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Abstract— Peer-to-peer (P2P) networks have mostly fo-
cused on task oriented networking, where networks are
constructed for single applications, i.e. file-sharing, DNS
caching, etc. In this work, we introduce IPOP, a system
for creating virtual IP networks on top of a P2P overlay.
IPOP enables seamless access to Grid resources spanning
multiple domains by aggregating them into a virtual IP
network that is completely isolated from the physical net-
work. The virtual IP network provided by IPOP supports
deployment of existing IP-based protocols over a robust,
self-configuring P2P overlay. We present implementation
details as well as experimental measurement results taken
from LAN, WAN, and Planet-Lab tests.

I. INTRODUCTION

Through the use of virtual machines, the na-
tive computational environment for an application
can be instantiated on-demand on any physical re-
source [43][30][46][48][35]. This flexibility helps over-
come the heterogeneity of Grid [23] computing environ-
ments by breaking software dependences between hosts
and users, and facilitates controlled and secure sharing
of resources by leveraging the additional isolation layer
enforced by a virtual machine monitor. However, the
execution environment of a distributed computing appli-
cation also entails the network over which it interacts.
It is key that bi-directional TCP/IP connectivity be
provided in such distributed execution environments to
support a wide spectrum of applications. However, the
increasing use of Network Address Translation (NAT)
and IP firewalls creates a situation that some nodes
on the network can create outgoing connections, but
cannot receive incoming connections. This breaks the
original model of each node in the Internet being a
peer, and is recognized as a hindrance to programming
and deploying Grid computing systems [21][49][50].
Protocols for NAT/Firewall traversals [45] exist, but
require applications to be re-linked with the new protocol
libraries.

Network virtualization techniques for Grid computing
have been shown to provide applications their native
network environments, despite the idiosyncrasies of the
real physical network [10][32]. All complications relat-

ing to NAT/Firewall traversals can be handled by the vir-
tualization layer, enabling Grid applications to leverage
from a wealth of IP-based software typically available in
local-area environments. The core technique employed
by these and other virtual networking approaches (e.g.
VPNs [2]) is tunneling of virtual network traffic over an
IP-overlay. To be deployed in a Grid context, it is desir-
able that such an overlay is scalable and fault-tolerant
and that it requires minimal administrative control.

In this paper, we present IPOP - a network virtu-
alization technique based on IP tunneling over peer-
to-peer (P2P) networks. P2P networks can be made
self-configuring, allow user mobility, are scalable, and
provide extremely robust service, motivating the choice
of P2P routing as the basis for IPOP. Through IPOP,
resources spanning multiple domains can be aggregated
into a virtual IP network providing bidirectional connec-
tivity. Our protocols support seamless, self-configured
addition of nodes to a virtual IP network. Our work
might be classified as a P2P protocol for VPN (virtual
private networks). The IPOP virtual IP address space is
routable within the P2P overlay, however it is decoupled
from the address space of the physical Internet infras-
tructure — IP packets are payloads that tunnel through
the P2P overlay, as depicted in Figure 1.

Current network virtualization techniques for Grid
computing [13][32] require an administrator to setup
overlay routing tables. Hence, the process of adding,
configuring and managing clients and servers that route
traffic within the overlay is difficult to scale. Although
topology adaptation is possible using techniques pro-
posed in [10], adaptive routes are coordinated by a
centralized server. Both VNET and VIOLIN can provide
a robust overlay through redundancy. However, the effort
required to preserve robustness would increase every
time a new node is added and the network grows in size.
In contrast, the use of P2P routing to overlay virtual IP
traffic differentiates IPOP from existing network virtual-
ization solutions with respect to the following issues:

• Scalability: Network management in a P2P-based
routing overlay scales to large numbers because
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Fig. 1. IPOP: Virtualizing IP over a P2P overlay. The IPOP layer
sits between applications (e.g. Grid clusters of physical and/or virtual
machines, voice-over-IP) and physical computing nodes interconnected
by existing IP networking infrastructures.

routing information is naturally self-configured, de-
centralized, and dynamically adaptive in response
to nodes joining and leaving. Adding a new resource
to the virtual IP network requires minimal effort,
which is independent of current size of the network.
Performance scaling leverages from the fact that
each node contributes bandwidth and processing
power so that the resources of a system grow as
nodes join.

