
100

IP Lookups using Multiway and Multicolumn
Search

Butler Lampson, V Srinivasan and George Varghese

blampson@microsoft.com,cheenu@dworkin.wustl.edu,varghese@dworkin.wustl.edu

Abstract| IP address lookup is becoming critical because of
increasing routing table size, speed, and tra�c in the Inter-
net. Our paper shows how binary search can be adapted
for best matching pre�x using two entries per pre�x and by
doing precomputation. Next we show how to improve the
performance of any best matching pre�x scheme using an
initial array indexed by the �rst X bits of the address. We
then describe how to take advantage of cache line size to do
a multiway search with 6-way branching. Finally, we show
how to extend the binary search solution and the multiway
search solution for IPv6. For a database of N pre�xes with
address length W, naive binary search scheme would take
O(W � logN); we show how to reduce this to O(W + logN) us-
ing multiple column binary search. Measurements using a
practical (Mae-East) database of 30000 entries yield a worst
case lookup time of 490 nanoseconds, �ve times faster than
the Patricia trie scheme used in BSD UNIX. Our scheme
is attractive for IPv6 because of small storage requirement
(2N nodes) and speed (estimated worst case of 7 cache line
reads)

Keywords|Longest Pre�x Match, IP Lookup

I. Introduction

Statistics show that the number of hosts on the inter-
net is tripling approximately every two years [oT]. Tra�c
on the Internet is also increasing exponentially. Tra�c in-
crease can be traced not only to increased hosts, but also
to new applications (e.g., the Web, video conferencing, re-
mote imaging) which have higher bandwidth needs than
traditional applications. One can only expect further in-
creases in users, hosts, domains, and tra�c. The possibility
of a global Internet with multiple addresses per user (e.g.,
for appliances) has necessitated a transition from the older
Internet routing protocol (IPv4 with 32 bit addresses) to
the proposed next generation protocol (IPv6 with 128 bit
addresses).

High speed packet forwarding is compounded by increas-
ing routing database sizes (due to increased number of
hosts) and the increased size of each address in the database
(due to the transition to IPv6). Our paper deals with the
problem of increasing IP packet forwarding rates in routers.
In particular, we deal with a component of high speed for-
warding, address lookup, that is considered to be a major
bottleneck.

When an Internet router gets a packet P from an input
link interface, it uses the destination address in packet P
to lookup a routing database. The result of the lookup
provides an output link interface, to which packet P is
forwarded. There is some additional bookkeeping such as
updating packet headers, but the major tasks in packet for-
warding are address lookup and switching packets between
link interfaces.

For Gigabit routing, many solutions exist which do fast
switching within the router box [NMH97]. Despite this, the
problem of doing lookups at Gigabit speeds remains. For
example, Ascend's product [Asc] has hardware assistance
for lookups and can take up to 3 �s for a single lookup in the
worst case and 1 �s on average. However, to support say
5 Gbps with an average packet size of 512 bytes, lookups
need to be performed in 800 nsec per packet. By contrast,
our scheme can be implemented in software on an ordinary
PC in a worst case time of 490 nsec.
The Best Matching Pre�x Problem: Address

lookup can be done at high speeds if we are looking for an
exact match of the packet destination address to a corre-
sponding address in the routing database. Exact matching
can be done using standard techniques such as hashing or
binary search. Unfortunately, most routing protocols (in-
cluding OSI and IP) use hierarchical addressing to avoid
scaling problems. Rather than have each router store a
database entry for all possible destination IP addresses,
the router stores address pre�xes that represent a group of
addresses reachable through the same interface. The use
of pre�xes allows scaling to worldwide networks.
The use of pre�xes introduces a new dimension to the

lookup problem: multiple pre�xes may match a given ad-
dress. If a packet matches multiple pre�xes, it is intuitive
that the packet should be forwarded corresponding to the
most speci�c pre�x or longest pre�x match. IPv4 pre�xes
are arbitrary bit strings up to 32 bits in length as shown
in Table I. To see the di�erence between the exact match-
ing and best matching pre�x, consider a 32 bit address A
whose �rst 8 bits are 10001111. If we searched for A in
the above table, exact match would not give us a match.
However pre�x matches are 100* and 1000*, of which the
best matching pre�x is 1000*, whose next hop is L5.

Pre�x Next hop
* L9
001* L1
0001* L2
011111* L3
100* L4
1000* L5
10001* L6

TABLE I

A sample routing table

Paper Organization:

The rest of this paper is organized as follows. Section II
describes related work and briey describes our contribu-

Butler
Text Box
ACM Transactions on Networking, 7, 3 (June 1999), pp 324-334 (also in Infocom 98, April 1998)



101

tion. Section III contains our basic binary search scheme.
Section IV describes a basic idea of using an array as a
front end to reduce the number of keys required for binary
search. Section V describes how we exploit the locality in-
herent in cache lines to do multiway binary search; we also
describe measurements for a sample large IPv4 database.
Section VII describes how to do multicolumn and multiway
binary search for IPv6. We also describe some measure-
ments and projected performance estimates. Section VIII
states our conclusions.

