, or be placed in the environment and indirectly monitor Physical Entities.

An example for the latter is a face-recognition enabled camera. Information from

sensors can be recorded for later retrieval (e.g., in a storage of Resource);

• Tags are used to identify Physical Entities, to which the Tags are usually

physically attached. The identification process is called “reading”, and it is

carried out by specific Sensor Devices, which are usually called readers. The

primary purpose of Tags is to facilitate and increase the accuracy of the

identification process. This process can be optical, as in the case of barcodes

and QR codes, or it can be RF-based, as in the case of microwave car-plate

recognition systems and RFID. The actual physics of the process, as well as the

many types of tags, are however irrelevant for the IoT Domain Model as these

technologies vary and change over time. These are important however when

selecting the right technology for the implementation of a concrete system;

• Actuators can modify the physical state of a Physical Entity, like changing the

state (translate, rotate, stir, inflate, switch on/off,. . .) of simple Physical Entities

or activating/deactivating functionalities of more complex ones.

Notice though that Devices can be aggregations of several Devices of differ-

ent types. For instance, what we call a sensor node often contains both Sensors

(e.g., movement sensing) as well as Actuators (e.g., wheel engines). In some

cases, Virtual Entities that are related to large Physical Entities might need to

rely on several, possibly heterogeneous, Resources and Devices in order to

provide a meaningful representation of the Physical Entity, c.f. in our Red

Thread example, the values of several temperature Sensors are aggregated to

determine the temperature of the truck.

Resources are software components that provide data from or are used in the

actuation on Physical Entities. Resources typically have native interfaces. There is a

distinction between On-Device Resources and Network Resources. As the name

suggests, On-Device Resources are hosted on Devices, viz. software that is

deployed locally on the Device that is associated with the Physical Entity. They

include executable code for accessing, processing, and storing Sensor information,

as well as code for controlling Actuators. On the other hand, Network Resources are

Resources available somewhere in the network, e.g., back-end or cloud-based

databases. A Virtual Entity can also be associated with Resources that enable

interaction with the Physical Entity that the Virtual Entity represents.
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In contrast to heterogeneous Resources – implementations of which can be

highly dependent on the underlying hardware of the Device – , a Service provides

an open and standardised interface, offering all necessary functionalities for

interacting with the Resources / Devices associated with Physical Entities. Interac-

tion with the Service is done via the network. On the lowest level – the one

interfacing with the Resource and closer to the actual Device hardware – , Services

expose the functionality of a Device through its hosted Resources. Other Services

may invoke such low-level Services for providing higher-level functionalities, for

instance executing an activity of a business process. A typical case for this is the

Service alerting “Ted” based on the temperature Service results in the “Red

Thread” example.

Since it is the Service that makes a Resource accessible, the above-mentioned

relations between Resources and Virtual Entities are modelled as associations

between Virtual Entities and Services. For each Virtual Entity there can be

associations with different Services that may provide different functionalities,

like retrieving information or enabling the execution of actuation tasks. Services

can also be redundant, i.e., the same type of Service may be provided by different

instances (e.g. redundant temperature Services provided by different Devices). In

this case, there could be multiple associations of the same kind for the same Virtual

Entity. Associations are important in look-up and discovery processes.

The instance diagrams such as Fig. 7.2 are concrete instantiations of the IoT

Domain Model, i.e. concrete architectures modelled with the concepts of the IoT

Domain Model.

7.3.3 Detailed Explanations and Related Concepts

The IoT Domain Model as explained in the previous section is focusing on the main

concepts at a high level of abstraction, capturing the essence of the IoT Domain.

However, for easier understanding we provide here more detailed explanations.

7.3.3.1 Devices and Device Capabilities

From an IoT Domain-Model point of view, Devices are only technical artefacts

meant to provide an interface between the digital and the physical worlds, i.e. a link

between the Virtual Entities and the Physical Entities. For this reason, Devices must

be able to operate both in the physical and digital world and the IoT Domain Model

only focuses on their capability to provide observation and modification of the

physical environment from the digital environment. If other properties of Devices

were relevant, the Device would be modelled as an entity itself.

The hardware underlying the Devices is very important though and must have at

least some degree of communication, computation and storage capabilities for the

purposes of the IoT. Moreover, power resources are also very important, as they can
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provide operational autonomy to the Devices. Many technologies and products are

available and their capabilities vary noticeably. While these capabilities might not

impact directly the IoT Domain Model, they are very important during the

application-design phase, c.f. the Deployment and Operation view in Sect. 8.2.4

“Deployment & Operation view”.

Communication capabilities depend on the type of data exchanged with the

Device (identifier, identifier + data, sensor data, or commands) and the communi-

cation topology (network, reader-tag, peer-to-peer, etc.). These aspects are very

important in the IoT context and have a large impact on energy consumption, data-

collection frequency, and the amount of data transmitted. Communication

capabilities indirectly impact the location of Resources (on-device or on the

network). Please refer to the IoT Communication Model (Sect. 7.1.6) for a detailed

discussion of this topic. Security features also impact communication capabilities,

since they usually introduce a relevant communication overhead (c.f. Sect. 7.1).

Computation capabilities on the other hand have a huge impact on the chosen

architecture, the implementable security features, and power resources of the

Devices. They are also relevant for what concerns the availability of On-Device

Resources and their complexity, as constrained Devices might not have sufficient

computational resources.

The term storage usually refers to the capability of supporting the firmware/

software running on the Device. This can be accomplished storing data provided by

on-board sensor hardware or data gathered from other Services and needed for

supporting a given Resource. Storage can range from none, as in the case of RFID

technology to kilobytes in the case of typical embedded Devices or even more in

case of unconstrained Devices.

7.3.3.2 Resources

Resources are software components that provide some functionality. When

associated with a Physical Entity, they either provide some information about or

allow changing some aspects in the digital or physical world pertaining to one or

more Physical Entities. The latter functionality is commonly referred to as

actuation. Resources can either run on a Device – hence called On-Device

Resources – or they can run somewhere in the network (Network Resources).

On-Device Resources are typically sensor Resources that provide sensing data or

actuator Resources, e.g. a machine controller that effects some actuation in the

physical world. They thus can be seen as a “bridge” between the digital and

physical world. On-Device Resources may also be storage Resources, e.g., store a

history of sensor measurements, but are limited by the storage capacity of the

Device.

As Network Resources run on a dedicated server in the network or in the

“cloud”, they do not rely on special hardware that allows direct connection to the

physical world. They rather provide enhanced Services that require more system

resources than Devices typical for the IoT can provide. Such Resources can process
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data, for instance they can take sensor information as input and produce aggregated

or more high-level information as output. Also, Network Resources can be storage

Resources, which typically do not suffer from the limitations of their on-device

counterparts. Storage Resources can store information produces by Resources and

they can thus provide information about Physical Entities. This may include

location and state-tracking information (history), static data (like product-type

information), and many other properties. An example of a storage Resource is an

EPCIS repository (Electronic Product Code Information Services (EPC 1.0.13))

that aggregates information about a large number of Physical Entities. Notice that

also Human Users can update the information in a storage Resource, since not all

known information about an entity always is, or even can be, provided by Devices.

7.3.3.3 Services

Services are a widely used concept in today’s IT systems. According to (MacKenzie

et al. 2006), “Services are the mechanism by which needs and capabilities are

brought together”. This definition is very broad, and the Service concept in the IoT

Domain Model is covering this broad definition – but Services are restricted to

technical Services implemented in software (in contrast to general, non-technical

services that e.g. a lawyer or a consultant provides). As such, Services provide the

link between the IoT aspects of a system and other, non-IoT specific parts of an

information system, like e.g. various enterprise systems; IoT-related Services and

non-IoT Services can be orchestrated together in order to form a complete system.

As it has been pointed out in (Martı́n 2012), IoT-related Services need to be

explained in more detail: IoT Services provide well-defined and standardised

interfaces, hiding the complexity of accessing a variety of heterogeneous

Resources. The interaction with a Physical Entity can be accomplished via one or

more Services associated with the corresponding Virtual Entity. This association

becomes important in the process of look-up and discovery. An IoT Service can

thus be defined as a type of Service enabling interactions with the real world.

According to (Martı́n 2012), IoT Services can be classified according by their

level of abstraction:

• Resource-level Services expose the functionality, usually of a Device, by

accessing its hosted Resources. These kinds of Services refer to a single

Resource. In addition to exposing the Resource’s functionality, they deal with

quality aspects, such as dependability, security (e.g., access control), resilience

(e.g., availability) and performance (e.g., scalability, timeliness). Resources can

also be Network Resources, i.e. the Resources do not necessarily reside on a

Device in the sense of the IoT Domain Model (normal computers are not

regarded as IoT Devices by the IoT Domain Model), but can also be hosted

somewhere else. The concrete location of where the Network Resource is

situated is commonly abstracted away by the Service;
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• Virtual Entity-level Services provide access to information at a Virtual Entity-

level. They can be Services associated to a single Virtual Entity that give access

to attributes for reading attribute information or for updating attributes in order

to trigger associations. An alternative is to provide a common Virtual Entity-

level Service with an interface for accessing attributes of different Virtual

Entities, as, for instance, the NGSI Context Interface (NGSI 2010) provides

for getting attribute information of the Virtual Entities;

• Integrated Services are the result of a Service composition of Resource-level or

Virtual Entity-level Services as well as any combinations of both Service

abstractions.