• Resiliency: P2P networks are robust even in the
face of high failure rates [11][44]. An IP-over-P2P
overlay benefits from the synergy of fault-tolerant
techniques applied at different levels. The IPOP
overlay dynamically adapts routing of IP packets
as nodes fail or leave the network; even if packets
are dropped by such nodes, IP and other protocols
above it in the network stack have been designed
to cope with such transient failures. The use of P2P
overlays to provide robust routing has also been
described in [12].

• Accessibility: Existing network virtualization
techniques can leverage mechanisms described
in [45][25] to cross NAT/Firewalls. These
approaches require setting up globally reachable
STUN or STUNT servers that aid building the
necessary NAT state by carefully crafted exchange
of packets. With P2P networks, each overlay node
can provide this functionality for detection of NATs
and their subsequent traversal. This approach is
decentralized and introduces no dedicated servers.

In summary, this paper describes the IPOP architecture
and evaluates the performance of a prototype imple-

mentation that uses Brunet [16] for P2P routing and
“tap” virtual network interfaces. Experiments in local-
and wide-area networks are used to quantify the latency
and bandwidth characteristics of an IPOP link. Results
obtained using “ping” and “ttcp” benchmarks show that
the latency overhead (on an implementation that has not
been optimized for IP tunneling) is in the range of 6 to
10 ms.

Experiments also show that IPOP overlays can be self-
configured, even when nodes are behind firewalls/private
networks, and that unmodified applications can use the
IPOP overlay as if they were running on a local area
network. This paper presents a case study of running an
unmodified parallel application (Light Scattering Spec-
troscopy analysis [41]) that uses TCP/IP services includ-
ing SSH, message-passing interface (MPI) libraries, and
Network File System (NFS) mounted volumes across
three firewalled domains in a wide-area network. The
experiment shows that the virtual network is successfully
self-configured in a decentralized manner and efficiently
support the execution of this application.

This paper is organized as follows. Section II discusses
related work in grid and peer-to-peer computing. Sec-
tion III describes the IPOP architecture and its current
prototype. Section IV reports on quantitative analyses of
the prototype’s performance for benchmark applications
in local- and wide-area environments. Section V provides
ideas for improving IPOP routing performance, followed
by Section VI that summarizes the paper.

II. RELATED WORK

The IPOP system builds on previous research in P2P
overlay networks, but our main interest is in applying
it to virtual IP networks for Grid computing. In [24],
Foster et al. make a case for the convergence of P2P and
Grid technologies. In this paper we make the case for one
important instance where such convergence is beneficial.
This section discusses prior works in both areas.

A. Peer-to-peer
There is an existing body of research on various ways

in which P2P systems can be applied to existing IP
systems. In [18] Cox et. al. have proposed to build a
Distributed DNS using DHash, a peer-to-peer distributed
table built on top of Chord [52]. In [28] Hsieh et. al.
have argued that TCP is inappropriate for effective data
transport over peer-to-peer networks and have suggested
the need of transport layer support for multipoint-to-
point connections in P2P networks. While we do not
disagree that TCP is sub-optimal for distributed file
downloads, we do believe that there are important appli-
cations where pairs of nodes need to communicate us-
ing existing TCP-based implementations, e.g. message-
passing libraries and high-throughput task farming in
Grid computing.



This paper is also related to the growing body of
knowledge in search and routing in P2P networks. A
comprehensive survey of search methods can be found
in Risson et. al. [31]. Advances in routing techniques
that strive to minimize number of hops and account for
network performance in selecting hops can be leveraged
by IPOP. In [26][27] Gupta et. al. have attempted to
build a P2P system which can route lookup queries in
just one hop by maintaining complete routing tables at
each node. Harvey et. al. [29] have developed SkipNet,
a scalable overlay network providing controlled data
placement and guaranteed routing locality. Freedman et.
al. [38] proposed Coral, which creates self-organizing
clusters of nodes that fetch information from each other
to avoid communicating with more distant or heavily-
loaded servers. Gummadi et. al. [33] have shown
that of all the routing geometries, the ring geometry
allows greatest flexibility and achieves best resilience
and proximity performance.

Zhou et. al. have developed P6P [56], [55], an imple-
mentation of IPv6 on a P2P overlay. The Teredo pro-
tocol [9] developed by Microsoft tunnels IPv6 packets
over IPv4 UDP packets to enable nodes behind NATs
to be addressed with IPv6 connectivity. Our approach
differs from these works, as our current focus is IPv4 to
enable existing grid applications to run unmodified. Few
existing applications support IPv6.