II. Previous Work and Our Contributions

[MTW95] uses content-addressable memories(CAMs) for
implementing best matching pre�x. Their scheme uses a
separate CAM for each possible pre�x length. For IPv4
this can require 32 CAMs and 128 CAMs for IPv6, which
is expensive.
The current NetBSD implementation [SW95], [Skl] uses

a Patricia Trie which processes an address one bit at a
time. On a 200 MHz pentium, with about 33,000 entries
in the routing table, this takes 1.5 to 2.5 � s on the av-
erage. These numbers will worsen with larger databases.
[Skl] mentions that the expected number of bit tests for
the patricia tree is 1.44 log N, where N is the number of
entries in the table. For N=32000, this is over 21 bit tests.
With memory accesses being very slow for modern CPUs,
21 memory accesses is excessive. Patricia tries also use skip
counts to compress one way branches, which necessitates
backtracking. Such backtracking slows down the algorithm
and makes pipelining di�cult.
Many authors have proposed tries of high radix [PZ92]

but only for exact matching of addresses. OSI address
lookups are done naturally using trie search 4 bits at a
time [Per92] but that is because OSI pre�x lengths are al-
ways multiples of 4. Our methods can be used to lookup
OSI address lookups 8 bits at a time.
Our basic binary tree method is described very briey

in a page in [Per92], based on work by the �rst author of
this paper.1 However, the ideas of using an initial array,
multicolumn and multiway binary search (which are cru-
cial to the competitiveness of our scheme) have never been
described before. Our description also has actual measure-
ments, and an explanation of algorithm correctness.
[NMH97] claims that it is possible to do a lookup in 200

nsec using SRAMs (with 10 nsec cycle times) to store the
entire routing database. We note that large SRAMs are
extremely expensive and are typically limited to caches in
ordinary processors.
Caching is a standard solution for improving average

performance. However, experimental studies have shown
poor cache hit ratios for backbone routers[NMH97]. This
is partly due to the fact that caches typically store whole
addresses. Finally, schemes like Tag and Flow Switching
suggest protocol changes to avoid the lookup problem alto-
gether. These proposals depend on widespread acceptance,
and do not completely eliminate the need for lookups at

1This can be con�rmed by Radia Perlman.

network boundaries.
In the last year, two new techniques [BCDP97],

[WVTP97] for doing best matching pre�x have been an-
nounced. We have been unable to �nd details of the re-
sults in [BCDP97] (it will appear in a few months), except
to know that the approach is based on compressing the
database so that it will �t into the cache. The approach in
[WVTP97] is based on doing binary search on the possible
pre�x lengths.

Our Contributions:

In this paper, we start by showing how to modify bi-
nary search to do best matching pre�x. Our basic binary
search technique has been described briey in Perlman's
book [Per92] but is due to the �rst author of this paper and
has never been published before. The enhancements to the
use of an initial array, multicolumn and multiway search,
implementation details, and the measurements have never
been described before.
Modi�ed binary search requires two ideas: �rst, we treat

each pre�x as a range and encode it using the start and
end of range; second, we arrange range entries in a binary
search table and precompute a mapping between consecu-
tive regions in the binary search table and the correspond-
ing pre�x.
Our approach is completely di�erent from either

[BCDP97], [WVTP97] as we do binary search on the num-

ber of possible pre�xes as opposed to the number of pos-

sible pre�x lengths.. For example, the naive complexity
of our scheme is log2N + 1 memory accesses, where N is
the number of pre�xes; by contrast, the complexity of the
[WVTP97] scheme is log2W hash computations plus mem-
ory accesses, where W is the length of the address in bits.
At a �rst glance, it would appear that the scheme in

[WVTP97] would be faster (except potentially for hash
computation, which is not required in our scheme) than
our scheme, especially for large pre�x databases. How-
ever, we show that we can exploit the locality inherent in
processor caches and fast cache line reads using SDRAM
or RDRAM to do multiway search in logk+1N + 1 steps,
where k > 1. We have found good results using k = 5. By
contrast, it appears to be impossible to modify the scheme
in [WVTP97] to do multiway search on pre�x lengths be-
cause each search in a hash table only gives two possible
outcomes.
Further, for long addresses (e.g., 128 bit IPv6 addresses),

the true complexity of the scheme in [WVTP97] is closer to
O(W=M ) log2W , whereM is the word size of the machine.2

This is because computing a hash on aW bit address takes
O(W=M ) time. By contrast, we introduce a multicolumn
binary search scheme for IPv6 and OSI addresses that takes
log2N +W=M + 1. Notice that the W=M factor is addi-
tive and not multiplicative. Using a machine word size of
M = 32 and an address width W of 128, this is a potential
multiplicative factor of 4 that is avoided in our scheme. We
contrast the schemes in greater detail later.

2The scheme in mvt starts by doing a hash ofW=2 bits; it can then
do a hash on 3W=4 bits, followed by 7W=8 bits etc. Thus in the worst
case, each hash may operate on roughly 3W=4 bits.



