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Abstract

The Internet of Things (IoT) is rapidly changing the way in which we engage with technology on a daily basis. The IoT para-

digm enables low-resource devices to intercommunicate in a fully flexible and pervasive manner, and the data from these 

devices is used for decision-making in critical applications such as; traffic infrastructure, health-care and home security, to 

name but a few. Due to the scarce resources available in these IoT devices, being able to quantify the reliability of them is 

a critical function. This report presents a detailed evolution of the area of reliability measurement, followed by an in-depth 

review of the state-of-the-art for quantification of reliability in the IoT, revealing the many challenges associated with this 

task. From this in-depth review, a set of key research directions for IoT reliability is determined. Despite the critical nature of 

the research area, at this current moment, this study is the first detailed review available in the area of assessing IoT reliability.
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1 Introduction

Computing has been the fastest growing field of the last 

century. Computing systems now pervade the fabric of our 

everyday lives. We cannot make a purchase from a store, 

withdraw money from our bank accounts or visit a hospital 

without interacting with a computing system. Computing 

systems are now relied upon for many mission-critical sys-

tems, such as aircraft control systems, military systems and 

nuclear power plants. With the criticality of our comput-

ing systems in mind, it is vital that there are methods in 

place to ascertain the reliability of such systems. One of the 

fastest-growing fields within computing is the Internet of 

Things (IoT). The IoT is expected to grow to an immense 

size over the next number of years. In 2011 Cisco predicted 

that there would be 50 billion devices connected to the IoT 

by 2020 (Evans 2011). These huge claims have also trig-

gered predictions of monetary investments reaching into 

the trillions by 2020 (Rayes and Salam 2016). While these 

numbers suggest a truly rapid growth in IoT, there are still 

many research challenges which must be solved for IoT to 

become fully integrated into our day-to-day lives. These bar-

riers include trust, security, interoperability, reliability, scal-

ability, performance, availability and mobility (Al-Fuqaha 

et al. 2015; Wang 2018; Ahmed et al. 2017; Saini 2016). 

These areas represent significant research challenges that 

must be addressed if we are to allow IoT to become the ubiq-

uitous technology that it has set out to become (Sicari et al. 

2016). If the vision of IoT is to be fully implemented in our 

homes, cities and workplaces then we will be trusting intel-

ligent systems to make thousands of decisions daily that will 

have profound impact on our lives, through applications such 

as; home security (Ghorbani and Ahmadzadegan 2017), pro-

viding healthcare services to patients (Da Li et al. 2014) and 

monitoring critical traffic infrastructure (Singh et al. 2014).

The IoT is tasked with considering devices which may 

be extremely constrained by nature (Chiang and Zhang 

2016). Considering that the IoT will be responsible for 

managing key infrastructure such as traffic lights, critical 

health systems and home security, it is easy to appreciate 

how the impact of unreliable IoT infrastructure may affect 

the decision-making of the system in a potentially severe 

or fatal manner (Fekade et al. 2017). The reliability issue 

does not end at the device and hardware layer either, there 

is also the consideration of the reliability of the network 

layer. This can often be difficult to determine due to the 
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heterogenous nature of the devices connected to it and how 

they transmit data, often wirelessly over lossy links. Beyond 

the data transmission, there is also the issue of actuation to 

be considered. This raises an important question, how can 

we be assured that decisions are taken by the system based 

on robust information, given the challenges at the lower 

layers of the architecture? There must also be mechanisms 

in place to determine the accuracy of the decision-making 

models that determine the actuation of the system. Incorrect 

decision-making at this level could potentially be life-threat-

ening for end-users, making this a key research issue (Sato 

et al. 2016). The vulnerabilities of IoT devices are becoming 

a prominent issue in the consumer and government indus-

tries. In October 2018, the UK government issued a set of 

guidelines describing minimum standards for smart-home 

devices, in order to protect the consumer (DDCMS 2018). 

This is demonstrative that IoT system reliability is something 

that will need to be addressed comprehensively in order for 

the technology to fully mature. If we are able to successfully 

quantify the reliability of our IoT infrastructure and which 

applications can avail of its service, this will then allow us 

to use the quantified reliability metric to reason about the 

fitness for purpose of our critical IoT infrastructure.

This report represents a novel in-depth study of reliability 

in relation to IoT, from first examining the fundamentals of 

reliability in engineering; these principles are then applied 

to reliability in computing and IoT. An exhaustive literature 

review, which to the best of the authors’ knowledge is the 

first of it’s kind, is also included in this report. This is fol-

lowed by a summary of the current state-of-the-art research 

into reliability of IoT. Finally, this report proposes a novel 

set of research directions which are crucial in the advance-

ment of IoT reliability, based upon the findings of the in-

depth study

The rest of this paper is organised as follows: Section 2 

describes the method and process used to perform this 

research. Section 3 is an overview of the meaning and ori-

gins of reliability engineering and how it applies to comput-

ing. Section 4 is a detailed view of reliability in IoT, and the 

challenges that make the quantification of reliability difficult 

in IoT. Section 5 is a detailed literature review of current 

research into quantifying reliability in IoT systems. Section 6 

then discloses the five key research directions gleamed from 

the in-depth study conducted in this work, followed by the 

conclusion of the work in Sect. 7.

2  Methods and processes

At the time of writing, to the best of the authors’ knowledge, 

this work represents the first work to review and summarise 

the practice of quantifying and measuring reliability in the 

IoT. This indicates that, in general, the area of reliability 

quantification in the IoT is as yet under-researched, and 

would benefit from an in-depth review. Moreover, in order 

to guide the efforts of future researchers who may apply the 

knowledge herein to their own research projects, it would 

be of benefit for this in-depth review to summarise the key 

knowledge points, and then synthesise them into a list of key 

research directions. Crucially, for a piece of work such as 

this, there must be a process in place in order to ensure that 

the research is carried out in a robust and reliable manner. 

As such, this section details the three-stage methodology 

that was used to perform this research. This methodology 

aims to support the research in achieving the following con-

tributions to knowledge: 

1. Define reliability in the IoT through researching state-

of-the art in other well-established disciplines, such as 

biomedical engineering and engineering.

2. Using this reliability information from contribution 1, 

apply it to the scope of the IoT, detailing the key require-

ments for IoT reliability

3. Perform an in-depth literature review surveying the 

state-of-the-art in IoT reliability quantification

4. Analyse the current state-of-the-art research and derive 

key research directions for the field.

2.1  De�ning reliability in the IoT

Given the nascent nature of this field, as described earlier in 

this section, it becomes necessary to formulate a definition 

for the IoT. While reliability is a mature field in the related 

disciplines of engineering (Bradley 2016) and software engi-

neering (Xie et al. 2004), there is no agreed upon definition 

for the IoT. As such, it becomes necessary to review the 

core principles of reliability in these other domains. Highly 

cited and relied upon publications were selected from the 

industries of engineering, biomedical engineering and com-

puting which described the practice of reliability definition 

and quantification. From these works, a clear definition of 

reliability is then developed. This core definition of reli-

ability is then taken and applied against the backdrop of 

the IoT. This ensures that the application of any reliability 

definition is firmly grounded in highly cited academic and 

scientific articles.