7.3.3.4 Identification of Physical Entities

In order to track and monitor Physical Entities, they have to be identified. There are

basically two ways for how this can be done, as is very well described in (Furness

2009): Using either natural-feature identification (classified as “primary identifica-

tion”) or using some type of Tags or labels (classified as “secondary identification”)

that are attached to the Physical Entity.

Both means of identification are covered in the IoT Domain Model. Tags

are modelled as Devices that explicitly identify a Physical Entity. Natural-feature

identification can be modelled, for example, by using a camera – a kind of Sensor –

that monitors the Physical Entity and an additional Resource that does the natural

feature extraction (i.e. a dedicated software component). The result of the natural-

feature extraction can be used as search term for looking up the corresponding

Virtual Entity.

RFID Tags are a prominent example in IoT. As they come with their own

electronic circuitry it seems quite natural to classify RFID Tags as Devices in

terms of the IoT Domain Model. The case is less clear-cut regarding the classifica-

tion of a barcode label, however. As pointed out elsewhere (Haller 2010),

classifying a barcode label as a Device seems a little far-fetched; regarding it as a

“natural feature” of the Physical Entity it is attached to, seems to be more appropri-

ate. However, as with many modelling questions, this is a matter of taste – the IoT

Domain Model is not prescribing which variant to use.

7.3.3.5 Context and Location

As the IoT pertains to the physical world, the characteristics of the physical world

play an important role. All elements of the physical world are situated within a

certain context, and location is an essential aspect of this context. All concepts in

the IoT Domain Model that refer to elements of the physical world, i.e., Physical

Entities, Devices, and Human Users inherently have a location. This location may

or may not be known within the IoT system.
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The location of a Physical Entity can be modelled as an attribute of a Virtual

Entity. This location can then be provided through Resources. In the case of a

stationary Physical Entity, the Resource providing the location can be an

On-Device (storage) Resource, in the case of a mobile Physical Entity the Resource

could be a positioning system like GPS, or a tracking system like existing indoor

location systems.

7.4 Information Model

The IoT Information Model defines the structure (e.g. relations, attributes, services)

of all the information for Virtual Entities on a conceptual level, see also

Sects. 7.1.3.2.2, 7.1.3.3.1 and 7.1.3.3.3. The term information is used along to the

definitions of the DIKW hierarchy (see Rowley 2007) where data is defined as pure

values without relevant or useable context. Information adds the right context to

data and offers answers to typical questions like who, what, where and when.

The description of the representation of the information (e.g. binary, XML, RDF

etc.) and concrete implementations are not part of the IoT Information Model.

The IoT Information Model details the modelling of a Virtual Entity. The Virtual

Entity (VirtualEntity) has attributes with a name (resp. Attribute and

AttributeName) and a type (AttributeType) and one or more values (Value) to

which meta-information (MetaData) can be associated. Important meta-information

is, e.g., at what time a value was measured (i.e. time stamp), the location where a

measurement took place, or the quality of the measurement. Metadata can itself

contain additional metadata, e.g. the unit in which the metadata is measured. The

association (Association) between a Virtual Entity and a Service is detailed in the

sense that is pertains to a certain Attribute of the Virtual Entity. The serviceType

can be set either to INFORMATION, if the Service provides the attribute value to

be read or to ACTUATION, if the Service allows the Attribute value to be set, as

resulting of a corresponding change in the physical world.

7.4.1 Definition of the IoT Information Model

The diagram in Fig. 7.8 shows the structure of the information that is handled and

processed in an IoT System. The main aspects are represented by the elements

VirtualEntity, ServiceDescription and Association. A Virtual Entity models a

Physical Entity and ServiceDescription describes a Service that serves information

about the Physical Entity itself or the environment. Through an Association, the

connection between an Attribute of a Virtual Entity and the ServiceDescription is

modelled, e.g. the Service acts as a “get” function for an Attribute value.

Every Virtual Entity needs to have a unique identifier (identifier) or entity type

(entityType), defining the type of the Virtual Entity representation, e.g. a human, a
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car or a temperature sensor. Furthermore, a Virtual Entity can have zero to many

different attributes (Attribute class in Fig. 7.8). The entityType of the VirtualEntity

class may refer to concepts in an ontology that defines what attributes a Virtual

Entity of this type has (see, for instance, [Group, W3C OWL]). Each Attribute has a

name (attributeName), a type (attributeType), and one to many values

(ValueContainer). The attributeType specifies the semantic type of an attribute,

for example, that the value represents temperature. It can reference an ontology-

concepts, e.g., qu:temperature taken from “Quantity Kinds and Units”-ontology

(Lefort 2005). This way, one can for instance, model an attribute, e.g. a list of

values, which itself has several values. Each ValueContainer groups one Value and

zero to many metadata information units belonging to the given Value. The

metadata can, for instance, be used to save the timestamp of the Value, or other

quality parameters, such as accuracy or the unit of measurement. The Virtual Entity

(VirtualEntity) is also connected to the ServiceDescription via the

ServiceDescription-VirtualEntity association.

A ServiceDescription describes the relevant aspects of a Service, including its

interface. Additionally, it may contain one (or more) ResourceDescription(s)

describing a Resource whose functionality is exposed by the Service. The
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Fig. 7.8 IoT Information Model
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ResourceDescription in turn may contain information about the Device on which

the Resource is hosted.

7.4.2 Modelling of Example Scenario

The IoT Information Model is a meta-model that defines the structure of key aspects

of the information being managed in an IoT system. Therefore, unlike the Domain

Model (see the recurring example in Sect. 7.1.3.1), it would typically not be directly

instantiated (see information view Sect. 8.2.3 and the related Design Choices in

Chap. 6 for this purpose). Nevertheless, for illustration purposes, we sketch here

how the information relevant for our example scenario from Sect. 4.2 could be

modelled (Fig. 7.9).
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Fig. 7.9 Illustrating example for IoT Information Model
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The element of interest for which we can get some information is the Load

Carrier, which is therefore digitally represented by a Virtual Entity. Here, we show

how the temperature aspect of the Physical Entity is modelled by the

hasTemperature attribute of the Virtual Entity. This Figure also features a descrip-

tion of the service that is used to measure this temperature. What is finally needed is

the connection between the hasTemperature attribute and the service that can

provide its value. This is achieved by the Temperature Association.

7.4.3 Relation of Information Model to Domain Model

The IoT Information Model models all the concepts of the Domain Model that are

to be explicitly represented and manipulated in the digital world. Additionally, the

IoT Information Model models relations between these concepts. The IoT Informa-

tion Model is a meta-model that provides a structure for the information being

handled by IoT Systems. This structure provides the basis for all aspects of the

system that deal with the representation, gathering, processing, storage and retrieval

of information and as such is used as a basis for defining the functional interfaces of

the IoT system.

Figure 7.10 shows the relation between the Domain Model concepts and the IoT

Information Model elements. The main Domain Model concepts that are explicitly

represented in an IoT system are the Virtual Entity and the service. The latter also

comprises aspects of the Resource and the Device. As the Virtual Entity is the

representation of the Physical Entity in the digital world, there is no other represen-

tation of the Physical Entity in the IoT Information Model.

7.4.4 Other Information-Related Models in IoT-A

Throughout IoT-A several other information- related models exist. Most of them

are defined in the technical work packages WP2, WP3, WP4 and WP5. More

information can be found in the respective deliverables (see below).

• Entity model: The Entity Model specifies which attributes and features of real

word objects are represented by the virtual counterpart, i.e. the Virtual Entity of

the respective Physical Entity. For every attribute specified in the entity model,

services can be found that are able to either provide information about the

attribute (sensing) or manipulate it, leading to an effect in the real world

(actuating). More information about the entity model can be found in

Sect. 7.1.3.2.2.

• Resource model: The Resource Model contains the information that is essential

to identify Resources by a unique identifier and to classify Resources by their

type, like sensor, actuator, processor or tag. Furthermore the model specifies the
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geographic location of the Resource, the Device the Resource is hosted on (if so)

as well as the IoT Services the Resource is exposed through. More information

can be found in (Martin 2012) Sect. 3.3.

• Service descriptionmodel: Services provide access to Resources and are used to
access information or to control Physical Entities. An IoT Service accesses IoT

Resources in order to provide information about attributes of entities or

manipulates them leading to an effect in the real world. A Service Description

describes a Service, using for instance a service description language such as

USDL.1 For more information see (Martin 2012) Sect. 4.6.3.

• Event Model: Event models are quite essential in today’s IoT architectures,

e.g. in the EPCglobal Information Services. Normally events are used to track

dynamic changes in a (software) system, showing who or what has triggered it

and when, where and why the change occurred. Event representation and

processing is specified in Sect. 4.2 of (Voelksen 2013).

7.5 Functional Model

7.5.1 Functional Decomposition

In the IoT-A project, Functional Decomposition (FD) refers to the process by which

the different Functional Components (FC) that make up the IoT ARM are identified

and related to one another.

Fig. 7.10 Relation between the core concepts of the IoT Domain Model and IoT Information

Model

1 http://www.internet-of-services.com/.
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The main purpose of Functional Decomposition is, on the one hand, to break up

the complexity of a system compliant to the IoT ARM in smaller and more

manageable parts, and to understand and illustrate their relationship on the

other hand.