102

We also describe a simple scheme of using an initial array
as a front end to reduce the number of keys required to be
searched in binary search. Essentially, we partition the
original database according to every possible combination
of the �rst X bits. Our measurements use X = 16. Since
the number of possible pre�xes that begin with a particular
combination of the �rst X bits is much smaller than the
total number of pre�xes, this is a big win in practice.
Our paper describes the results of several other measure-

ments of speed and memory usage for our implementations
of these two schemes. The measurements allow us to isolate
the e�ects of individual optimizations and architectural fea-
tures of the CPUs we used. We describe results using a
publically available routing database (Mae-East NAP) for
IPv4, and by using randomly chosen 128 bit addresses for
IPv6.
Our measurements show good results. Measurements us-

ing the (Mae-East) database of 30000 entries yield a worst
case lookup time of 490 nanoseconds, �ve times faster than
the performance of the Patricia trie scheme used in BSD
UNIX used on the same database. We also estimate the
performance of our scheme for IPv6 using a special SDRAM
or RDRAM memory (which is now commercially available
though we could not obtain one in time to do actual ex-
periments). This memory allows fast access to data within
a page of memory, which enables us to speed up multiway
search. Thus we estimate a worst case �gure of 7 cache line
reads for a large database of IPv6 entries.
Please note that in the paper, by memory reference we

mean accesses to the main memory. Cache hits are not
counted as memory references. So, if a cache line of 32
bytes is read, then accessing two di�erent bytes in the 32
byte line is counted as one memory reference. This is jus-
ti�able, as a main memory read has an access time of 60
nsec while the on-chip L1 cache can be read at the clock
speed of 5 nsec on an Intel Pentium Pro. With SDRAM
or RDRAM, a cache line �ll is counted as one memory ac-
cess. With SDRAM a cache line �ll is a burst read with
burst length 4. While the �rst read has an access time of
60 nsec, the remaining 3 reads have access times of only 10
nsec each [Mic]. With RDRAM, an entire 32 byte cache
line can be �lled in 101 nsec [Ram].

III. Adapting Binary search for Best Matching

Prefix

Binary search can be used to solve the best matching
pre�x problem, but only after several subtle modi�cations.
Assume for simplicity in the examples, that we have 6 bit
addresses and three pre�xes 1*, 101*, and 10101*. First,
binary search does not work with variable length strings.
Thus the simplest approach is to pad each pre�x to be a 6
bit string by adding zeroes. This is shown in Figure 1.
Now consider a search for the three 6 bit addresses

101011, 101110, and 111110. Since none of these addresses
are in the table, binary search will fail. Unfortunately, on
a failure all three of these addresses will end up at the end
of the table because all of them are greater than 101010,
which is the last element in the binary search table. Notice

should go
here

 1   0   0   0   0   0

 1   0   1   0   0   0

 1   0   1   0   1   0

101011

101110
111110

Fig. 1. Placing the three pre�xes 1*, 101*, and 10101* in a binary
search table by padding each pre�x with 0's to make 6 bit strings
and sorting the resulting strings. Note that the addresses 101011,
101110, and 111110 all end up in the same region in the binary
search table

however that each of these three addresses (see Figure 1)
has a di�erent best matching pre�x.
Thus we have two problems with naive binary search:

�rst, when we search for an address we end up far away
from the matching pre�x (potentially requiring a linear
search); second, multiple addresses that match to di�er-
ent pre�xes, end up in the same region in the binary table
(Figure 1).
Encoding Pre�xes as Ranges:

To solve the second problem, we recognize that a pre�x
like 1* is really a range of addresses from 100000 to 111111.
Thus instead of encoding 1* by just 100000 (the start of the
range), we encode it using both the start and end of range.
Thus each pre�x is encoded by two full length bit strings.
These bit strings are then sorted. The result for the same
three pre�xes is shown in Figure 2. We connect the start
and end of a range (corresponding to a pre�x) by a line in
Figure 2. Notice how the ranges are nested. If we now try
to search for the same set of addresses, they each end in a
di�erent region in the table. To be more precise, the search
for address 101011 ends in an exact match. The search
for address 101110 ends in a failure in the region between
101011 and 101111 (Figure 2), and the search for address
111110 ends in a failure in the region between 101111 and
111111. Thus it appears that the second problem (multiple
addresses that match di�erent pre�xes ending in the same
region of the table) has disappeared. Compare Figure 1
and Figure 2.

 1   0   0   0   0   0

 1   0   1   0   0   0

 1   0   1   0   1   0

 1   1   1   1   1   1

 1   0   1   1   1   1

 1   0   1   0   1   1

111110

101110

101011

Fig. 2. We now encode each pre�x in the table as a range using two
values: the start and end of range. This time the addresses that
match di�erent pre�xes end up in di�erent ranges.

To see that this is a general phenomenon, consider
Figure 3. The �gure shows an arbitrary binary search table
after every pre�x has been encoded by the low (marked L
in Figure 3) and its high points (marked H) of the corre-
sponding range. Consider an arbitrary position indicated
by the solid arrow. If binary search for address A ends up
at this point, which pre�x should we map A to? It is easy



103

to see the answer visually from Figure 3. If we start from
the point shown by the solid arrow and we go back up the
table, the pre�x corresponding to A is the �rst L that is
not followed by a corresponding H (see dotted arrow in
Figure 3.)
Why does this work? Since we did not encounter an H

corresponding to this L, it clearly means that A is con-
tained in the range corresponding to this pre�x. Since this
is the �rst such L, this is the smallest such range. Es-
sentially, this works because the best matching pre�x has
been translated to the problem of �nding the narrowest

enclosing range.

L

L

L
L

L
H

H

H

H

H

L, H

Fig. 3. Why each range in the modi�ed binary search table maps to a
unique pre�x.