The definition of IoT reliability is then further expanded, 

and viewed in an end-to-end sense, using the core physical 

architecture of the IoT as a structure to discuss the applica-

tions of reliability in the IoT.

2.2  Selection of works

With reliability then firmly defined in a wider sense, then 

narrowed into an IoT-specific scope and definition, works 

were then selected to demonstrate the current state of the 
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art in performing reliability analysis in the IoT. In order to 

ensure that the works included in this review were of signifi-

cant scientific standard, the following steps were applied in 

sourcing and including the literature: 

1. Wide searches were conducted in the following data-

bases; IEEE Xplore, ACM Digital Library and Google 

Scholar (including Springer and Elsevier).

2. Search terms used were “IoT”, “Reliability”, “Reliable”, 

“Trust”, “Dependability”, “Quality” (in any combina-

tion) in the title of the work.

3. Prior to 2010, IoT was a seldom-used term in research 

literature, as such, works before 2010 were excluded 

before to ensure currency.

4. Works were then excluded which did not address some 

method of quantifying, measuring or directly aiming to 

assess or improve reliability in the IoT.

2.3  Analysis and research directions

Once the works were selected, each of them were reviewed 

and a detailed summary presented detailing their contribu-

tions to the field of IoT reliability research. This information 

is then synthesised into benefits and shortcomings, which are 

analysed and presented in a summary table.

Finally, the analysis of each of these surveyed works was 

used to derive a set of research directions for the research 

area. Given that, at the time of writing, this review paper 

is the first to specifically study reliability in the IoT, this 

research output represents a trusted and evidenced roadmap 

to improving reliability in the IoT.

3  The science of reliability

Reliability, at a fundamental level, is concerned with 

the study of failures (Fries 2006). More specifically, it is 

concerned with how failures are caused, how they can be 

addressed and how they can be prevented. There are many 

misconceptions regarding what reliability actually repre-

sents. It is not as simple as testing and re-testing a device 

until relative satisfaction is reached. Reliability can be rep-

resented by a formal definition which includes four key 

requirements. Fries (2006) defines these requirements of 

reliability by stating that devices must be able to; perform 

a required function, perform without failure, perform under 

stated conditions and operate for a specific period of time. 

Therefore, the specification for reliability requires that we 

fully identify the expected conditions of use, what consti-

tutes proper function and what constitutes a failure (Mavro-

giorgou et al. 2018). The remainder of this section will cover 

the key areas in establishing reliability engineering. First, a 

definition is presented to illustrate the difference between 

two often misused terms; quality and reliability. Then basic 

failure patterns are discussed, and how they impact new ser-

vices. Finally, a description of reliability as it applies to the 

field of computing is presented, alongside standard metrics 

used to quantify reliability in computing.

3.1  Quality versus reliability

The terms “quality” and “reliability” are often misunder-

stood. Sometimes, these terms are used interchangeably, 

however, there are important distinctions between the two 

terms. Both terms exist to describe a characteristic of a prod-

uct or system. Fries (2006) determines that the main differ-

ence between these two terms as being the temporal nature 

of quality. The term “quality”, as defined in ISO 9000 (ISO 

2015) is the “ability to consistently provide products and 

services conforming to their requirements”. In this definition 

of quality, there is no stipulation of a time period for which 

these requirements must be met or continue to be met in the 

future. A quality test, therefore, reflects only a snapshot of 

a particular time at which quality requirements are either 

met or not met. Reliability, however, refers to the perfor-

mance of a system or product over a specific window of 

time. This is an important distinction between the two terms, 

especially when it comes to assuring continued adequate 

performance of a device or system over time. In essence, we 

can evaluate quality in the IoT, however, this will not offer 

us any assurance in the continued successful operation of 

the deployment. A product or system can be designed and 

released to a very high standard of quality, however, this will 

not provide any information with regards to how often the 

product fails. Moreover, we cannot use quality to ascertain 

the probability that the system or product will be operating 

without fault at a given time. Quantified reliability measures, 

on the other hand, allow us to ascertain vital pieces of infor-

mation regarding the up-to-date operational state of the IoT 

deployment. These pieces of information can include, how 

often a device fails, the average interval between failures, the 

average time taken to repair a component and the probability 

that a component will need to be replaced by a certain date.

3.2  Common failure patterns

There are three main patterns of failure which are defined 

in the field of reliability engineering; infant mortality, con-

stant failure rate and wearout failure (Bradley 2016). Infant 

mortality refers to failures that occur predominantly early in 

the lifecycle of a product and gradually are neutralised over 

time. Wearout failure patterns are observed when a device 

begins to exhibit an exponentially higher number of errors 

compared to a previously consistently low number of errors. 

This failure pattern indicates that a device is nearing the end 

of its useful life period (Fries 2006). The constant failure 
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rate describes a pattern where the number of errors within 

a given period of time remains constant. For example, for 

a device to have a constant failure rate we would expect 

that the same total count of errors to occur in each calendar 

month, though these do not necessarily need to occur at the 

same times each month. These three error patterns are char-

acterised in Fig. 1, the dotted vertical lines mark the begin-

ning and the end of the useful life period where the failure 

pattern is at a constant rate.

3.3  Reliability in computing

There are many ways of assessing reliability in computing. 

The most appropriate method may depend upon the nature 

and function of the system being assessed. Reliability should 

be a quantitative measure which broadly represents the abil-

ity for a computer system to perform its intended function 

(Xie et al. 2004). Xie et al. (2004) outline several key met-

rics that help to define reliability in computing. Mean Time 

to Failure (MTTF), closely related to Mean Time Between 

Failures (MTBF) is the expected lifetime that the system 

will operate normally before a failure occurs. The failure 

rate function, also known as the hazard function, is a metric 

that helps to define the rate of system aging. The failure 

rate is the probability that a device will fail within a speci-

fied window of time. The failure rate function when used to 

evaluate hardware would be expected to follow an exponen-

tial distribution, which thereby allows us to reason about 

the aging and deterioration of the hardware. When used in 

software, however, the failure rate would remain constant 

because software does not age or deteriorate physically. 

Maintainability, according to Xie et al. (2004), is a metric 

that represents the probability that a failed system can be 

returned to normal operation within a given period of time. 

Availability is a metric representing the probability that a 

system will be operating as normal in a given period of time. 

Availability and maintainability are closely related, how-

ever, they differ in one key aspect: availability concerns the 

period of time in which a system is expected to be operating 

normally, whereas maintainability concerns the period of 

time in which a fault has occurred. Of course, beyond this 

technical definition, maintainability also is concerned with 

the continuing and ongoing operation of a system - this may 

relate to such tasks as meeting new requirements, refactoring 

and restructuring code and other maintenance tasks which 

contribute towards maximising the useful life period of a 

system.