Additionally, Functional Decomposition produces a superset of functionalities

that can be used to build any IoT system. The output of Functional Decomposition

is described in this document at two levels of abstraction:

• The Functional Model (purpose of this section);

• The Functional View (presented in Sect. 8.2.2).

The definition of the Functional Model is derived by applying the definition of a

Reference Model found in (MacKenzie et al. 2006) to Functional Decomposition:

“The Functional Model is an abstract framework for understanding the main

Functionality Groups (FG) and their interactions. This framework defines the

common semantics of the main functionalities and will be used for the development

of IoT-A compliant Functional Views.”

The definition contains the following concepts that need to be explained in more

detail:

• Abstract: The Functional Model is not directly tied to a certain technology,

application domain, or implementation. It does not explain what the different

Functional Components are that make up a certain Functionality Group;

• Functionality Groups and their interactions: The Functional Model contains

both the Functionality Groups and the interaction between those parts. A list of

the Functionality Groups alone would not be enough to make up the Functional

Model. Both the Functionality Groups and their interaction are mandatory;

• Functional View: The Functional View describes the system’s runtime Func-

tional Components, including the components’ responsibilities, their default

functions, their interfaces, and their primary interactions. The Functional View

is derived from the Functional Model on the one hand and from the Unified

Requirements on the other hand. Note that various Functional Views could be

derived from the Functional Model. See also Sect. 8.2.2 for more detailed

information on the functional view.

7.5.2 Functional Model Diagram

The Functional Model diagram is depicted in Fig. 7.11 and was derived as follows:

• From the main abstractions identified in the Domain Model (Virtual Entities,

Devices, Resources and Users) the “Application”, “Virtual Entity”, “IoT Ser-

vice” and “Device” FGs are derived;

• With regards to the plethora of communication technologies that the IoT ARM

needs to support, the need for a “Communication” FG is identified;

7 IoT Reference Model 133

http://dx.doi.org/10.1007/978-3-642-40403-0_8
http://dx.doi.org/10.1007/978-3-642-40403-0_8


• Requirements expressed by stakeholders regarding the possibility to build

services and applications on top of the IoT are covered by the “IoT Process

Management” and “Service Organisation” FGs;

• To address consistently the concern expressed about IoT Trust, Security and

Privacy, the need for a “Security” transversal FG is identified;

• Finally, the “Management” transversal FG is required for the management of

and/or interaction between the functionality groups.

The Functional Model contains seven longitudinal Functionality Groups (light

blue) complemented by two transversal Functionality Groups (Management and

Security, dark blue). These transversal groups provide functionalities that are

required by each of the longitudinal groups. The policies governing the transversal

groups will not only be applied to the groups themselves, but do also pertain to the

longitudinal groups.

As an example: for a security policy to be effective, it must ensure that there is

no functionality provided by a component that would circumvent the policy and

provide unauthorised access.

Next, the interactions between the FGs are shown. As can be seen from Fig. 7.11,

the Functional Model is a hierarchical model and the main interactions between the

FG’s are depicted with orange arrows. Since the transversal FGs (Management &

Security) interface with most of the other FGs, their interactions with the other FG’s

are not explicitly depicted.

In the remainder of this section, each of the FGs will be described in more detail

(with exception of the Application and Device FGs, since trying to capture their

properties would be so generic that they do not add any value).
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7.5.2.1 IoT Process Management

The IoT Process Management FG relates to the conceptual integration of (business)

process management systems with the IoT ARM. The overall aim of this FG is to

provide the functional concepts necessary to conceptually integrate the

idiosyncrasies of the IoT world into traditional (business) processes. By so doing,

enterprises can effectively utilise IoT sub-systems adhering to common standards

and best practices, thus avoiding the overhead and costs of isolated and proprietary

“Intranet-of-Things” island solutions.

In the IoT-A project, the IoT Process Management FG is addressed by WP

2. The IoT Process Management FG provides additions and extensions to industry

standards, for instance BPMN 2.0. The additions feature IoT-specific aspects of

(business) processes, such as the reliability or accountability of sensor data

providing information about Virtual Entities or the required processing capabilities

of Devices hosting certain Resources relevant for the real world. Applications that

interact with the IoT Process Management FG via IoT-augmented process models

can effectively be shielded from IoT-specific details of lower layers of the func-

tional model, which greatly reduces integration costs and thus contributes to an

increased adoption of IoT-A based IoT systems (Meyer et al. 2011).

One important aspect of IoT Process Management is its inherent closeness to

enterprise systems. As it was already introduced in the IoT Domain Model

Sect. 7.1.3, the IoT Process Management FG is where the business objects and

processes are combined with the world of IoT, and especially here the modelling of

processes must take into account not only the idiosyncrasies of the IoT domain, but

also the specificities of the underlying business domain. The different roles of the

business objects and users will be defined here. Again, as discussed in the IoT

Domain Model section, we do not prescribe a specific taxonomy here. However, for

pedagogical purposes we illustrate how this taxonomy looks like in the context of

the RM-ODP context Enterprise View (see the discussion about RM-ODP

(Raymond 1995) and roles in IoT Domain Model Sect. 7.1.3.2.2).

• Permission: what can be done? For instance a self-regulating ventilation system

can be started by a central control system;

• Prohibition: what must not be done? For instance the ventilation system may not

be shut down in its entirety if the outside temperature is above a pre-defined

value and if humans are present in the building;

• Obligations: the central control system needs to save recorded environmental

parameters for each room in the entire building (temperature, humidity, ventila-

tion settings). Such records can, for instance, be required by national

occupational-health laws.

When it comes to the practical realisation of the process management, these

different policies will come into play when the respective business processes are

modelled. In Chap. 5 we pick up the notion of enterprise views and illustrate how

they factor into the requirements process.
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The IoT Process Management FG is conceptually closely related to the Service

Organisation FG and acts as a proxy to applications that integrate an IoT-A-compli-

ant IoT system. Naturally, the IoT Process Management FG has a dependency on the

Service Organisation FG, as a central concept in the execution of (business) pro-

cesses is the finding, binding, and invoking of Services that are used for each process

step. The IoT Process Management FG therefore relies on Service Organisation to

map the abstract process definitions to more concrete Service invocations.

Applications can utilise the tools and interfaces defined for the IoT Process

Management FG in order to stay on the (abstract) conceptual level of a (business)

process, while, at the same time, making use of IoT-related functionality without

the necessity of dealing with the complexities of IoT Services. In this respect, the

IoT Process Management FG provides conceptual interfaces to the IoT ARM, that

are alternatives to the more concrete Virtual Entity FG and Service Organisation FG

interfaces.

7.5.2.2 Service Organisation

The Service Organisation FG is a central Functionality Group that acts as a

communication hub between several other Functionality Groups. Since the primary

concept of communication within the IoT ARM is the notion of the Service (see

Domain Model Sect. 7.1.3), the Service Organisation FG is used for composing and

orchestrating Services of different levels of abstraction. Within the IoT Reference

Architecture, it effectively links the Service requests from high level FGs such as

the IoT Process Management FG, or even external applications, to basic services

that expose Resources (see Domain Model Sect. 7.1.3) (such as services hosted on a

WSN gateway), and enables the association of entities with these services by

utilising the Virtual Entity FG, so that a translation of high-level requests dealing

with properties of entities (e.g., “give me please the temperature in the room 123”)

down to the concrete IoT services (e.g., “sensor service XYZ”) can be realised. In

order to allow for querying Virtual Entities or IoT Services that are associated with

these entities, the Service Organisation FG is responsible for resolving and

orchestrating IoT Services and also deal with the composition and choreography

of Services. Service Composition is a central concept within the architecture, since

IoT Services are very frequently capable of rather limited functionality due to the

constraints in computing power and battery life that are typical for WS&ANs or

embedded Devices comprising the IoT. Service Composition then helps combining

multiple of such basic Services in order to answer requests at a higher level of

Service abstraction (e.g. the combination of a humidity sensing Service and a

temperature Service could serve as input for an air-conditioning). Service Chore-

ography is a concept that supports brokerage of Services so that Services can

subscribe to other Services available in the system.

As discussed in the previous section, the Service Organisation FG is closely tied

to the IoT Process Management FG, since the Service Organisation FG enables

(business) processes or external applications to find and bind Services that can be
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used to execute process steps, or to be integrated in other ways with external

applications. The Service Organisation FG acts as an essential enabler for the IoT

Process Management FG. The Virtual Entities specified during the process

modelling phase are resolved and bound to IoT Service FG needed for process

execution.

7.5.2.3 Virtual Entity and IoT Service

The Virtual Entity and IoT Service FGs include functions that relate to interactions

on the Virtual-Entity and IoT-Service abstraction levels, respectively. Figure 7.12

shows the abstraction levels and how they are related. On the left side of Fig. 7.12,

the physical world is depicted. In the physical world, there are a number of Sensors

and Actuators that capture and facilitate the change of certain aspects of the

physical world. The Resources associated to the Sensors and Actuators are exposed

as IoT Services on the IoT Service level. Example interactions between

applications and the IoT system on this abstraction level are “Give me the value

of Sensor 456” or “Set Actuator 867 to On”. Applications can only interact with

these Services in a meaningful way, if they already know the semantics of the

values, e.g. if Sensor 456 returns the value 20, the application has to be programmed

or configured in such a way that it knows that this is the outdoor temperature of the

car of interest, e.g. Car MXD – 123. So, on this level no semantics is encoded in the

information itself, nor does the IoT system have this information, it has to be

a-priori shared between the Sensor and the application.