A. Using Precomputation to Avoid Search

Unfortunately, the solution depicted in Figure 2 and
Figure 3 does not solve the �rst problem: notice that bi-
nary search ends in a position that is far away (potentially)
from the actual pre�x. If we were to search for the pre�x
(as described earlier), we could have a linear time search.
However, the modi�ed binary search table shown in

Figure 3 has a nice property we can exploit. Any region

in the binary search between two consecutive numbers cor-

responds to a unique pre�x. As described earlier, the pre�x
corresponds to the �rst L before this region that is not
matched by a corresponding H that also occurs before
this region. Similarly, every exact match corresponds to
a unique pre�x.
But if this is the case, we can precompute the pre�x

corresponding to each region and to each exact match. This
can potentially slow down insertion. However, the insertion
or deletion of a new pre�x should be a rare event (the
next hop to reach a pre�x may change rapidly, but the
addition of a new pre�x should be rare) compared to packet
forwarding times. Thus slowing down insertion costs for
the sake of faster forwarding is a good idea. Essentially,
the idea is to add the dotted line pointer shown in Figure 3
to every region.
The �nal table corresponding to Figure 3 is shown in

Figure 5. Notice that with each table entry E, there are
two precomputed pre�x values. If binary search for address
A ends in a failure at E, it is because A > E. In that case,
we use the > pointer corresponding to E. On the other
hand, if binary search for address A ends in a match at E,
we use the = pointer.
Notice that for an entry like 101011, the two entries are

di�erent. If address A ends up at this point and is greater
than 101011, clearly the right pre�x is P2 = 101*. On

the other hand, if address A ends up at this point with
equality, the correct pre�x is P3 = 10101*. Intuitively, if
an address A ends up equal to the high point of a range R,
then A fall within the range R; if A ends up greater than
the high point of range R, then A falls within the smallest
range that encloses range R.
Our scheme is somewhat di�erent from the description

in [Per92]. We use two pointers per entry instead of just
one pointer. The description of our scheme in [Per92] sug-
gests padding every address by an extra bit; this avoids the
need for an extra pointer but it makes the implementation
grossly ine�cient because it works on 33 bit (i.e., for IPv4)
or 129 bit (i.e., for IPv6) quantities. If there are less than
216 di�erent choices of next hop, then the two pointers can
be packed into a 32 bit quantity, which is probably the
minimum storage needed.

 1   0   0   0   0   0

 1   0   1   0   0   0

 1   0   1   0   1   0

 1   1   1   1   1   1

 1   0   1   1   1   1

 1   0   1   0   1   1

P1)

P2)

P3)

>                =

P1                P1

P2                P2

 P3                P3

 P2                P3

P1                P2

 −                  P1

Fig. 4. The �nal modi�ed binary search table with precomputed pre�xes
for every region of the binary table. We need to distinguish between
a search that ends in a success at a given point (= pointer) and
search that ends in a failure at a given point (> pointer).

B. Insertion into a Modi�ed Binary Search Table

The simplest way to build a modi�ed binary search table
from scratch is to �rst sort all the entries, after marking
each entry as a high or a low point of a range. Next, we
process the entries, using a stack, from the lowest down to
the highest to precompute the corresponding best matching
pre�xes. Whenever we encounter a low point (L in the
�gures), we stack the corresponding pre�x; whenever we
see the corresponding high point, we unstack the pre�x.
Intuitively, as we move down the table, we are keeping
track of the currently active ranges; the top of the stack
keeps track of the innermost active range. The pre�x on
top of the stack can be used to set the > pointers for each
entry, and the = pointers can be computed trivially. This
is an O(N ) algorithm if there are N pre�xes in the table.
One might hope for a faster insertion algorithm if we had

to only add (or delete) a pre�x. First, we could represent
the binary search table as a binary tree in the usual way.
This avoids the need to shift entries to make room for a
new entry. Unfortunately, the addition of a new pre�x can
a�ect the precomputed information in O(N ) pre�xes. This
is illustrated in Figure 5. The �gure shows an outermost
range corresponding to pre�x P ; inside this range are N �
1 smaller ranges (pre�xes) that do not intersect. In the
regions not covered by these smaller pre�xes, we map to
P . Unfortunately, if we now add Q (Figure 5), we cause
all these regions to map to Q, an O(N ) update process.
Thus there does not appear to be any update technique



104

L

H

L

L

L

L
H

H

H

H

Prefix P
Prefix Q

Fig. 5. Adding a new pre�x Q (dotted line) can cause all regions between
an H and an L to move from Pre�x P to Pre�x Q.

Binary
Tree
of keys
starting with
X

Yx
pointer to binary tree

Fig. 6. The array element with index X will have the best matching
pre�x of X (say Y) and a pointer to a binary tree/table of all pre�xes
that have X as a pre�x.

that is faster than just building a table from scratch. Of
course, many insertions can be batched; if the update pro-
cess falls behind, the batching will lead to more e�cient
updates.

IV. Precomputed 16 bit prefix table

We can improve the worst case number of memory ac-
cesses of the basic binary search scheme with a precom-
puted table of best matching pre�xes for the �rst Y bits.
The main idea is to e�ectively partition the single binary
search table into multiple binary search tables for each
value of the �rst Y bits. This is illustrated in Figure 6.
We choose Y = 16 for what follows as the table size is
about as large as we can a�ord, while providing maximum
partitioning.
Without the initial table, the worst case possible num-

ber of memory accesses is log2N + 1, which for large
databases could be 16 or more memory accesses. For a
sample database, this simple trick of using an array as a
front end reduces the maximumnumber of pre�xes in each
partitioned table to 336 from the maximum value of over
30,000.
The best matching pre�xes for the �rst 16 bit pre�xes

can be precomputed and stored in a table. This table
would then have Max = 65536 elements. For each index
X of the array, the corresponding array element stores best
matching pre�x of X. Additionally, if there are pre�xes of
longer length with that pre�x X, the array element stores a
pointer to a binary search table/tree that contains all such
pre�xes. Insertion, deletion, and search in the individual
binary search tables is identical to the technique described
earlier in Section III.