Within the study of computing reliability there are four 

key areas which have different approaches in establishing 

reliability; hardware, software, network and system (Xie 

et al. 2004). These different areas each have reliability analy-

sis methods that are uniquely suited to the requirements and 

issues in the area. Hardware reliability concerns the reliabil-

ity over time for the physical components of a computer sys-

tem, such as CPU, disk and sensors. These components are 

prone to wear and tear, and therefore we would expect the 

reliability to reduce over time for these components. Soft-

ware components, on the other hand, should not be subject to 

physical wear and tear, therefore we would not expect to see 

a decay in reliability over time (Mavrogiorgou et al. 2018). 

Network reliability concerns the network performance over 

a given period of time, which is determined by a blend of 

hardware and software. Systems reliability is a combination 

of all the components combined, and there are specialised 

techniques to analyse this.

Reliability quantification methods in computing are well 

established and understood, as presented in this section. 

With the onset of the novel IoT paradigm, however, it is 

important that we formulate IoT-centric reliability quantifi-

cation methods. These methods must suit the unique nature 

and constraints of IoT, which is discussed in the following 

section.

4  Reliability in the Internet of Things

The definition for IoT is fundamental in understanding the 

problem of reliability within the paradigm. The definition 

of IoT is often under-represented and ill-defined (Atzori 

Fig. 1  The three common 

failure patterns; infant mortality, 

constant (steady) failure rate 

and wearout
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et al. 2017). Often, the IoT is crudely defined as being 

able to add internet connectivity to every-day devices, in 

effect allowing “your toaster to talk to your fridge”. While 

this statement is true for some part of the IoT, it does not 

encompass the whole paradigm of the IoT. A useful start-

ing point in defining the IoT paradigm is by considering 

the key components of IoT. These components are; sens-

ing, actuating, communication, services and applications 

(Rayes and Salam 2016). These four components can then 

be mapped to an architecture for the IoT, as presented in 

Fig. 2. Sensing and actuating are carried out at the low-

est layer of the architecture, also referred to as the device 

layer. The next layer up, the edge layer, enables the com-

munication between the devices and the application layer. 

Typically, this communication is enabled by semi-capable 

devices behaving as hubs, collecting data from the sensors 

Fig. 2  The four layers of the IoT architecture; cloud layer, service management layer, fog layer, and device layer
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and relaying it into the cloud and sending commands to the 

actuators as necessary.

With the key components of IoT in mind, we can now 

form a full definition of IoT, which is a paradigm which 

enables interconnectivity in anything and everything to cre-

ate monitoring and control infrastructure which can be used 

in applications to enrich everyday user experience (Rayes 

and Salam 2016).

To begin understanding the problem space of reliability in 

IoT, it is best to use the architecture, as presented in Fig. 2, 

as a reference point. We can then observe reliability issues 

in each of the layers of the architecture and understand how 

they contribute to the problem.

4.1  Device reliability

From a device perspective, that is the sensors and actuators, 

the first problem we can observe is the highly constrained 

nature of these devices (Al-Fuqaha et  al. 2015). These 

constraints concern battery, memory and computational 

capacity (Kouicem et al. 2018). Battery is a concern for IoT 

applications, because often the application layer is unaware 

of the remaining battery left on the device thereby making 

it difficult to determine when the device requires a battery 

replacement (Shi et al. 2016). This battery life concern is 

further compounded when we consider that devices may 

be located in places that are physically difficult or danger-

ous to reach to replace. The memory and CPU constraints 

on the devices limit the device’s ability to store complex 

encryption methods, meaning that IoT devices must rely on 

lightweight encryption to protect the data being transmitted 

by the device (Rayes and Salam 2016; Alaba et al. 2017).

Another issue evolves from the constrained nature of the 

devices when it comes to updating the limited firmware of 

these low-powered sensors. It is impractical, due to the lack 

of power and implications on battery life for the device, to 

connect to a cloud service routinely and check if new firm-

ware needs to be downloaded and installed on the device 

(Chiang and Zhang 2016; Yaqoob et al. 2017; Allhoff and 

Henschke 2018). This leads to a scenario where devices 

could potentially be operating with outdated firmware, 

thereby leaving them vulnerable to security breaches.

The sensors and actuators that are used in the IoT are 

often deployed in remote and distant locations, and can 

often be subject to harsh environmental conditions such as 

heat, freezing temperatures, mechanical wear, vibration, and 

moisture (Rayes and Salam 2016). As discussed in Sect. 2 

in this report, there is a need to determine the “useful life” 

period of a device, so that we can determine when the device 

needs to be retired. This useful life will shorten if the device 

is employed in a harsh environment, therefore, we could 

expect to see great variances of device lifetime for identical 

devices deployed in different environments, which results in 

the system reliability being difficult to manage.

Another concerning aspect with regard to device reli-

ability in IoT, is the propensity for sensors to “fail-dirty” 

(Karkouch et al. 2016, 2017). This phenomenon concerns a 

scenario where a sensor continues to send erroneous read-

ings after having suffered a failure. This is a well-known, yet 

little understood, problem that is pervasive in IoT environ-

ments. In particular, this issue is hard to diagnose because 

the sensor appears to be operating normally. The impact 

of a false reading being sent in an IoT environment can be 

critical, when we consider that actuation often has physical 

impact on human lives.

4.2  Communication and network reliability

Mobility is one of the key expectations of an IoT network 

(Al-Fuqaha et al. 2015), whereby users of the network can 

dynamically move between applications while the device 

onboarding and identification happens seamlessly in the 

background. Global addressing, however, is a difficulty in 

IoT (Rafferty et al. 2018), given that manufacturers do not 

co-ordinate to provide globally unique identifiers for all 

IoT devices. This means that the responsibility of assign-

ing unique identification resides within the IoT network 

itself. When we consider that IoT devices are expected to be 

mobile, this creates a problem given that the device ID might 

differ across different networks, meaning that we might lose 

traceability of the device. This then introduces a reliability 

concern when it comes to tracking or auditing the device as 

it moves through different IoT applications.

Internet Protocol (IP) is the current de-facto standard for 

communication and identification in traditional networks. 

IP in its current state is, however, not well suited to the IoT 

(Tsai et al. 2014). Introducing new protocols into this prob-

lem space will require these new protocols to mature quickly, 

which is not always easy. This problem is exacerbated fur-

ther when we consider the implications of unique address-

ing. IPv4 has a 32-bit length address, which creates room for 

4.3 billion addresses, keeping in mind the predictions of 50 

billion devices discussed previously in this paper, it becomes 

clear that IPv4 is not suitable to fulfil the vision of IoT. This 

problem is further compounded by the fact that IPv4 ran 

out of addresses in 2010 (Evans 2011). As such, it becomes 

necessary to implement a protocol with suitable addressing 

space, such as IPv6, which boasts an address space of 128 

bits, allowing space for

addresses. This new addressing space, however, creates 

problems for constrained devices, not all of which are 

3.4 × 10
38
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capable of handling the overheads required for the address 

(Al-Fuqaha et al. 2015).