Whereas interaction on the IoT Service level is useful for a certain set of

applications that are programmed or configured for a specific environment, there

is another set of applications that wants to opportunistically use suitable Services in

a possibly changing environment. For these types of applications, and especially the

Human Users of such applications, the Virtual Entity level models higher-level

aspects of the physical world, and these aspects can be used for discovering

Services. Examples for interactions between applications and the IoT system on

this abstraction level are “Give me the outdoor temperature of Car MXD – 123” or

“Set lock of Car MXD – 123 to locked”. To support the interactions on the Virtual

Entity level, the relation between IoT Services and Virtual Entities needs to be

modelled, which is done in form of associations. For example, the association will

contain the information that the outdoor temperature of Car MXD – 123 is provided

by Sensor 456. Associations between Virtual Entities and IoT Services are

modelled in the Information Model (Sect. 7.1.4).

Virtual Entity

The Virtual Entity FG contains functions for interacting with the IoT System on the

basis of VEs, as well as functionalities for discovering and looking up Services that

can provide information about VEs, or which allow the interaction with VEs.
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Furthermore, it contains all the functionality needed for managing associations, as

well as dynamically finding new associations and monitoring their validity. This

need can be triggered by the mobility of Physical Entities represented by the Virtual

Entities and/or Devices.

IoT Service

The IoT Service Functional Group contains IoT Services as well as functionalities

for discovery, look-up, and name resolution of IoT Services.

7.5.2.4 Communication

The Communication FG abstracts the variety of interaction schemes derived from

the many technologies (Device FG) belonging to IoT systems and provides a

common interface to the IoT Service FG. It provides a simple interface for

instantiating and for managing high-level information flow. In particular, the

following aspects are taken into account: starting from the top layers of the ISO/OSI

model it considers data representation, end to end path information, addressing

issues (i.e. Locator/ID split), network management and device specific features.

The Communication FG can be customised according to the different

requirements defined in the Unified Requirements list and, in particular, those

related to communication specified within WP3. For instance, integrity and security

can be enforced exploiting many different signature and encryption schemes at

various ISO/OSI layers; reliability is achieved either by means of link layer

Fig. 7.12 IoT-Service and Virtual-Entity abstraction levels
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acknowledgements or end to end error correction schemes at the upper layers;

quality of service is realised by providing queue management techniques; finally, in

order to account for communication between different technologies, protocol trans-

lation and context passing functionalities are described.

7.5.2.5 Management

The Management FG combines all functionalities that are needed to govern an IoT

system. The need for management can be traced back to at least four high-level

system goals (Pras 1995):

• Cost reduction;

• Attending unexpected usage issues;

• Fault handling; and

• Flexibility.

Cost reduction: In order to control the cost of a system, it is designed for a

maximum amount of users and/or use cases. “A way for the designer to deal with

the requirements of multiple groups of users is to abstract from the differences in

[the] requirements and [to] parameterise the design” (Pras 1995). Upon

commissioning or start-up of the system, these parameters will be initialised by

the Management FG.

Attending unexpected events: The IoT system is based on an incomplete model

of reality – as literally all systems are. For example, even for the same type of user,

unforeseen activity patterns in the physical world and thus unforeseen usage may

arise may arise. For instance, errors are introduced into the system through explicit,

erroneous management directives (Harrisburg, Chernobyl). Another example is that

Devices can suddenly just die. The latter is most likely to become prevalent in the

IoT, since the cost margins for IoT equipment and thus their reliability can be much

lower than that for traditional telecommunications equipment (back-bone routers,

etc.). The management FG can provide strategies and actions for the mitigation of

impacts from unforeseen situations. Such impacts can be link failure, queue over-

load, etc. In order to better adapt to new situations, it is of course paramount that the

Management FG has a good overview of the system state. To that end the manage-

ment system provides supports collection.

Fault handling: This goal addresses the unpredictability of the future behaviour

of the system itself. This is of special interest in complex IoT systems and also in

IoT systems in which, for instance, the devices in an IoT system do not provide a

model for their behaviour. The measures implied by this goal are:

• Prediction of potential failures;

• Detection of existing failures;

• Reduction of the effects of failures;

• Repair.
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The first three measures can be achieved by comparing the current behaviour of

system components with previous and/or expected behaviour.

Flexibility: The design of a system is based on use-case requirements. However,

these use-case requirements are not static. Instead of designing a new system every

time the requirements change, some flexibility should be built into the system. Due

to this flexibility, the Management FG of the IoT system will be able to react to

changes in the user requirements. This can take place during boot up,

commissioning or also at run time.

All of the above goals rely on shared common functionality and repositories, as,

for instance, a state repository. Other functionalities are:

• Management of the membership and accompanying information of a given

entity to the IoT system. Such entity may be a Functional Component (FC), a

Virtual Entity, an IoT Service, an application, a Device. The information

considered may cover ownership, administrative domain, capabilities, rules,

and rights;

• Retrieval of the list of members pertaining to a given property such as the

ownership/administrative domain;

Finally, some more examples for the above goals are provided:

• Enforcing rules attached to the usage of a certain entity e.g.

• Attending unexpected events: A service needs temperature measurements

every microsecond, but the rule file for the associated device says: maximum

measurement frequency of this device is 100 Hz. The rule file also might say:

no continuous operation of said device for more than 1 h (due to energy

constraints);

• Fault handling: A service wants to run a business process that would con-

sume all IoT services and the VE lookup for more than a day. An example for

this is a query for the geo-location of all temperature Sensors on planet Earth.

The rule file may contain instructions about how many resources can be

consumed by an application;

• Cost reduction: Logging entity usage by a user for further processing

(e.g. billing).

Besides the above, “traditional” goals of management, the Management FG also

needs to address needs that arise when IoT systems can actuate and/or if the they are

embedded in critical infrastructure. Examples for such situations are

• Bringing the entire system to an emergency stop, for instance a train;

• Turning the entire system into a sleep/energy-saving mode in order to relax to

load on a failing Smart Grid.
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7.5.2.6 Security

The Security Functionality Group (Security FG) is responsible for ensuring the

security and privacy of IoT-A-compliant systems. It is in charge of handling the

initial registration of a client to the system in a secure manner. This ensures that

only legitimate clients may access services provided by the IoT infrastructure. The

Security FG is also in charge of protecting private parameters of users. This is

achieved by providing anonymity (ensuring that the user’s identity remains confi-

dential when she/he/it accesses a Resource or a service) and “unlink-ability”

(ensuring that the user may make multiple uses of Resources or services without

an attacker being able to establish links between those uses). This privacy support

relies on fine-tuned identity management, which is able to assign various pseudo-

random identifiers to a single user.

The Security FG also ensures that legitimate interaction occurs between peers

that are statically authorised to interact with each other, or that are trusted by each

other. This is achieved through the use of dedicated authorisation functions or

through the reliance on a trust – and-reputation model, which is able to identify

trustworthy peers in a privacy-capable and highly mutable architecture.

Finally, the Security FG enables secure communications between peers by

managing the establishment of integrity and confidentiality features between two

entities lacking initial knowledge of each other.

7.6 Communication Model

The IoT Communication Model aims at defining the main communication

paradigms for connecting elements, as defined in the IoT Domain Model. We

provide a reference set of communication rules to build interoperable stacks,

together with insights about the main interactions among the elements of the IoT

Domain Model. We propose a Communication Model that leverages on the ISO

OSI 7-layer model for networks and aims at highlighting those peculiar aspects

inherent to the interoperation among different stacks, which we will call in what

follows, interoperability features. Further, the application of communication

schemes, such as application layer gateways, transparent proxy, network

virtualization, etc., to different IoT network types is discussed.

In particular, with reference to our Read Thread example of Sect. 4.2, the IoT

Communication Model can be used to model how the monitoring Sensors of the

truck can seamlessly interact with Ted’s phone and how it can communicate with

the store enterprise system.

The IoT Communication Model has multiple usages. For instance, it can guide

the definition of the Communication Functional Components from which the

Communication Functional Group is composed of. Finally, it can be used to derive

the Communication best practices, as depicted in the following pictures (Fig. 7.13):
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7.6.1 IoT Domain Model Element Communications

For the IoT Communication Model, it is important to identify the communication-

system elements and/or the communicating Users among those defined in the IoT

Domain Model. One, if not the main peculiarity of the IoT is that Users can belong

to many disjoint categories: Human Users, Services or Active Digital Artefacts.

While the same picture is emerging in today’s Internet usage, the percentage of

human-invoked communication will be even lower in the IoT. Moreover, entities

can be physical, digital, or virtual. While a Physical Entity cannot directly take part

in communication, it can exploit Services associated to its virtual counterpart.

The communication between these users needs to support different paradigms:

unicast is the mandatory solution for one-to-one connectivity. However, multicast

and anycast are needed for fulfilling many other IoT-application requirements, such

as data collection and information dissemination, etc.