0

50

100

150

200

250

300

350

400

450

500

0 50 100 150 200 250 300

"hist"

Fig. 7. For each 16 bit pre�x X, let N(X) be the number of pre�xes that
have X as a pre�x. The histogram shows the distribution of N(X)
for the Mae-East NAP Routing database [Mer]. The horizontal axis
represents N(X) and the vertical axis represents the number of tables
with a given value of N(X). Thus the peak of the histogram says that
there are 484 binary search tables with only 2 keys. There is only 1
binary search table with the worst case number of 336 keys.

Figure 7 shows the distribution of the number of keys
that would occur in the individual binary search trees for
a publically available IP backbone router database [Mer]
after going through an initial 16 bit array. The largest
number of keys in any binary table is found to be 336,
which leads to a worst case of 10 memory accesses.

V. Multiway binary search: Exploiting the

cache line

Todays processors have wide cache lines. The Intel Pen-
tium Pro has a cache line size of 32 bytes. Main memory is
usually arranged in a matrix form, with rows and columns.
Accessing data given a random row address and column ad-
dress has an access time of 50 to 60 nsec. However, using
SDRAM or RDRAM, �lling a cache line of 32 bytes is much
faster, which is a burst access to 4 contiguous 64 bit DRAM
locations, is much faster than accessing 4 random DRAM
locations. When accessing a burst of contiguous columns in
the same row, while the �rst piece of data would be avail-
able only after 60 nsec, further columns would be available
much faster. SDRAMs (Synchronous DRAMs) are avail-
able (at $205 for 8MB [Sim]) that have a column access
time of 10 nsec. Timing diagrams of micron SDRAMs are
available through [Mic]. RDRAMs [Ram] are available that
can �ll a cache line in 101 nsec. The Intel Pentium pro has
a 64 bit data bus and a 256 bit cacheline [Inta]. Detailed
descriptions of main memory organization can be found in
[HP96].

The signi�cance of this observation is that it pays to re-
structure data structures to improve locality of access. To
make use of the cache line �ll and the burst mode, keys and
pointers in search tables can be laid out to allow multiway
search instead of binary search. This e�ectively allows us
to reduce the search time of binary search from log2N to
logk+1N , where k is the number of keys in a search node.
The main idea is to make k as large as possible so that a
single search node (containing k keys and 2k+ 1 pointers)



105

�ts into a single cache line. If this can be arranged, an
access to the �rst word in the search node will result in the
entire node being prefetched into cache. Thus the accesses
to the remaining keys in the search node are much cheaper
than a memory access.
We did our experiments using a Pentium Pro; the pa-

rameters of the Pentium Pro resulted in us choosing k = 5
(i.e, doing a six way search). For our case, if we use k keys
per node, then we need 2k + 1 pointers, each of which is
a 16 bit quantity. So in 32 bytes we can place 5 keys and
hence can do a 6-way search. For example, if there are keys
k1..k8, a 3-way tree is given in Figure 8. The initial full
array of 16 bits followed by the 6-way search is depicted in
Figure 9.

k3 k6

k1 k2 k4 k5 k7 k8

info info info info info info info info info

Node pointer

Fig. 8. 3-way tree for 8 keys

6-way search table

info pointer

64
 k

16 bits

32 bytes

index into

Fig. 9. The initial 16 bit array, with pointers to the corresponding 6-way
search nodes.

This shows that the worst case (for the Mae East
database after using a 16 bit initial array) has 336 en-
tries leading to a worst case of 4 memory accesses (since 64

=1296 takes only 4 memory accesses when doing a 6-way
search).
Each node in the 6-way search table has 5 keys k1 to k5,

each of which is 16 bits. There are equal to pointers p1
to p5 corresponding to each of these keys. Pointers p01 to
p56 correspond to ranges demarcated by the keys. This is
shown in Figure 10 . Among the keys we have the relation
ki � ki+1. Each pointer has a bit which says it is an
information pointer or a next node pointer.

A. Search

The following search procedure can be used for both IPv4
and IPv6. For IPv6, 32 bit keys can be used instead of 16
bits.

C =

Node 1

Node 2

Node 3

Node i

Node n

(cache line size)32 bytes

A single 32 byte node

p01

k1

p1

p12 p23 p34 p45 p56

k2 k3

p3p2

k4

p4

k5

p5

Fig. 10. The structure of the 6-way search node. There are k keys and
2k + 1 pointers.

1. Index into the �rst 16 bit array using the �rst 16 bits
of the address.

2. If the pointer at the location is an information

pointer, return it. Otherwise enter the 6-way search
with the initial node given by the pointer, and the key
being the next 16 bits of the address.