A remedy to this large address overhead is offered by 

the 6LoWPAN protocol (Kushalnagar et al. 2007). 6LoW-

PAN is able to compress the header size of the IPv6 packets 

in order to make them compatible with the IEEE 802.15.4 

standard (Al-Fuqaha et al. 2015), and thus better suited to 

the IoT. These new and emerging standards to cope with 

the new requirements of the IoT contributes to the creation 

of a landscape of disparate standards and protocols among 

IoT devices and deployments targeted for communication for 

constrained devices in IoT networks. Given the lightweight 

and constrained nature of some of these protocols, not all 

of them feature quality of service (QoS) guarantees, mean-

ing that the reliability of the network connection becomes 

harder to assess.

Karkouch et al. (2016) indicate in their study that due to 

the scarce resources and intermittent communication, the 

network is liable to drop readings, or produce unreliable 

readings. This notion that readings can be dropped due to the 

inherent nature of IoT networks is an area for concern, espe-

cially given that IoT infrastructure is often responsible for 

managing mission-critical applications (Fekade et al. 2017).

4.3  Application layer reliability

The application layer of the IoT paradigm is not subject to 

the same constraints of either the network or the device layer 

of the architecture. It is important to note that in many cases 

the reliability of the application layer is a function of how 

reliable the lower layers of the architecture are. If anoma-

lous data is sent from the device through the network into 

the application layer, this will reduce the reliability of the 

application. In this regard, it is important that the application 

layer has sufficient anomaly detection techniques to eradi-

cate errors and maintain the reliability of the application. 

Given that IoT networks feature a heterogeneous range of 

constrained devices transmitting many pieces of information 

in different formats, this task can be difficult (Abeshu and 

Chilamkurti 2018).

While the application layer doesn’t suffer from the physi-

cal constraints of the device layer, there is still a need to 

manage the reliability of the applications that are being 

deployed. A study Moore et  al. (2019) which observed 

the impact of anomalous data on classification in the IoT 

application of human activity recognition found that some 

classifiers were considerably more vulnerable to errors than 

others, and that the preparation method of the data can also 

make the application more vulnerable to failure. With this in 

mind, developers must make a conscious effort to establish 

and understand the reliability of applications being hosted 

in IoT infrastructure, in order to prevent critical errors from 

creeping into the system.

4.4  Toward an e�ective solution for reliable IoT 
systems

The issues of reliability at the three levels of the architecture 

in IoT combine to create a vulnerable landscape for IoT, 

which often leads to anomalous data being generated and 

sent through the network. This notion demonstrates a strong 

need for effective, quantifiable reliability measures that will 

allow us to reason about the fitness for purpose of our IoT 

systems. The issue of anomalous data is highly problematic 

to the IoT vision, given that actuations will be made on the 

basis of this data which could, in the most severe cases, 

threaten human lives (Fekade et al. 2017). Therefore, it is 

essential that any framework that aims to assess and quan-

tify reliability in IoT must be able to detect the presence of 

anomalies in the system. Once reliability has been quanti-

fied, this opens up a new opportunity to further enhance the 

robustness of the system by placing a human in the loop 

(HITL). HITL is an essential ingredient for the future of 

reliability in IoT, and was identified as a key future research 

area in Stankovic (2014). The HITL paradigm opens up 

opportunities for detecting and resolving reliability issues 

in critical IoT infrastructure. The use of a human observer 

brings an element of domain expert knowledge to the appli-

cation, which allows the human to synthesise information 

presented by the system with their own expert knowledge 

to come to an informed conclusion about the reliability of 

the system. Furthermore, humans enable the assessment of 

ground truth, such as a true temperature value, which can 

help to verify a machine reading. This concept is relatively 

novel in IoT research and, to date, no reliability studies have 

opted to use a HITL method to assist in reliability assess-

ment in combination with classical reliability models. This 

novel combination would be a step towards a new and effec-

tive solution.

This section reviewed the key concepts and requirements 

for IoT reliability. The vulnerable landscape which the IoT 

occupies presents a clear requirement for the research com-

munity to design and implement frameworks and solutions 

which might aid in assessing and understanding reliability 

for our key IoT infrastructure.

5  Current research toward IoT reliability 
quanti�cation

The definition of reliability, as discussed in the previous sec-

tions, has a strong element of quantification associated with 

it. Reliability, as defined in Sect. 3, is not a subjective sci-

ence, and therefore mechanisms aiming to assess reliability 

should be objective and quantifiable in their nature. There 

is also a heavy focus within reliability in defining and using 
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metrics to assess the reliability of components and systems. 

Research in the area of IoT reliability has been conducted 

to enhance reliability at various levels of the IoT architec-

ture. This section summarises the research available in the 

areas of device reliability, data quality, network reliability 

and anomaly detection, all of which represent key areas for 

improvement of IoT reliability.

5.1  Device reliability

Several authors researching IoT device reliability integrated 

classical reliability metrics into IoT-centric solutions. Relia-

bility, failure rate, availability, and MTTR were quantified by 

Zin et al. (2016). The work proposed a probabilistic model 

for measuring reliability in connected IoT devices positing 

that the failure structures of IoT devices adhere to a certain 

probability distribution. The authors define the reliability 

measure R(t) as being the probability that the device is oper-

ating correctly at time interval [0, t]. This probabilistic func-

tion allows estimation of the expected time to failure, avail-

ability and reliability for a given IoT device. Meanwhile, 

Mavrogiorgou et al. (2018), included Mean Time to Repair 

(MTTR), MTTF, MTBF, and availability metrics in their 

work, which proposed a mechanism for capturing the reli-

ability of heterogeneous IoT devices. This mechanism con-

sidered both known and unknown device types and sought to 

differentiate between which devices were reliable and which 

were not, with the goal of collecting data from the relia-

ble ones and discarding data from unreliable devices. The 

mechanism consisted of four stages: devices recognition, 

specifications classification, reliability estimation and reli-

ability validation. Using this mechanism, the authors were 

able to build a ranking of connected fitness devices based 

upon their reliability results from known reliability metrics. 

Lastly, Kim (2016) used reliability, failure rate and recover-

ability in their study which proposed a weighted model to 

quantifying reliability in the IoT. The model consisted of 

four quality criteria; functionality, reliability, efficiency and 

portability. Metrics were defined within these criteria which 

were assigned weights so that the model could provide a 

total score for the quality of the IoT application. The model 

was then evaluated in a virtual environment and scores 

were produced for each of the metrics. This model provides 

weighting, however, each criterion was weighted evenly in 

this experiment. These classical metrics provide a useful 

starting point in the quantification of IoT reliability, but have 

not yet matured in capability and cannot attest to reliability 

across all levels of the IoT architecture.