With reference to our “Red Thread” and the IoT DomainModel section, the main

communicating elements are: the Mote Runner Node (Device), the Alarm Service

(Service), the AndroidApp (Active Digital Artefact) and Ted (Human User).

This section provides insight and guidance on the interactions between elements

of the IoT Domain Model. In particular, per possible communicating entity pair, a

discussion about the relevant layer of the IoT Communication Model will be

provided.

7.6.1.1 User-Service / Service-Service Interactions

As shown in Fig. 7.14, the IoT Domain Model entities involved in this interaction

are mainly two: User and Service (circled in solid red lines). For instance, in our

recurring example this interaction models the truck driver, Ted, who needs to

interact with the AndroidApp in order to receive alarms. However, a Service may

Fig. 7.13 IoT Communication Model usages: (left) using the CM together with the Unified

Requirements to define the Communication FG; (right) deriving Communication Best Practices

thanks to the CM and the Unified Requirements
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also assume the user role when invoking another Service, thus Users can either be

Human User or Active Digital Artefacts.

This interaction is straightforward, as it is identical to typical Internet

interactions between Users and Services. In fact, in most of the application scenario

the User-Service connection can be established using standard Internet protocols.

However, two main exceptions to this general assumption apply when two

Services communicate one to each other and one or both of the communicating

elements belong to a constrained network.

The latter case, which applies when Services are deployed on constrained

Devices such as Sensor nodes and when the User of a given Service is deployed

on a constrained Device, requires for the use of constrained communication

protocols (see Rossi 2012). Finally, when the two elements belong to different

sub-networks, gateway(s) and/or proxy(ies) must be deployed for ensuring success-

ful end-to-end communication. To this extent, as a general rule, if a Service is

constrained, or if it needs to provide access to constrained Users, it must be

accessible with constrained protocols (e.g., 6LoWPAN, UDP, CoAP, etc.).
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Fig. 7.14 DM entities involved in a User-Service / Service-Service interaction (zoom of the

whole IoT Domain Model in Fig. 7.7)
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7.6.1.2 Service / Resource / Device Interactions

Figure 7.15 illustrates the entities of the IoT Domain Model involved in the

interactions among Services, Resources and Devices. These interactions can be

exemplified with the communication among the Alarm Service, the Alarm

Resource and the Mote Runner Node of the recurring example. This Figure also

illustrates the interconnections of these entities.

The complexity of this interaction is due to variety of different properties that a

Device can have; in particular, a Device can be as simple and limited as a Tag and

as complex and powerful as a server (Tag Terminal Type (TT3) and unconstrained

Terminal Type (TT1), respectively, in (Rossi 2012)). In fact, while powerful

Devices can easily support the needed software to host and access Services and to

expose the needed Resources for other Services to interact with, simpler Devices
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may only be able to provide access to their own Resources and the simplest may

even not be powerful enough even to support this. In the latter two cases, Resources

and Services must be provided somewhere else in the network, by some other more

powerful Device(s).

Thus the IoT Communication Model helps to model and to analyse how

constrained Devices can actively participate in an IoT-A compliant communication

and to study possible solutions, such as the usage of application layer gateways, to

integrate legacy technologies.

7.6.2 Communication Interoperability Aspects

The model we are going to propose in this section takes its roots from the ISO/OSI

(ISO 1994) stack, the US Department of Defense 4 layer model (DoD4) (Darpa

1970) and, the Internet stack, but it puts its focus on IoT specific features and issues.

All the previous models have a great value, going beyond any discussion, but

simply they have not been conceived with the IoT issues and features in mind.

In Fig. 7.16 we can see the Internet and the DoD4 stacks. It is evident how they

map onto each other, thus in what follows we will address the 4 layers Internet

model only.

The 4-layer Internet stack abstracts from the underlying Physical Layer; in fact its

lowest layer is represented by the Link Layer. This choice is indeed the right one for

the Internet, as the Link Layer is not visible from the Application Layer, and the same

can be applied to fully homogeneous networks, since applications can be totally

agnostic of the underlined common physical technology. However, the Physical

Layer rises to a great importance when talking about the IoT; in fact the IoT is

characterized by a high heterogeneity of hardware and technologies and the necessity

of making different system interoperable. Moreover, this is a clear statement on the

fact that IP is conceived in order to be implemented on top of any hardware

networking technologies, while in the IoT there exist technologies that do not dispose

of the needed resources to manage a complete IP compliant communication. Thus,

solutions such as 6LoWPAN, are needed to extend IP communication to constrained

networks.

Moreover the main objective of the 4-layer Internet model is to let Internet

applications communicate, having intermediate devices understanding the commu-

nication at IP level, without meddling with upper layers. This model is wonderful in

its simplicity, but this simplicity is one of the reasons why it is unsuitable for the

IoT, since it is not able to address the aforementioned interoperability issues.

Obviously this dates back to the beginning of the Internet, when developing an

Application Protocol for each application was best practice. While in principle that

is a reasonable approach, even in the current Internet we can perceive how it is

misleading. We are not here to discuss pros and cons of developing an Application
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Protocol for each application but we have just to notice this is not a common

practice anymore, with the majority of applications leveraging on HTTP or even on

more specific HTTP constructs like REST protocols. So nowadays it is crucial to

have a distinction between Applications and the Application Protocols.

Another major issue of the 4 layers Internet model arises from the lack of

expression for the so called security layers, the two major examples being SSL

(IETF 2011)/TLS (IETF 2008) and IPsec (IETF 1998).

The main reference point for communication system developers is the ISO/OSI

stack, and, although its validity as an implementation guideline is out of question, it

fails to depict the overall complexity of IoT systems as it is meant to represent

single technology stacks.

After the considerations on the model discussed so far we felt necessary a

different approach for highlighting the peculiar features of IoT communication,

which are not directly evident using the ISO/OSI model alone.

The model, as depicted in Fig. 7.17 on the left-hand side, stresses the relevance

of the wide range of interoperability aspects that characterise IoT systems. In fact,

instead of focusing on a specific realisation of the communication stack, the IoT

Communication Model provides a transversal approach from which one or more

communication stacks can be derived: in fact a single interoperability aspect can be

used to describe the interactions of stacks belonging to different communicating

systems. Once a system is modelled according to the IoT Communication Model it

is easy to derive a set of ISO/OSI interoperable stacks in order to provide the needed

interoperability features.

Below, the different interoperability aspects are described:

• Physical aspect: This interoperability aspect concerns the physical

characteristics of the communication technologies used in the system. It is

similar to the OSI Physical Layer. This is necessary in order to neither exclude

any available technology, and to prevent emerging solutions from being

integrated into the Reference Model. This aspect does not force the adoption

of any specific technology, but it uses the adopted technologies as a base to

model the remaining of the system. In fact, as per the recurring example the

Mote Runner Node can communicate using some low-power radio transceiver

such as ZigBee, while the AndroidApp can be hosted in an IoT-Phone connected

to the Internet either via WiFi or 3G cellular networks;

Fig. 7.16 Four layers

Internet stack (left) and

DoD4 stack (right)
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• Link aspect: In order to address the heterogeneousness of networking

technologies represented in the IoT field, the Link aspect requires special

attention. In fact, most networks implement similar, but customised communi-

cation schemes and security solutions. In order for IoT systems to achieve full

interoperability, as well as the support of heterogeneous technologies and a

comprehensive security framework, this layer must support solution diversity.

At the same time, it needs to provide upper layers with standardised capabilities

and interfaces. Therefore, this layer needs to abstract a large variety of

functionalities, enabling direct communication. IoT systems do not have to

restrict the selection among data link layers, but must enable their coexistence;

• Network and ID aspect: This interoperability aspect combines two communi-

cation aspects: networking, which provides the same functionalities as the

correspondent OSI layer; and identifiers, which are provided using resolution

functionalities between locators and IDs. In order to support global manageabil-

ity, interoperability, and scalability, this aspect needs to provide a common

communication paradigm for every possible networking solution. This is the

narrow waist for the Internet of Things. The difference between identifiers

(unique descriptors of the Digital Artefact; either active or passive), and locators

(descriptors of the position of a given IoT element in the network), is the first

convergence point in the IoT Communication Model. Thus, this interoperability

aspect is in charge of making any two systems addressable from one another

notwithstanding the particular technologies they are adopting. In the case of our

recurring example the AndroidApp must be able to receive alarms generated by

the alarm Service, which in turns, must receive information from the Mote

Runner Device: in order for this to be possible the system must ensure that the

correct identifiers are supported by all the communicating technologies or can be

resolved via appropriate methods;
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• End-to-end aspect: this aspect takes care of reliability, transport issues, transla-
tion functionalities, proxies/gateways support and parameter configuration when

the communication crosses different networking environments. By providing

additional interoperability aspects on top of those of the Network and ID aspect,

this aspect provides the final component for achieving a global M2M communi-

cation model. Connections are also part of the end-to-end scope. Also, Applica-

tion Layer aspects are taken care of here. Moreover Application Protocols in the

IoT tend to embed confirmation messages, and congestion control techniques

require being more complex than what is achievable in the Transport Layer in

the legacy models. With reference to the recurring example, this aspect will take

care of modelling the overall communication between the Alarm Service and the

Mote Runner Node and between the AndroidApp and the Alarm Service;

• Data aspect: the topmost aspect of the IoT Communication Model is related to

data definitions and transfers. While the Information Model provides a high-

level description for data of IoT systems, the purpose of this aspect is to model

data exchange between any two actors in the IoT. As described in the IoT

Information Model (see Sect. 7.4), data exchanged in IoT can adopt many

different representations, ranging from raw data to complex structures where

meta-information is added to provide context specific links. Finally, to make this

possible, the data aspect needs to model the following characteristics (Rossi

2013): (1) capability of providing structured attributes for data description;

(2) capability of being translated (possibly by compression/decompression) the

one to each other, e.g. CoAP is translatable to HTTP by decompression or XML

is translatable to EXI by compression, IPv4 is translatable to IPv6 by mapping;

(3) constrained device support. For instance, in the recurring example, the raw

data produced by the Mote Runner Sensors shall be converted into machine-

readable formats in order for the Alarm Service to be able to interpret and

use them.