3. In the current 6-way node locate the position of the
key among the keys in the 6-way node. We use binary
search among the keys within a node. If the key equals
any of the keys keyi in the node, use the corresponding
pointer ptri. If the key falls in any range formed by
the keys, use the pointer ptri;i+1. If this pointer is an
information pointer, return it; otherwise repeat this
step with the new 6-way node given by the pointer.
In addition, we allow multicolumn search for IPv6 (see
Section VII) as follows. If we encounter an equal to

pointer, the search shifts to the next 16 bits of the
input address. This feature can be ignored for now
and will be understood after reading Section VII.

As the data structure itself is designed with a node size
equal to a cache line size, good caching behavior is a conse-
quence. All the frequently accessed nodes will stay in the
cache. To reduce the worst case access time, the �rst few
levels in a worst case depth tree can be cached.

VI. Measurements and Comparison for IPv4

We used a Pentium Pro [Intb] based machine, with a
200 MHz clock (cost under 5000 dollars). It has a 8 KByte
four-way set-associative primary instruction cache and a 8
KByte dual ported two-way set associative primary data
cache. The L2 cache is 256 KBytes of SRAM that is cou-
pled to the core processor through a full clock-speed, 64-bit,
cache bus.
We used a practical routing Table with over 32000 en-

tries that we obtained from [Mer] for our experiments. Our
tables list results for the BSD Radix Trie implementation



106

(extracted from the BSD kernel into user space), binary
search (Bsearch) and 6-way search.
Repeated lookup of a single address: After adding

the routes in the route database VI, random IP addresses
were generated and a lookup performed 10 million times for
each such address. We picked 7 of these results to display
in Table II.

Patricia Basic 16 bit 16 bit
binary +binary +6 way
search search search

Time Time Time Time
(nsec) (nsec) (nsec) (nsec)
1530 1175 730 490
1525 990 620 490
1450 1140 470 390
2585 1210 400 300
1980 1440 330 210
810 1220 90 95
1170 1310 90 90

TABLE II

Time taken for single address lookup on a Pentium pro. Several

addresss were searched and the search times noted. Shown in the table

are addresses picked to illustrate the variation in time of the 16 bit

initial table+6-way search method. Thus the �rst two rows correspond

to the maximum depth of the search tree while the last two rows

correspond to the minimum depth (i.e, no pre�xes in search table).

Average search time: 10 million IP addresses were
generated and looked up, assuming that all IP addresses
were equally probable. It was found that the average
lookup time was 130 nanoseconds.
Memory Requirements and Worst case time

Patr Basic 16 bit 16 bit
icia Binary table table

Search +binary +6 way
Mem for 3.2 3.6 1 1
building(MB)
Mem for 3.2 1 0.5 0.7
searchable
structure (MB)
Worst case 2585 1310 730 490
search(nsec)
Worst case
faster than
Patricia by 1 2 3.5 5

TABLE III

Memory Requirement and Worst case time

The memory requirement for the 6-way search is less
than that for basic binary search! Though at �rst this
looks counter-intuitive, this is again due to the initial 16
bit array. While the keys used in the regular binary search
are 32 bits and the pointers involved are also 32 bits, in
the 16 bit table followed by the 6-way search case, both
the keys and the pointers are 16 bits.
From Table III we can see that the initial array improves

the performance of the binary search from a worst case of
1310 nsec to 730 nsec; multiway search further improves

the search time to 490 nsec.
Instruction count:

The static instruction count for the search using a full 16
bit initial table followed by a 6-way search table is less than
100 instructions on the Pentium Pro. We also note that
the gcc compiler uses only 386 instructions and does not
use special instructions available in the pentium pro, using
which it might be possible to further reduce the number of
instructions.

VII. Using Multiway and Multicolumn Search

for IPv6

In this section we describe the problems of searching for
identi�ers of large width (e.g., 128 bit IPv6 address or 20
byte OSI addresses). We �rst describe the basic ideas be-
hind multicolumn search and then proceed to describe an
implementation for IPv6 that uses both multicolumn and
multiway search. We then describe sample measurements
using randomly generated IPv6 addresses.

A. Multicolumn Binary Search of Large Identi�ers

The scheme we have just described can be implemented
e�ciently for searching 32 bit IPv4 addresses. Unfortu-
nately, a naive implementation for IPv6 can lead to ine�-
ciency. Assume that the word sizeM of the machine imple-
menting this algorithm is 32 bits. Since IPv6 addresses are
128 bits (4 machine words), a naive implementation would
take 4 � log2(2N ) memory accesses. For a reasonable sized
table of around 32,000 entries this is around 60 memory
accesses!
In general, suppose each identi�er in the table is W=M

words long (for IPv6 addresses on a 32 bit machine,
W=M = 4). Naive binary search will take W=M � logN
comparisons which is expensive. Yet, this seems obviously
wasteful. If all the identi�ers have the same �rst W=M � 1
words, then clearly logN comparisons are su�cient. We
show how to modify Binary Search to take logN +W=M
comparisons. It is important to note that this optimization
we describe can be useful for any use of binary search on

long identi�ers, not just the best matching pre�x problem.
The strategy is to work in columns, starting with the

most signi�cant word and doing binary search in that col-
umn until we get equality in that column. At that point,
we move to the next column to the right and continue the
binary search where we left o�. Unfortunately, this does
not quite work.
In Figure 11, which has W=M = 3, suppose we are

searching for the three word identi�er BMW (pretend each
character is a word). We start by comparing in the leftmost
column in the middle element (shown by the arrow labeled
1). Since the B in BMW matches the B at the arrow
labeled 1 we move to the right (not shown) and compare
the M in BMW with the N in the middle location of the
second column. Since N < M , we do the second probe at
the quarter position of the second column. This time the
twoM 's match and we move rightward and we �ndW , but
(oops!) we have found AMW , not BMW which we were
looking for.