Moving away from the classic well-defined reliability 

metrics, some non-standard reliability metrics have been 

designed and implemented in recent studies. Saini (2016) 

presented a model to evaluate trust factor and reliability over 

a period of time (ROPT) for IoT systems. Due to the notion 

that identical IoT sensors might be deployed in drastically 

different environments (i.e., exposed to varying levels of 

humidity, temperature, wind) these identical IoT sensors 

might exhibit different expected lifetimes. The author pro-

posed that ROPT is calculated for every individual device 

and gateway in the IoT system in order to gain a full under-

standing of how reliable the system is. The author also pre-

sented a trust factor rating scale allowing us to reason on 

how some IoT applications require higher levels of trust, i.e. 

defence systems, and therefore higher levels of availability. 

This study only uses one metric to determine the reliability 

of the system, and cannot represent the entire picture of reli-

ability in the IoT. Li et al. (2012) also proposed three non-

standard reliability metric definitions to observe real time 

quality of data collected from devices in IoT environments. 

The study validates the implementation of these metrics by 

applying them to two real-world open source datasets. The 

three metrics defined were; currency, availability and valid-

ity. Implementing the metrics onto real-world datasets vali-

dated that it was possible to calculate these metrics in real-

time, but this was not able to attest to the effectiveness of 

the applied metrics in identifying data quality issues in IoT.

A more complete framework for managing quality and 

reliability is proposed by Sicari et al. (2016) and Sicari et al. 

(2014). This architecture is designed to quantify the secu-

rity and quality of individual devices in IoT applications. 

The model used NOS (Networked Smart Objects) to extract 

metadata from IoT nodes in a network (Rizzardi et al. 2016). 

The parameters extracted from a security perspective were 

confidentiality, integrity, privacy and authentication. The 

collected parameters for quality were accuracy, precision, 

timeliness and completeness. Each parameter was attributed 

an index score ranging from zero to one, which reflected the 

effectiveness of the node with regard to that parameter. The 

model was tested using Raspberry Pis and sensors from a 

meteorological station and it was successfully able to cal-

culate the specified parameters. This model concerns the 

data quality characteristics of IoT nodes though the quality 

metadata, which is not sufficient in describing the holistic 

reliability of an IoT system. The security metadata provides 

some insight into how secure a given node is in an IoT sys-

tem, this could be enhanced by adding anomaly detection.

The research presented in this section is valuable in aid-

ing the understanding of how reliable and prone to failure 

the devices in our IoT infrastructure are. These pieces of 

research help form an understanding of how some of this 

information can be quantified, using metrics like availabil-

ity, MTBF and MTTR. Nevertheless, the quantification of 

hardware reliability is only one step in the solution to overall 

IoT reliability. These research studies are unable to attest to 

reliability at the network level or make an assessment about 

the likelihood of the system providing anomalous data or 

falling victim to a spreading threat.
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5.2  Network reliability

Beyond being able to reason about the fitness of our IoT 

devices, we must also be able to attest to the reliability of 

the network infrastructure that forms the backbone of IoT 

communication. Generally speaking, there are two forms 

of network reliability studies which are discussed in this 

section; studies for enhancing QoS in networks, and studies 

aimed at quantifying reliability metrics for networks. This 

section presents the current state-of-the-art research in IoT 

networks reliability.

A novel IoT network QoS metric was proposed by Maalel 

et al. (2013) in their work, which designed a lightweight 

and energy efficient routing protocol to enhance and meas-

ure reliability in IoT applications, specifically emergency 

applications. Emergency applications in the IoT require a 

rapid response for alarms that have been raised. The work 

proposed a mechanism called AJIA (Adaptive Joint Proto-

col based on Implicit ACK) for packet loss and route qual-

ity evaluation. The mechanism relies upon the broadcast 

nature of the protocol, where messages are broadcast to all 

nearby nodes. The nearby nodes can therefore “overhear” 

the message being sent. This overhearing function is used 

rather than traditional ACK messages to ensure reliability 

of the message being sent. The links between nodes are then 

evaluated with a metric called Link Quality Indicator (LQI), 

which uses the history of packet loss in the link to determine 

the reliability of that particular path. Other QoS metrics, 

such as delay throughput, and packet loss, were quantified by 

Kamyod (2018). This work employed Riverbed’s Optimized 

Network Engineering Tools (OPNET) to observe these net-

work reliability parameters in a smart agriculture scenario. 

These parameters were monitored so that they might provide 

some information as to how reliable the overall end-to-end 

IoT system was. The study found that increasing the number 

of nodes in the network saw longer packet delays and signifi-

cantly longer transmission times and packet loss. Brogi and 

Forti (2017) proposed a general model for a QoS-aware IoT 

infrastructure, based on the fog computing paradigm. The 

model allows IoT applications to generate QoS profiles in 

order to request certain QoS characteristics from the Things 

it interacts with. Each communication link in the IoT system 

has an associated QoS profile, which allows the model to 

determine the potential latency and bandwidth for an appli-

cation to things communication. The model only considers 

latency and bandwidth, which is a limited subset of QoS 

characteristics which would not fully represent the reliability 

of the network at a given point in time.

Further IoT network QoS metrics, embedded in a man-

agement framework, were examined in a study by Al-Masri 

(2018), which presented a microservices QoS management 

framework (mQoSM) for use in Industrial IoT (IIoT), which 

is a QoS-aware middleware that monitors the behavior of 

microservices in order to determine the “best” microser-

vice amongst all discovered microservices. This information 

can then be used by IoT architects to decide if they wish to 

integrate the microservice. This framework monitors the fol-

lowing parameters; response time, throughput, availability, 

reliability and cost. The model presents a useful step towards 

generating a situational awareness of the IoT system with 

regards to reliability and performance, however, it has not 

been scaled up beyond microservices in an IoT environment.

An approach of reliability modelling using Generalised 

Stochastic Petri Net (GSPN) was proposed by Li and Huang 

(2017). This approach theorised mathematical models at 

edge nodes to provide statistics on the performance of IoT 

devices. The metrics calculated were time consumption, 

response time, failure rate and repair times. These met-

rics only speak to the performance of the device to edge 

layer and offer a very limited view of network performance 

which does not present a holistic view of IoT reliability. A 

gateway redundancy model was proposed by Sinche et al. 

(2018). This work made use of redundancy at both the ISP 

(Internet Service Provider) level and Gateway (edge node) 

level. This model tested three cases, an IoT infrastructure 

with no redundancy, an IoT with gateway redundancy and 

an IoT with gateway and ISP and gateway redundancy. The 

model was tested using a physical IoT testbed, wherein the 

devices were communicating using the I2C bus protocol. 