7.6.3 Composed Modelling Options

Actual networks may need more than a single communication stack that can be

arranged in several configurations: in particular, here we will analyse how two of

the most popular configurations can be modelled according to the IoT Communi-

cation Model. In the following we will refer to (1) gateway configuration as the

composition of two or more protocol stacks that are placed side by side across

different media, and (2) virtual configuration as the composition of two or more

protocol stacks, one on top of the other.
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7.6.3.1 Gateway Configuration

In this configuration, the IoT Communication Model describes the overall commu-

nication behaviour of the system so that any two communicating element can be

seen seamlessly connected.

Figure 7.18 provides a graphical example of the modelling of three protocol

stacks in gateway configuration. In this example, the two end-point Application

Layers can communicate thanks to the gateways which maps the underline stacks.

In particular, the first gateway (on the left of the figure) bridges the communica-

tion between an Ethernet and a WiFi network, while the second (on the right), in

addition to the bridging functionality between WiFi and ZigBee, adds a translation

functionality for converting IP to 6LoWPAN, TCP to UDP, HTTP to CoAP and

vice versa.

This gateway configuration may be used in the recurring example to let the Mote

Runner Node communicate using ZigBee technology with the Alarm Service

deployed in a server farm thanks to the two gateways.

While the actual configuration of the different protocol stacks is out of the scope

of the model, the overall behaviour of the system can be modelled according to the

five interoperability aspects described above.

7.6.3.2 Virtual Configuration

In this configuration the IoT Communication Model aims at describing the overall

communication behaviour of a system, where the actual communication path is

virtualised by tunnelling the communication using a second protocol stack.

Figure 7.19 exemplifies the modelling of a system behaviour using a virtual

configuration: here, there is an inner communication path composed of an Ethernet

network and a WiFi network using a bridging block and an outer communication

path that is independent of the inner path and allows for the two application layers

to communicate. Such a scheme is usually realised using virtual private network

solutions.

7.6.4 Channel Model for IoT Communication

This model aims at detailing and modelling the content of the channel in the

Shannon-Weaver model in the context of the IoT domain. This model does not

pretend to capture every possible characteristic of IoT technologies, but provides a

common ground to be used to compute overall system performance and for

benchmarking. Further models have to be considered in order to account for more

specific physical aspects.
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Figure 7.20 depicts end-to-end abstraction of a packet delivery between distant

Devices. The information source can be abstracted as a resource in the IoT Domain

Model, and the transmitter as a Device; while the receiver and destination pair can

be mapped as a Device-Service pair.

Following this abstraction, and pushing it forward, we focus on the channel

modelling. In the IoT context, the channel can assume a multiplicity of forms.

Please notice that the following abstraction is useful in order to have an abstract

description but when it comes to apply the Shannon-Hartley theorem it is crucial to

remember this theorem has to be applied independently to each link composing the

path between the sender and the receiver: CI¼BI log(1+SI/NI), where CI is the

channel capacity, BI is the channel bandwidth, SI/NI is the signal-to-noise ratio

(or the carrier-to-noise ratio in case of modulated signals), each of them related to

the I-th link. This channel capacity metric is concave and it can be aggregated

according the following rule: Ci,k¼min(Ci,j,Cj,k), where Ci,k is the aggregated

capacity from i to k, while Ci,j is capacity of the link from i to j and Cj,k is the

capacity of the link between j and k.

Given two adjacent channels, which require to be connected by the means of a

gateway, their aggregated capacity is extremely useful in order to dimension the

gateway itself. Nonetheless, assuming you cannot control the routing on the Inter-

net the scope is limited to the portion of links of which you know the characteristics,

or for a link of which you can suppose to know the lower bound. A valid assumption

Fig. 7.18 Gateway configuration for multiple protocol stacks, aligned according to the IoT aspect

model (see Fig. 7.17)

Fig. 7.19 Virtual configuration for multiple protocol stacks
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will be anyway that the aggregated capacity cannot be bigger than the capacity of

the known links, providing a strong tool to avoid over-dimensioning the gateways.

Indeed, this is extremely useful when designing a constrained network and its

ingress and its egress.

It is important to point out that there is a distinction between the channel model

in the current Internet and that of the IoT. The former is depicted in Fig. 7.21 below,

where the Internet block acts as a black-box summarising every channel transfor-

mation that may happen between the two gateways.

To proceed in modelling the channel in IoT it is important to give a definition of

what we call constrained and unconstrained networks:

• Unconstrained networks are characterised by high-speed communication links

(e.g., offering transfer rates in the Mbit/s range or higher) like, for instance, the

wired Internet of today. Link-level transfer latencies are also small and mainly

impacted by congestion events in the network rather than by the physical

transmission technology;

• Constrained networks are characterised by relatively low transfer rates, typi-

cally smaller than 1 Mbit/s, as offered by, e.g., IEEE 802.15.4. These networks

are also characterised by large latencies. These are due to several factors

including: (1) the involved low-bitrate physical layer technology and (2) the

power-saving policy of the terminals populating these networks, which may

imply the periodic power off of their radios for energy-efficiency reasons.

According to this heterogeneous networks can be seen as the combination of

constrained and unconstrained networks linked together via gateways and/or

proxies.

The picture is much different in the IoT. As can be seen in the scenarios depicted

in (Rossi 2013), in the simplest IoT case the channel consists of a single constrained

network (e.g. a WSAN island), as depicted in Fig. 7.22.

In a slightly more complicated case, the IoT channel can consist of several

constrained networks, which can rely on different network technologies (see

Fig. 7.23).

A different case consists of a channel embodied by a constrained network and an

unconstrained one (see Fig. 7.24).

An additional case consists of a channel formed by two constrained networks

intermediated by an unconstrained network. A common implementation of this case

us the most important in the IoT: the one involving two constrained networks linked

by the Internet (see Fig. 7.25).

Fig. 7.20 Schematic diagram of a general communication system
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What makes IoT very peculiar is the nature of the constrained networks it relies

on. Such networks are formed by constrained Devices and the communication

between the Devices can:

1. Be based on different protocols;

2. Require additional processing in the gateways.

It is important to point out that the characteristics of each network can have a

noticeable impact on the overall end-to-end communication.

In the previous section we tackled the channel capacity using the Shannon-

Hartley theorem and the min operation in order to aggregate multiple hops.

Obviously the channel capacity is not the only important metric when modelling

the IoT communication.

7.7 Trust, Security, Privacy

IoT systems integrate in a seamless way physical objects, data, and computing

devices into a global network of information about ‘smart things’. In this

scenario, services act as bridges through which these ‘smart things’ interact

with each other in an automated way and with as less human intervention as

possible. Towards our aim to provide a Reference Architecture for IoT systems,

it becomes thus mandatory to discuss potential security issues and define a

security model for our architecture. On the way to our goal we proceed as

follows: we identify a few separate classes of security properties that we deem

important for an IoT system and provide, for each class, tools and mechanisms

that serve as solid foundations upon which we can build complex solutions that

guarantee those properties.

Fig. 7.21 Channel model for the current Internet

Fig. 7.22 IoT channel for a single constrained network

Fig. 7.23 IoT channel for communication over two constrained networks
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Considering the multi-faceted entities that a IoT system is made of, we spot the

following necessary properties: Trust, Security, Privacy, and Reliability. In the

remainder of this chapter we discuss these properties separately and delineate, for

each of them, a reference model within the framework of our architecture.

7.7.1 Trust

An important aspect of IoT systems is the fact that they deal with sensitive

information (e.g. patients’ electronic health records). The entities and services

therein recurrently process, store, retrieve, and take decisions upon this type of

data. In this scenario, enforcing trust – compliance to an expected functional

behaviour – on all entities, protocols, and mechanisms an IoT system is made of

becomes a “must”.

Within this project, we focus on Trust at application-level. In particular, we aim

at defining a Trust Model that provides data integrity and confidentiality, and

endpoint authentication and non-repudiation between any two system-entities that

interact with each other.

Trust Model Mandatory Aspects

Describing all possible trust-model archetypes is out of the scope of this document.