107

A               C             E
A               D             C

B               M             W

W/M words

Probe 1

C               N             D

B               N             X
B               N             Y
B               N             Z

BMW?     2
A               M             W

   3

Fig. 11. Binary Search by columns does not work when searching for
BMW

The problem is caused by the fact that when we moved
to the quarter position in column 2, we assumed that all
elements in the second quarter begin with B. This as-
sumption is false in general. The trick is to add state to
each element in each column which can contain the binary
search to stay within a guard range.

In the �gure, for each word like B in the leftmost (most
signi�cant) column, we add a pointer to the the range of all
other words that also contain B in this position. Thus the
�rst probe of the binary search for BMW starts with the
B in BNX. On equality, we move to the second column
as before. However, we also keep track of the guard range
corresponding to the B's in the �rst column. The guard
range (rows 4 through 6) is stored with the �rst B we
compared.

Thus when we move to column 2 and we �nd that M in
BMW is less than the N in BNX, we attempt to half the
range as before and try a second probe at the third entry
(the M in AMT ). However the third entry is lower than
the high point of the current guard range (4 through 6).
So without doing a compare, we try to halve the binary
search range again. This time we try entry 4 which is in
the guard range. We get equality and move to the right,
and �nd BMW as desired.

In general, every multiword entry W1;W2; : : : ;Wn will
store a guard range with every word. The range for Wi,
points to the range of entries that have W1;W2; : : : ;Wi in
the �rst i words. This ensures that when we get a match
with Wi in the i-the column, the binary search in column
i + 1 will only search in this guard range. For example,
the N entry in BNY (second column) has a guard range
of 5� 7, because these entries all have BN in the �rst two
words.

The naive way to implement guard ranges is to change
the guard range when we move between columns. However,
the guard ranges may not be powers of 2, which will result
in expensive divide operations. A simpler way is to follow
the usual binary search probing. If the table size is a power
of 2, this can easily be implemented. If the probe is not
within the guard range, we simply keep halving the range
until the probe is within the guard. Only then do we do a
compare.

The resulting search strategy takes log2N+W=M probes
if there are N identi�ers. The cost is the addition of two
16 bit pointers to each word. Since most word sizes are at
least 32 bits, this results in adding 32 bits of pointer space
for each word, which can at most double memory usage.

Once again, the dominant idea is to use precomputation to
trade a slower insertion time for a faster search.
We note that the whole scheme can be elegantly rep-

resented by a binary search tree with each node having
the usual > and < pointers, but also an = pointer which
corresponds to moving to the next column to the right as
shown above. The subtree corresponding to the = pointer
naturally represents the guard range.

B. Using Multicolumn and Multiway Search for IPv6

In this section we explore several possible ways of using
the k-way search scheme for IPv6. With the 128 bit ad-
dress, if we used columns of 16 bits each, then we would
need 8 columns. With 16 bit keys we can do a 6-way search.
So the number of memory accesses in the worst case would
be log6 (2N) + 8. For N around 50,000 this is 15 memory
accesses. In general, if we used columns of M bits, the
worst case time would be logk+1N +W=M where W = 128
for IPv6. The value of k depends on the cache linesize C.
Since k keys requires 2k+1 pointers, the following inequal-
ity must hold. If we use pointers that are p bits long,
kM + (2k + 1) � p � C
For the Intel Pentium pro, C is 32 bytes, i.e. 32�8 = 256

bits. If we use p = 16,
k(M + 32) � 240, with the worst case time being

logk+1N + 128=M .
In general, the worst case number of memory accesses

needed is T = d(logk+1(2N )e+d(W=m)e, with the inequal-
ityMk+(2k+1)p � C, where N is the number of pre�xes,
W is the number of bits in the address, M is the number of
bits per column in the multiple column binary search, k is
the number of keys in one node, C is the cache linesize in
bits, p is the number of bits to represent the pointers within
the structure and T is the worst case number of memory
accesses.
Fig 12 shows that theW bits in an IP address are divided

into M bits per column. Each of these M bits make up a
M bit key, k of which are to be �tted in the search node of
length C bits along with 2k+ 1 pointers of length p bits.

W (address width in bits)

M (column size)

key pointer

M p

C (cache line size)

Fig. 12. Symbols used in expressing the number of memory accesses
needed.

For typical values of N , the number of pre�xes, the fol-
lowing table gives the value of the corresponding worst case
number of memory accesses.
However, by using the initial array, the number of pre-

�xes in a single tree can be reduced. For IPv4 the max-
imum number in a single tree was 336 for a practical
database with N more than 30000 (i.e., the number of pre-
�xes that have the same �rst 16 bits is 168, leading to 336
keys). For IPv6, with p = 16, even if there is an increase



108

No. of Pre�xes M = 16 M = 32 M = 64
128 12 10 8
256 13 10 8
1024 14 11 9
50000 17 15 13
100000 17 16 14

TABLE IV

Worst case number of memory accesses for various values of N and M

with W = 128;C = 256 (32 bytes) and p = 24 bits.

of 10 times in the number of pre�xes that share the same
�rst 16 bits, for 2048 pre�xes in a tree we get a worst case
of 9 cache line �lls with a 32 byte cache line. For a 64 byte
cache line machine, we get a worst case of 7 cache line �lls.
This would lead to worst case lookup times of less than
800 nsec, which is competitive with the scheme presented
in [WVTP97].