RTT (return trip time) was used as the performance metric to 

determine the effectiveness of the model. The results shown 

in the study found that the model which did not use the 

redundancy approach saw the RTT increase by 14% during 

fault conditions, whereas the redundancy models resulted in 

only a 1% increase in RTT. This study considers reliability 

at the network and cloud level only. Therefore, it does not 

consider the reliability of the physical devices, or their pro-

pensity to fail at any given time. This study also does not 

consider the heterogenous nature of IoT communication pro-

tocols. Alam (2018) presented a framework to handle reli-

ability issues in IoT based on the TCP (Transmission Control 

Protocol). There are three components to the framework; 

the reliability calculator, the reliability controller and the 

reliability handler. The framework uses delay to determine 

the failure-state of the IoT system. If high levels of delay are 

observed by the reliability calculator, the reliability control-

ler will attempt retransmission and the reliability handler 

will initiate a broadcasting mode and enter a power-saving 

state. This framework only deals with the delay QoS metric 

in IoT, thus it cannot represent the full state of reliability in 

the network.

The research presented in this section shows that while 

some attempts have been made to enhance reliability in IoT 

networks, both by enhancing the network’s QoS and by mon-

itoring and quantifying network reliability, there is currently 
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not a research approach which successfully combines device 

and network reliability into one framework.

5.3  System reliability

Some research has also been conducted to evaluate IoT reli-

ability at a system level. These approaches are at a high 

level, and do not capture the individual detail for reliability, 

such as which devices are responsible for failures, or which 

parts of the network are responsible for traffic problems.

Behera et al. (2015) proposed a method of modelling 

reliability in a service oriented IoT. Specifically, algorithms 

were proposed to evaluate reliability in a Centralised Hetero-

geneous IoT Service System (CHISS). The authors proposed 

that reliability could be measured by modelling the availabil-

ity of the program to run the service, the availability of input 

required for the service to run and the service reliability of 

subsystems associated with the system. The algorithms were 

tested on a case study of a fire alarm system, which was 

running under normal operation at the time. The algorithms 

were able to determine if the program and file was available 

for each component in the IoT system. This methodology did 

not, however, consider the notion that the IoT components 

could fail at any moment and begin sending anomalous data, 

or that the network could fall victim to a spreading threat or 

virus. In order to present a true reflection of reliability, it is 

necessary to have a mechanism which can alert the user to 

failures in the system before critical actuations are made.

Kharchenko et al. (2017) proposed the use of a Markov 

model to predict the reliability requirements of an IoT sys-

tem. The Markov model considered that the application 

could be in a range of 15 states, from normal condition to 

complete failure. The probabilistic nature of the Markov 

model facilitates prediction that the system will move from 

one state to the next and can establish the probability of a 

failure at a given point in time. This model only considers 

the states specified in the design of the model and is not 

capable of reacting to new situations that were not catered 

for in the design of the model.

5.4  Anomaly detection

With the vulnerable state of IoT networks, given their con-

strained devices and highly mobile nature, it is essential that 

any framework which intends to quantify the reliability of an 

IoT infrastructure must have knowledge of the potential pres-

ence of anomalous data in its applications. This anomalous 

data could have severe consequences if left undiagnosed to 

be sent to the application layer and used in critical actuation 

situations. This section presents the current research on IoT 

anomaly detection. IoT-specific anomaly detection is a chal-

lenging area, because the solutions must be lightweight and 

capable of handling the heterogeneous range of IoT devices.

Spanos et al. (2019) proposed a smart-home anomaly 

detection method which combines statistical and machine 

learning techniques according the network behaviour of the 

device. During training, features are extracted from the net-

work packet data, these features are then standardised and 

passed into a clustering algorithm. These clustered labels 

are then passed into ensemble classification methods, which 

determine the final result from soft-voting. The authors were 

able to detect mechanical exhaustion and physical damage 

to the devices. Nevertheless, more data and performance 

metrics are required here to determine if the model works at 

scale and with a wider set of devices.

Gonzalez-Vidal et al. (2019) examined methods to detect 

anomalies in IoT time-series data. Their process consisted of 

two steps; extract outliers and abnormal patterns using the 

individual time-series properties of the data, and then use 

the features extracted from these models to classify them 

from the annotated classes. For the time series anomaly 

detection model, the ARIMA and HOT-SAX frameworks 

were used, while Random Forest and Association Rule Min-

ing methods were used in the classification component. The 

authors saw accuracies of up to 90% using their methods. 

This work is a valuable contribution in the area of sensor 

data-level anomaly detection, however, it is limited in that 

it requires time-series data to operate.

Stiawan et  al. (2017) proposed a technique for early 

anomaly detection using network traffic analysis. This tech-

nique used the SNMP (Simple Network Mapping Protocol) 

to collect traffic from a heterogeneous range of IoT devices. 

This traffic was then visualised in graphs for further anal-

yses. Thresholds could then be set based upon CPU and 

memory usage which can determine the presence of an 

anomalous communication in the network. This approach 

is lightweight and suited to the IoT, however, the solution 

does not include a method to automatically or statistically 

determine a threshold for failures, which could generate a 

high volume of false alarms.

Sedjelmaci et al. (2016) proposed an energy-efficient 

anomaly detection technique which caters for low-resource 

IoT devices. The technique uses a game theoretic method-

ology in order to reach the optimal energy efficiency by 

combining two known techniques for intrusion detection in 

IoT; signature-based detection and anomaly detection. The 

anomaly detection component learns activity and builds a 

classification rule, which is then passed to the signature 

detection component so that the next time the anomaly 

occurs it can be recognised by its signature rather than hav-

ing to rerun the classifier to detect it. Game theory was then 

applied to this hybrid technique to create further energy sav-

ings, which opposes two “players” against each other, one 

being the attacker launching the new attack signatures and 

the other running the algorithm to detect anomalous new 

signatures. When the game finishes the historical data can 
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be examined to determine the probability of a new signature 

and thus can state a time at which anomaly detection should 

be run to build new rules. The study compared the proposed 

lightweight game-theoretic technique to other known hybrid 

techniques in the research literature. The study found that 

accuracy was reduced in the game-theoretic technique, 

which was to be expected given the predictive nature of the 

technique. When comparing energy consumption, however, 

the study found that it was possible to save up to 6000 mJ of 

energy when running the lightweight technique, which rep-

resents a worthwhile energy saving given the low-resource 

nature of IoT.

Desnitsky et al. (2015) proposed a method for detecting 

anomalies in IoT applications using domain-specific knowl-

edge to create a list of constraints for the application. For 

example, the temperature in a home should not exceed 30 

degrees Celsius, or the constraints could be drawn from the 

history of the data, for example a motion sensor in an office 

stops providing data. If one of these constraints is exceeded 

this indicates the presence of an anomalous situation. This 

model is useful for detecting simple anomalous scenarios, 

however, it is entirely dependent upon the rule base which is 

designed by the domain-expert. This limitation means that 

if an anomaly is not accounted for in the constraints then it 

will not be detected.