Nonetheless, we list hereafter a few and basic aspects that we believe to be

mandatory for defining a Trust Model for IoT systems:

• The Trust-Model domains: In complex systems that include multi-faceted

entities, like, e.g., the IoT, a model that equally shapes the Trust of all

components is difficult, if not impossible, to define. For this reason, various

domains within the system should be determined, with every domain defining a

specific set of subjects to which certain aspects of the trust model apply;

• Trust-evaluation mechanisms: They define a coherent and safe methodology

for computing the trustworthiness degree of a subject within the system. Evalu-

ation mechanisms are based on information previously collected on the given

subject. Depending on the application scenario, this information can be obtained

Fig. 7.24 IoT channel for communication constrained to unconstrained networks

Fig. 7.25 IoT channel for communication over two constrained networks intermediated by the

Internet
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by direct experiences with the subject, witness information on the subject

coming from other members of a community, social-network analysis providing

sociological information on the subject and so on. A trust-evaluation mechanism

must take into account the source of the information on which the trust value is

being computed, i.e. the trustworthiness of the source itself, and carefully weight

its information accordingly in computing the final trust value;

• Behaviour policies: They regulate the ways two subjects within the same Trust

Model domain interact according to their trustworthiness value. They define how

subjects that use the system may interact with other subject. E.g., if a wireless

sensor A is asked to handle a multi-hop message coming from a sensor B with a

very low trust value, Sensor A might decide, according to the behaviour policies

defined by the Trust Model, to not accept the message from Sensor B. Though it

is not recommended, a Trust Model can define specific behaviours for

interacting with subjects whose trust-value cannot be computed within that

model;

• Trust anchor: It is a subject trusted by default (possibly after authentication) by
all subjects using a given Trust Model, and exploited in the evaluation of third

parties’ trustworthiness. In the IoT environment the trust anchor can either be

local to a given subnetwork – running on a node in the same peripheral network,

e.g. a gateway – or a global and centralised device that is deployed on the

Internet;

• Federation of trust: It delineates the rules under which trust relationships

among systems with different Trust Models can be defined. The federation of

trust is essential in order to provide interoperability between subjects that use

different Trust Models. The federation of trust becomes particularly important

within an IoT system deployed on a large scale, where the coexistence of many

different Trust Models it is very likely;

• M2M support: The interaction among autonomous machines is deemed very

common in IoT systems. Prior dynamically identifying and accessing resources

of one-another, these machines should be able to autonomously, according to the

specifics in the Trust Model, evaluate the trustworthiness of each-other.

7.7.2 Security

Now that we have discussed the fundamental aspects that will be included in our

Trust Model, in this section we provide a generic overview of the Security reference

model in our architecture.

Our Security reference model is made of three layers: the Service Security layer,

the Communication Security layer and the Application Security layer. The former,

described in details in (Gruschka and Gessner 2012), includes the following

components: Authorization, Identity Management, Trust and Reputation, Authen-

tication, and key exchange and management. In the remaining of this section we

detail the two last layers.
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7.7.2.1 Communication Security

IoT systems are heterogeneous. Not only because of the variety of the entities

involved (data, machines, sensors, RFID, and so on), but also because they include

Devices with various capabilities in terms of communication and processing.

Therefore, a Communication Security Model must not only consider the heteroge-

neity of the system, but it also should guarantee a balance between security features,

bandwidth, power supply and processing capabilities (Rossi 2012).

Here we work under the assumption that the IoT device space can be divided into

two main categories: constrained networks (NTU) and unconstrained networks

(NTC) (see Networks and communication entities, Chap. 2 in (Rossi 2012)). The

domain of constrained devices contains a great heterogeneity of communication

technologies (and related security solutions) and this poses a great problem in

designing a model encompassing all of them. Examples for such communication

technologies can be found in (Rossi 2012)).

To mitigate the aforementioned heterogeneities we could provide a Communi-

cation Security Model with a high degree of abstraction. However, it would be

useless, as it would lack the specifics needed in the moment of implementing a

specific IoT architecture. As in the Communication Model (see Sect. 7.1.6), we

address the problem by introducing profiles that group heterogeneous Devices into

groups characterised by given specifications.

Figure 7.26 above depicts our approach to lower-layer security in IoT. We

exploit gateways:

On the edge between the domains of unconstrained and constrained devices,

gateways have the role of adapting communication between the two domains.

Gateways are unconstrained devices; therefore, they can be exploited to boost up

the security of constrained devices by running on their behalf energy-hungry and

complex security mechanisms. In addition, gateways can also be used in order

manage security settings in peripheral NTC networks.

We enable these functionalities in the gateways by extending them with the

following features:

• Protocol adaptation between different networks (by definition);

• Tunnelling between themselves and other nodes of the NTU domain. (Optional;

impacts on trust assessment);

• Management of security features belonging to the peripheral network

(Optional);

• Description of security options related to traffic originated from a node attached

to the gateway. (Authentication of source node, cryptographic strength, . . .);

• Filtering of incoming traffic (i.e. traffic sent to one of the nodes attached to the

gateway or vice-versa) according to network policies, user-defined policies, and

destination-node preferences (Optional).
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7.7.2.2 Application Security: System Safety and Reliability

IoT systems include, without any doubt, a wide range of application scenarios: from

home-security to structure monitoring of bridges, buildings, and so on, and from

surveillance systems to health monitoring. Most of these scenarios must be reliable:

a single failure in the system can lead to tragic consequences. This is why, besides

from security and privacy mechanisms that guarantee trustworthiness of the system

as a whole, it becomes important to assure also system safety.

System safety is application specific: for an electricity system safety includes

assuring that no harm is done in case of a short circuit. For an elevator system safety

would include making sure that the elevator does not start moving when the

elevator doors are opened. Nonetheless, there is a common approach to achieve

fail-safe systems made of two phases. The first, called the hazard identification

phase, aims at detecting all possible risks that could possibly lead to severe

accidents. The second phase includes the system design according to the fail-safe

philosophy: systems are designed in a way that the far majority of failures will

simply result in a temporary or total loss of service, so to avoid major damage/

accidents. An example of a safe-fail system is the security belt sensor in smart-cars:

If the driver does not fasten it, the car does not start.

While we believe that the classical fail-safe approach to system design can

assure safety in IoT systems, with respect to hazards inside the system (e.g. the

Fig. 7.26 NTC Constrained Device Network, NTU Unconstrained Device Network, CDSecFeat

Constrained device security feature. The CDSecFeat implementation leverages the extension of

the functionalities of gateway devices
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security belt within the car, the short circuit within the electricity system and so on),

we also believe that often, the safety of the system depends on issues that originate

outside the system. The following scenario gives a representative example of

outside-the-system hazards: A bulldozer aiming at bringing down a tree damages

(by chance) the foundations of a building nearby. Even though the damage is not

visibly spottable right away, at the first slight earthquake it makes the building

crumble down by thus costing human lives.

Clearly, in these cases, threat analysis plays an important role. Despite from

considering only system-insider hazards, the system designer should carefully

examine the ‘outside world’ of the system in order to identify potential outside

hazards. Only after a meticulous analysis of all possible threats (both insiders and

outsiders) proceed with the system design following the fail-safe philosophy.

Lastly, another group of vicious threats imposed to safety, or rather, reliability of

IoT systems are terroristic. These can either aim at bringing down large automatic

systems e.g. a city or country wide electricity system, internet connectivity, border

security monitoring system and so on, or targeting directly the users (e.g. by

wirelessly reprogramming pacemakers of patients2). In the former case, the attack

consequences could be limited by including intrusion/failure detection mechanisms

(e.g. heart-beat protocols) coupled with redundancy that brings the targeted service

up in a short-time period after the attack. In the second case, however, this type of

solution might not work well: If the pacemaker of a patient is stopped, even though

an alarm might be raised in the IoT system, the patient’s life would most probably

end in a short time.

7.7.3 Privacy

Due to the variety of the entities that handle user-generated data in IoT,

guaranteeing data privacy becomes mandatory in these systems. For this reason

we include in our reference model also a Privacy Model, the aim of which is to

describe the mechanisms – e.g. access policies, encryption/decryption algorithms,

security mechanisms based on credentials, and so on – that prevent data of a subject

(either user or entity) to be used improperly.

According to (Weber and Weber 2010), a privacy friendly system should

guarantee the following properties:

• The subject must be able to choose sharing or not sharing information with

someone else;

• The subject must be able to fully control the mechanism used to ensure their

privacy;

2According to a report published at www.secure-medicine.org, peacemakers can be wirelessly

hacked in, and reprogrammed to shut down or to deliver jolts of electricity that would potentially

be fatal to patients.
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• The subject shall be able to decide for which purpose the information will be

used;

• The subject shall be informed whenever information is used and by whom;

• During interactions between a subject and an IoT system, only strictly needed

information shall be disclosed about the subject, and pseudonyms, secondary

identity, or assertions (certified properties of the end-user) shall be used when-

ever possible;

• It shall not be possible to infer the subject’s identity by aggregating/reasoning

over information available at various sources;

• Information gained for a specific purpose shall not be used for another purpose.

E.g., the bank issuing a credit card should not use a given client’s purchase

information (logged so to keep track of that client’s account) to send him

advertising on goods similar to his purchases.

To provide the above properties the IoT-A privacy model relies on the following

functional components: Authentication FC, Trust and Reputation FC.

Table 7.1 below briefly summarizes how these components mitigate some of the

privacy threats to privacy, further discussed in the threat analysis performed in

IoT-A (see Appendix).

Central to the Privacy Model is the Identity Management Functional Component.

A description of this FC is provided in deliverable (Gruschka and Gessner 2012).