C. Measurements

We generated random IPv6 pre�xes and inserted into a
k-way search with an initial 16 bit array. From the prac-
tical IPv4 database, it was seen that with N about 30000,
the maximum number which shared the �rst 16 bits was
about 300, which is about 1of pre�xes. To capture this,
when generating IPv6 pre�xes, we generated the last 112
bits randomly and distributed them among the slots in the
�rst 16 bit table such that the maximumnumber that falls
in any slot is around 1000. This is necessary because if
the whole IPv6 pre�x is generated randomly, even with N
about 60000, only 1 pre�x will be expected to fall in any
�rst 16 bit slot. On a Pentium Pro which has a cache line
of 32 bytes, the worst case search time was found to be 970
nsec, using M=64 and p=16.

VIII. Conclusion

We have described a basic binary search scheme for the
best matching pre�x problem. Basic binary search requires
two new ideas: encoding a pre�x as the start and end of a
range, and precomputing the best matching pre�x associ-
ated with a range. Then we have presented three crucial
enhancements: use of an initial array as a front end, mul-
tiway search, and multicolumn search of identi�ers with
large lengths.
We have shown how using an initial precomputed 16

bit array can reduce the number of required memory ac-
cesses from 16 to 9 in a typical database; we expect sim-
ilar improvements in other databases. We then presented
the multiway search technique which exploits the fact that
most processors prefetch an entire cache line when doing
a memory access. A 6 way branching search leads to a
worst case of 5 cache line �lls in a Pentium Pro which has
a 32 byte cache line. We presented measurements for IPv4.
Using a typical database of over 30,000 pre�xes we obtain
a worst case time of 490 nsec and an average time of 130
nsec using storage of 0.7 Mbytes. We believe these are
very competitive numbers especially considering the small

storage needs.
For IPv6 and other long addresses, we introduced mul-

ticolumn search that avoided the multiplicative factor of
W=M inherent in basic binary search by doing binary
search in columns of M bits, and moving between columns
using precomputed information. We have estimated that
this scheme potentially has a worst case of 7 cache line �lls
for a database with over 50000 IPv6 pre�xes database.
For future work, we are considering the problem of using

di�erent number of bits in each column of the multicolumn
search . We are also considering the possibility of laying out
the search structure to make use of the page mode load to
the L2 cache by prefetching. We are also trying to retro�t
our Pentium Pro with an SDRAM or RDRAM to improve
cache loading performance; this should allow us to obtain
better measured performance.

References

[Asc] Ascend. Ascend GRF IP Switch Frequently Asked Ques-
tions. http://www.ascend.com/299.html#15.

[BCDP97] Andrej Brodnik, Svante Carlsson, Mikael Degermark,
and StephenPink. Small ForwardingTable for Fast Rout-
ing Lookups. To appear in ACM Sigcomm'97, September
1997.

[HP96] Hennessey and Patterson. Computer Architecture A
quantitative approach, 2nd Edn. Morgan KaufmannPub-
lishers Inc, 1996.

[Inta] Intel. Intel Architecture Software developer's Manual,
Vol 1: Basic Architecture.
http://www.intel.com/design/litcentr/litweb/pro.htm.

[Intb] Intel. Pentium Pro. http://pentium.intel.com/.
[Mer] Merit. Routing table snapshot on 14 Jan 1997 at the

Mae-East NAP. ftp://ftp.merit.edu/statistics/ipma.
[Mic] Micron. Micron Technology Inc.

http://www.micron.com/.
[MTW95] Anthony J. Bloomfeld NJ McAuley, Paul F. Lake Hopat-

cong NJ Tsuchiya, and Daniel V. Rockaway Township
Morris County NJ Wilson. Fast Multilevel heirarchical
routing table using content-addressable memory. U.S.
Patent serial number 034444. Assignee Bell Communica-
tions research Inc Livingston NJ, January 1995.

[NMH97] Peter Newman, Greg Minshall, and Larry Huston. IP
Switching and Gigabit Routers. IEEE Communications
Magazine, January 1997.

[oT] McGrayMassachussetts Institute of Technology. Internet
Growth Summary.
http://www.mit.edu/people/mkgray/net/internet-
growth-summary.html.

[Per92] Radia Perlman. Interconnections, Bridges and Routers.
Addison-Wesley, 1992.

[PZ92] Tong-Bi Pei and Charles Zukowski. Putting Routing Ta-
bles in Silicon. IEEE Network Magazine, January 1992.

[Ram] Rambus. Rdram. http://www.rambus.com/.
[Sim] SimpleTech. Simple Technology Inc.

http://www.simpletech.com/.
[Skl] Keith Sklower. A Tree-Based Routing Table for Berkeley

Unix. Technical report, University of California, Berke-
ley.

[SW95] W. Richard Stevens and Gary R Wright. TCP/IP Illus-
trated, Volume 2 The Implementation. Addison-Wesley,
1995.

[WVTP97] Marcel Waldvogel, George Varghese, Jon Turner, and
Bernhard Plattner. Scalable High Speed IP Routing
Lookups. To appear in ACM Sigcomm'97, September
1997.