Abeshu and Chilamkurti (2018) proposed a deep learn-

ing approach for detecting attacks based upon the fog-com-

puting paradigm in IoT. Using the fog-computing paradigm 

can significantly reduce delays versus the traditional cloud 

centric paradigm, which is useful in mission-critical IoT 

scenarios. The study compared the performance of a deep 

learning model which used a pre-trained stacked autoen-

coder for feature engineering and SoftMax for classification 

against a shallow learning model. The study found that the 

deep model was consistently more accurate than the shallow 

model, on average this accuracy gap was 4% which is a large 

gap in a mission-critical application. Furthermore, the study 

revealed that the deep model coped with a scaling number 

of nodes much more comfortably than the shallow model, 

as when the shallow model was exposed to more than 80 fog 

nodes the accuracy fell by 2%.

Thanigaivelan et al. (2016) proposed an anomaly detec-

tion system for IoT where each node monitors the behav-

iour of its one-hop neighbours. The proposed system has 

three main components; the MGSS (Metrics and Grading 

Subsystem), the RSS (Reporting Subsystem) and the ISS 

(Isolation Subsystem). The MGSS is the component respon-

sible for grading the neighbouring nodes, these nodes are 

graded based upon packet size and data rate. The RSS is 

responsible for reporting any nodes which are confirmed 

to be anomalous, which the ISS component will then iso-

late to remove the threat from the network. Further research 

is required within this solution in order to derive a more 

comprehensive list of network parameters to monitor, and a 

statistical method is needed to determine if a node is anoma-

lous or not.

Nomm et al. (2019) proposed a method of detecting bot-

net attacks in IoT deployments. The method evaluated fea-

ture selection techniques to reduce the dimensionality of the 

data before passing it into a classifier. The dataset used in the 

experiment was a genuine dataset from a Mirai botnet attack, 

containing 115 discrete numerical features generated by 9 

IoT devices. The features described various network charac-

teristics, such as source and destination IP, jitter and socket 

information. The author used three different techniques to 

reduce the dimensionality of the data; entropy, variance 

and Hopkins statistics. Three classifiers were then used to 

classify the data; LOF (local outlier factor), one-class SVM 

(support vector machine) and an IF (Isolation Forest). The 

study found that feature reduction by entropy combined with 

the IF classifier was able to achieve accuracy results of 90% 

by using 5 features. This feature reduction is well suited to 

the IoT given that it is a much greener approach to machine 

learning, as opposed to a classifier having to train and test on 

115 features. This anomaly detection technique is success-

fully able to detect anomalies at the network level but does 

not consider the anomalies that may occur in the payload of 

the packet being sent by the IoT devices themselves.

The papers reviewed here with regard to IoT anomaly 

detection represent a clear drive in the research community 

to create a more reliable IoT ecosystem. With this in mind, it 

should be stated that anomaly detection is an extremely large 

field, with application in IoT, network security and a vast 

array of other computing disciplines. Within the scope of 

this work, it is not possible to review all available anomaly 

detection methods, and as such, only the pertinent IoT exam-

ples are reviewed here in detail. A more detailed review of 

anomaly detection methods can be found within the litera-

ture (Zarpelão et al. 2017; Moustafa et al. 2019; Cook et al. 

2020; da Costa et al. 2019).

Many methods were discussed in this section which pro-

vide accurate and varied mechanisms for detecting anoma-

lies in IoT systems. Nevertheless, further research is required 

to determine how anomalies actually affect the reliability 

of an IoT system, given that the presence of an anomaly 

does not necessarily need to hinder or prevent IoT services 

from operating. This being said, the presence of anomalies 

is a clear indicator that the IoT system is not performing 

optimally.

5.5  Discussion of surveyed work

The range of research presented in this section demonstrates 

a growing demand for quantifying reliability in IoT net-

works. This is not a straightforward task, given that we must 

be able to assess reliability at both a device and at a network 
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level whilst also being able to detect anomalies as they occur 

in the system. The research studies presented in this paper 

all only tackle one facet of the problem, as is evidenced in 

Table 1 which summarises the contributions of these works. 

A complete solution would need to be able to integrate all of 

this valuable IoT reliability information into one reliability 

framework. The research presented in this paper presents a 

clear gap in the knowledge and understanding of IoT: there 

is currently not a solution available capable of, in an end-

to-end sense, assessing the reliability of IoT infrastructure.

From the works aimed at quantifying device reliability, 

there are several different contributions made. Some works, 

such as Mavrogiorgou et al. (2018), Zin et al. (2016) and 

Kim (2016) use standard reliability metrics to quantify the 

state of reliability in IoT devices. These standard metrics 

include MTTF, MTTR, Availability, Maintainability and 

Failure Rate (Fries 2006). When given enough device data, 

these metrics can be used to mathematically reason about 

the reliability of IoT devices. Some works, such as Saini 

(2016) and Li et al. (2012) proposed non-standard metrics, 

like ROPT, Trust Factor and Maturity. Again, these metrics 

can provide some view of how reliable an IoT device or set 

of devices is.

The device reliability metrics, regardless of being 

standard or non-standard, offer up several opportunities 

for expansion and further research. Firstly, perhaps these 

metrics could also be extended to include network infra-

structure and communications protocols. Doing so would 

enable the solution to be a more holistic one and bring 

it closer to managing reliability for the full end-to-end 

stack. Secondly, these metrics are able to attest to reliabil-

ity of IoT devices at a certain point in time—could these 

metrics then be extended to allow the systems to predict 

and preempt failure? Doing this would be a valuable step 

towards a more reliable IoT, especially in scenarios where 

the IoT is supporting mission critical applications. This 

leads on to the third area for expansion here—while these 

metrics are valuable at solving reliability for a given set of 

sensors in a given environment, there is research required 

to understand how this generalises into other applications. 

Importantly, do different thresholds need to be applied 

when considering one IoT vertical over another? Some 

research is also required to understand how these reli-

ability metrics might react as new and previously unseen 

devices are added to the applications. One would expect 

that new devices may carry a significantly different fail-

ure profile, and thus may influence the reliability metrics 

in different ways. The research on IoT device reliability, 

therefore, should be extended where possible to include 

the scenario in which the IoT is capable of handling new 

and unseen devices, operating over a wide range of com-

munication protocols. Lastly, there is an interplay between 

IoT device reliability and anomaly detection which was 

not fully exploited in the works surveyed. Given that we 

know IoT devices are prone to both spontaneous failure 

and attack from malicious users, this notion will have a 

strong influence on the reliability of IoT devices. There-

fore, research is required to understand the impact of 

anomalies on IoT device reliability. For example, some 

applications may be highly sensitive to noise and anoma-

lies, while other applications may fail completely with the 

presence of a single anomaly. As such, anomaly detection 

methods provide a valuable insight into the current state 

of reliability for IoT devices. A potential research question 

exists here in trying to understand if reliability information 

can be synthesised from anomaly detection models.

With regard to the works researching network reliabil-

ity, again we can observe that some metrics were proposed, 

both standard (Al-Masri 2018; Li and Huang 2017; Alam 

2018) and non-standard (Sinche et al. 2018). We can also 

observe that some new communication protocols were pro-

posed for enabling a more reliable IoT. Some research was 

also conducted to help address the need for IoT solutions to 

be considerate of the various vertical markets, for example 

emergency IoT applications (Maalel et al. 2013). Methods 

were also introduced to profile devices before they joined the 

IoT deployment, using reliability data as the decision factor 

(Brogi and Forti 2017).