In our system, any subject (service or user) is univocally mapped to its root

identity. However, a subject might require to be provided with multiple secondary

identities by the Identity Manager. The set of multiple identities associated to a

unique subject is denoted with identity pool (see Fig. 7.27). Secondary identities

can then be used, for privacy or usability purposes, when the subject interacts with

the IoT system. However, the system does log the identities (either secondary/

pseudo or root identities) of the subjects it interacts with so to mitigate possible

Repudiation. The Identity Management FC provides a mapping functionality that

maps (to requesters with the required credentials) root identities to secondary

identities/pseudonyms.

The second corner-stone functionality for ensuring privacy is Authentication

(AuthN component).

Its functionality is to bond a subject to its identity (root identity) or to certify

properties/roles of the subject, or both. If the subject is a user, examples of possible

certified properties can be:

• Has age over 18 years old;

• Has valid driving license;

• Has certification level x.

Similarly, certified roles can be:

• Management;

• Operational;

• Maintenance,. . .
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So, in our system, a given subject can be granted access to an IoT resource

according to the subject’s identification, or according to the subject’s certified

properties/roles. This enables subjects to still get access to the system yet not

revealing their identity.

The AuthN component proposed by IoT-A offers the Authenticate functionality,

the profile of which is:

assertion: Authenticate (UserCredential)

where UserCredential is any kind of information used by the Authenticate func-

tionality to check the identity of the party to be authenticated (e.g. username –

password pair, PIN code, retinal identification and so on).

Table 7.1 Example of privacy threats mitigation within IoT-A

Threat Result Mitigation

Identity spoofing User’s identity is spoofed Robust user authentication procedure preventing

man-in-the-middle attacks, with proper

credentials-management policy provided by

an Authentication FC

User is involved in

transactions with a

malicious peer

Trustworthy discovery / resolution / lookup sys-

tem. Trustworthiness of the entire system is

guaranteed through its security components

(especially Authentication FC and Trust
and Reputation FC) as well as its global
robustness (security by design)

Information

disclosure

Attacker gains knowledge

of user’s private

parameters

The Identity Management FC enforces a robust

pseudonymity scheme that ensures anonym-

ity and unlinkability

Attacker gains knowledge

of user’s location

User’s location can be hidden through reliance

on pseudonyms provided by Identity Man-
agement FC

Fig. 7.27 Example of an identity pool
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assertion (following definition of (Gruschka and Gessner 2012)) is the information

that guaranties the occurrence of an authentication of a user client at a particular

time using a particular method of authentication. The assertion is further used by

the Authorisation (AuthS) component in order to decide upon granting or

denying access to a resource.

Finally, the AuthN component provides also Authorisation (AuthS): It is the

process by which access to information or an IoT Resource is granted to a subject,

according to an access policy and for a specific type of action. In order to guarantee

user-privacy, the end-users should be in control of access policies relating to their

personal data.

The profile of the Authorise function is:

Boolean: Authorise (Assertion, Resource, ActionType),

where Assertion is the result of Authentication, Resource represents the resource to

be accessed, and ActionType represents the action to be performed upon the

resource.

As mentioned earlier, there are various models of authorisation, property-based

access control and assertion-based access control (Gruschka and Gessner 2012).

Both are supported by IoT-A through abstract APIs (Gruschka and Gessner 2012).

Identity Management FC, Authentication FC, and Authorisation FC guarantee

privacy within the IoT system. Nonetheless, if the data within the IoT system’s

database is stored as clear text, nothing prevents hackers from tampering with the

database and accessing the data. To protect the user against these types of attacks,

we believe that the data should be encrypted before storing it in the database.

7.7.4 Contradictory Aspects in IoT-A Security

In distributed systems, including IoT-like ones, one has often to trade-off between

security properties. In particular, trust and privacy, are considered as being two

contradictory properties. From one side, we want to build a system which is

trustworthy. I.e., every entity in that system can prove, according to either trust-

building mechanisms or to certificates distributed by some authority, its own trust

value. From the other side, we want the system to provide, to each entity, the

privacy that it requires, without forcing it to disclosure more personal information

that it wants to. This tension between security and privacy emerges also in our

reference model. Indeed, the trust-evaluation mechanisms for example not couple

well with the many pseudonyms an entity might present to protect its privacy in

various scenarios. Indeed, a given malicious entity can fool the system by

presenting, within a given context, the pseudonym with the highest trust value

built so far. It becomes thus very important to strongly bind, somehow, the trust

value of an entity with its root ID. But, from the other side, this imposes problems to

the privacy of the entities: If the trust-value has to be calculated on the fly, based on
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certificates given to that entity in the many interactions it has had in the past, all

bound to its root ID, the entity can be easily traced inside the IoT, even though it

presents different pseudonyms. A solution to this problem is to make the trust value

be recalculated, each time an interaction occurs, by a unique, trustworthy system

component which is also able to bind various pseudonyms to root IDs. This solution

does guarantee correct trust values for all entities in the system, yet preserving their

privacy. However, it has two major drawbacks: (1) The unique component would

become a huge bottleneck in the system; (2) It would become a single point of

failure: By compromising it (or tampering with it) an attacker would be able to

de-anonymize all entities in the system, or even change trust-values to his liking, by

boosting trust-values of malicious entities, and lowering the trust value of others.

For the above reasons, we believe that within the IoT-A system we should opt for

a mechanism which trades-off trust for privacy: Subjects are allowed just one trust-

value, valid for a certain number of pseudo-identities, and included in a trust-

certificate signed by the AuthN component. The trust value is then updated each

time the subject interacts in the system, by the counter-part of this interaction. The

trust value is to be used for sensitive interactions and/or access to sensitive system

resources, data, and services, within which the subject is thus required to present

one of the pseudonyms bound to the trust-certificate. This way, a subject cannot

fake its unique trust value, which is, from the other side not bound to its

pseudonyms “trust-free“ – the ones through which the subject can access less

system’s resources, data, and services, that do not require proof of trust values.

7.8 Conclusion

In this Section we introduced the foundation of the IoT ARM, the IoT Reference

Model. The IoT Reference Model defines the basic concepts, models, terminology,

and relationships in the IoT ARM. It demonstrates our thinking, rationale and

design space for structuring the domain of the Internet of Things. It also proposes

the Functional Groups that we deem relevant for IoT architectures, as outlined in

the IoT Functional Model (see Sect. 7.1.5).

Within the IoT Reference Model, the IoT Domain Model was discussed in great

detail, as the IoT Domain Model defines the language, the concepts, and the entities

of the IoT world and how they are related to each other. This is confirmed by the

fact, as we learn in Section (sec: Chap. 6 “IoT Context View”), that the IoT Domain

Model plays a prominent role in IoT-A-guided system architecting. As we will see

in Chap. 12 when we perform a reverse mapping analysis with the concepts defined

in other projects and standards related to the Internet of Things, the definition of a

common understanding is crucial for developing interoperable architectures and

systems. This common understanding permeates every aspect of the architecture,

and will be a key aspect for the widespread acceptance of a future IoT systems and

standards. In that respect it is most important to carefully study the concepts of the
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IoT Domain Model, as it is the foundation of the other models presented in this

chapter and of the IoT Reference Architecture that will be discussed in Chap. 8.

While a common language and common terminology is the precondition for all

other models, this chapter also provided the other models crucial for the develop-

ment of IoT architectures, most importantly the IoT Information Model that relates

to important aspects of information in an IoT system and will be detailed in the IoT

Information View in Sect. 8.2.3 that discusses information on a higher level of

detail.

The IoT Functional Model discussed in this chapter defines several Functional

Groups that pick up the IoT concepts and entities introduced in the IoT Domain

Model and it relates them to common functionalities present in an IoT architecture.

Just as for the IoT Information Model and View, the IoT Functional Model will be

further detailed with concrete functional components in Sect. 8.2.2.

Finally, Communication and Security models, as well as techniques of system

safety and reliability where introduced that address these issues in IoT. The security

and the communication model constitute Functionality Groups in the IoT Func-

tional Model, and will be picked up again in the IoT Reference Architecture (see

Sects. 8.2.4 and 8.3.3).

What we have also addressed in this chapter, is the application of the common

IoT use case introduced in Sect. 4.2 to several models in order to facilitate getting

acquainted with the concepts defined in the respective model by tying their under-

standing together with a common, “Red Thread”. We hope that this application of

the use case helps with understanding the different models. We are aware of the

complexity of the IoT Domain Model and the Trust, Security, and Privacy issues,

but this complexity is inherent in the domain of the Internet of things itself. It is

however crucial to really understand the models introduced in this chapter, before

moving on.

The next Chap. 8, the IoT Reference Architecture, builds upon this foundation

and details it even further, so that concrete IoT-compliant architectures can be

derived. The section uses several ways of projecting the IoT Reference Architec-

ture, and it also presents several “Views” that complement the different models

presented in this section. For instance, we propose Functional Components, which

relate to the IoT Functional Model and the IoT Communication Model, in the

Functional View (see Sect. 8.2.2) that we discussed in this chapter. We also provide

an Information View, which tightly relates to the IoT Information Model discussed

in this chapter.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution

Noncommercial License, which permits any noncommercial use, distribution, and reproduction in

any medium, provided the original author(s) and source are credited.
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