The research conducted on network reliability opens up 

several areas for future research to enable a more reliable 

IoT. Firstly, while some research has been conducted to 

understand the sensitivity of different IoT verticals, there 

is still a growing need for research in this area to help in 

understanding the impact that these vertical markets have 

on reliability engineering in the IoT. Given the large predic-

tions for growth in IoT services, we can only expect demand 

to increase and diversify in terms of the applications being 

offered. Therefore, in order to be fully reliable, the IoT must 

be cognisant of these vertical markets, and measure reliabil-

ity in a tailored fashion. For example, do faults need to be 

reported in real-time, such as with emergency applications? 

Or perhaps we may be able to tolerate faults being reported 

in larger time windows, such as a day, as with smart home 

applications.

One of the main issues with the studies aimed at assess-

ing network reliability is that they do not have an awareness 

of the reliability of the devices themselves. Therefore, it is 

pertinent that some research is conducted to help tie these 

two facets together in order to enable reliability across the 

full IoT stack.

As with device reliability, we can also speculate about the 

importance of anomalies and intrusions in network traffic. It 

is important that we understand the impact that these anoma-

lies have on the reliability of a particular application. Moreo-

ver, if we are able to leverage intrusion detection methods 

and anomaly detection methods for networks and use them 
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to ascertain reliability information then this represents a step 

towards a more reliable IoT. Also similar to the device case, 

some research would be pertinent to understand if it were 

possible to predict faults before they occur at the network 

level. The ability to perform this prediction would enable 

IoT architects to preemptively manage failure, resulting in a 

more reliable IoT—especially in the case of mission-critical 

IoT applications.

The system reliability modelling works reviewed in this 

paper were not specific to either the device or network com-

ponent of the IoT architecture. Nevertheless, the methods 

in these works are at an early stage of development and 

lack the complexity required to deal with a complex IoT 

environment.

Referring to the works reviewed for anomaly detection, it 

is clear from these works that anomaly detection is a grow-

ing field within the IoT and computing in general. While the 

anomaly detection methods included were capable of detect-

ing anomalies, there is still a lack of research and knowl-

edge on how we might leverage this anomaly information 

to quantify the reliability of an IoT deployment. A key area 

of future research here will be to take these anomaly detec-

tion methods and to try to synthesise reliability information 

from them.

6  The �ve research directions for IoT 
reliability

Having catalogued and analysed the combined efforts made 

by the IoT reliability research community, some assessments 

can be drawn as to what the ideal reliability solution should 

look like. While none of the works surveyed in this paper 

fully satisfy end-to-end reliability in IoT, they each add a 

piece of the puzzle towards this goal. As such, we can derive 

from these works five crucial elements that an end-to-end 

reliability management system for the IoT must adhere to.

6.1  Direction 1: Vertical and real-time 
measurement

If the IoT is set to manage critical infrastructure, such as 

security and critical traffic systems, then we must be able to 

attest to the reliability of the system in real-time, or as close 

to real-time as possible. As shown in the study by Maalel 

et al. (2013), it is necessary that we pay particular attention 

to those applications which operate emergency services and 

require a rapid and reliable response. Moreover, there is a 

need to define reliability requirements in each individual 

domain. For example, a smart-building solution may have a 

delay tolerance of up to a few seconds. An industrial process, 

on the other hand, will likely only be able to tolerate delays 

of microseconds. As such, research is required to categorise 

these requirements and design effective solutions to handle 

reliability in each of these vertical domains.

6.2  Direction 2: All devices, all protocols

This survey has demonstrated the very wide array of proto-

cols and devices which are set to connect to and consume 

services from the IoT. Standards for communication proto-

cols are continuing to evolve daily with efforts from many 

research groups aiming to design more lightweight and effi-

cient communication protocols. Moreover, new IoT devices 

and hardware continue to emerge in the consumer market 

daily. Therefore, the ideal reliability solution must be both 

hardware, software and communication protocol agnostic.

6.3  Direction 3: Full stack awareness

One of the conclusions drawn from the literature review 

was that, while many researchers had successfully solved 

a particular problem, or subset of problems, in IoT reli-

ability research, no study has been undertaken which had 

full awareness of end-to-end reliability. Given the scale and 

complexity of emerging IoT deployments, this is no easy 

task. This is not to say, however, that researchers should 

aim to design a “one size fits all” reliability approach, as 

this would contradict the first research direction outlined 

in this work. Rather, individual reliability solutions should 

be proposed for each IoT vertical that encompass the full 

IoT architecture. Nevertheless, designing an end-to-end reli-

ability solution for the IoT would be a significant and novel 

research finding with the potential to greatly enhance IoT 

end-user experience.

6.4  Direction 4: Synthesising reliability information 
from anomalies

Much work has gone into detecting and reporting anomalies 

when they appear in IoT services. While this work is both 

useful and necessary, it does not necessarily aid reliability 

without an extra step. Knowledge of an anomaly does not 

necessarily tell the user if the IoT system has become less 

reliable. Therefore, there is a need to research how we can 

synthesise information about emergent anomalies in IoT 

systems into information on how the reliability has been 

affected. For example, if a sensor breaks in a smart home 

which is monitoring an assisted living scenario, there may 

not necessarily be an immediate risk to life. Whereas, if 

a thermal sensor begins sending erroneous readings in a 

smart factory, there is potential for dangerous machinery 

to malfunction.
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6.5  Direction 5: Predict and preemptively manage 
failure

Measuring reliability is the task discussed at length in this 

work. If the research is to move a step beyond this goal, then 

the task of predictive maintenance can be considered. If we 

are able to reason about the quantified reliability of a system, 

can we then extrapolate this into an accurate maintenance 

date? Moreover, can this be further classified at a component 

level and be a dynamic process which determines results 

based on real-time reliability data, rather than using a his-

tory of past failures to estimate a future failure date? Solving 

this research question would represent a valuable step in the 

research of IoT reliability.

7  Conclusion

To the best of our knowledge, this study represents the first 

review or survey studying the topic of IoT reliability. A 

detailed history of the evolution of reliability was given, 

starting from the fundamentals of reliability engineering, 

moving into reliability in computing and then finally a 

detailed discussion on the arena of IoT-specific reliability. 

IoT reliability was defined and discussed across the four 

main layers of the architecture. A detailed literature review 

was presented, which looked at research in device, network 

and system reliability, while also reviewing the current state 

of the art anomaly detection methods for the IoT. Lastly, the 

findings and outputs of this detailed survey have been used 

to formulate five key research directions for the area of reli-

ability in the Internet of Things. This finding now presents 

a need for the IoT research community to design and imple-

ment solutions according to the directions identified in this 

paper. These solutions will serve to strengthen and support 

the reliability of our IoT infrastructure, resulting in a safer 

and more stable paradigm for its users.
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