The use of P2P based overlay to support legacy
applications has also been described in context of i3
([51][34]). The goal is to support interoperability with
new i3 applications that support multicast, anycast and
mobility. In contrast, our motivation is to provide seam-
less access to Grid resources spanning different network
domains by aggregating them into a virtual IP network
that is completely isolated from the physical network.

B. Grid computing

Many representative efforts on Grid computing have
focused on aggregating resources to support high-
throughput computing, but at the expense of requiring
applications to be designed from scratch [20][37][17][3],
constrained to use specialized remote I/O libraries [39]
or Grid APIs [22]. IPOP is different as it is directed
towards providing a virtual networking platform that
enables unmodified applications to run on top of the
overlay.

Related projects (VIOLIN [32], VNET [13][10]) have
also recognized the utility of network overlays in Grid
environments. The performance results reported for these
systems show that the virtualization overhead is tolerable
in wide-area networks, and have thus motivated the
IPOP approach. The difference in IPOP is that nodes
joining/leaving the overlay are handled in a completely
decentralized fashion. In contrast, in VNET and VIO-

LIN, it is the responsibility of a centralized manager to
perform tasks such as setting up of network links and
node addresses.

C. Brunet P2P Overlay

In this work, we make use of the Brunet P2P overlay
network [16]. While the techniques will be applicable to
many P2P overlays, our experiments are conducted using
Brunet. The Brunet system can use either TCP or UDP
as its underlying transport. In Section IV we compare
the performance of our IP-over-P2P system using both
the TCP and UDP modes of Brunet.

Making use of an existing P2P overlay allows us to
avoid dealing directly with many of the difficult issues
of network virtualization. Specifically, the Brunet library
manages the connections, negotiates the firewalls and
NAT devices, and guarantees that the network is routable.

III. IPOP ARCHITECTURE

The IPOP architecture has two key components (Fig-
ure 2): a virtualized network interface for capturing and
injecting IP packets into the virtual network, and a P2P
routing substrate that encapsulates, tunnels and routes
packets within the overlay. We will first describe how
IP packets are captured from and injected to the host,
and then how we route IP packets on the Brunet P2P
network.

A. Capturing IP from the Host

Our IPOP prototype captures packets from a virtual
device attached to the source host, tunnels them over the
application-level Brunet P2P overlay, and then injects the
packet back into a virtual device on the destination host.
IPOP uses the tap device, which appears as a virtual
network interface inside the host, and is available for
several Unix platforms [8] and Windows [6]. The pro-
totype currently works for Linux, where tap is available
for read and write as a character device.

Through tap, Ethernet frames injected by the the
kernel on the virtual interface can be read by a user-level
application, and vice versa. IPOP runs as a C# program
over the Brunet library. It reads and writes Ethernet
frames from the tap device, and uses Brunet to assemble
IP packets inside P2P packets and to route them to their
destination. While IPOP sees Ethernet frames, it only
routes IP packets; non-IP traffic, notably ARP traffic, is
contained within the host. A host running IPOP is a P2P
node, and can act as data source, receiver and router all
at the same time.

Since we are dealing with Ethernet level frames at the
IPOP hosts, we may come across non-IP based frames
such as ARP and RARP. Our implementation currently
is capable of handling ARPs by creating a static ARP
entry inside the host for a non-existent “gateway”, which
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Fig. 2. IPOP architecture overview. Existing IP applications (App) connect to IPOP through a virtual network interface (“tap”). A P2P node
(Brunet) extracts IP packets from the virtual interface of a sender (node X, left), and routes them within the overlay to a destination node, where
the IP packet is injected into another virtual network interface (node Y, right).

routes for all hosts in the virtual address space. The non-
existent gateway has a unique IP address in the virtual
address space, and its Ethernet address is configured to
not conflict with that of the local tap device. As a result,
it is possible for the host to only send out the IP- based
Ethernet frames and contain ARP requests locally. When
an IP packet is received at a P2P end-point, an Ethernet
packet is built from it with source as the Ethernet address
corresponding to the ARP entry for the gateway inside
the host, and the destination to be the Ethernet address
of the tap device on the host.

The Mono C# runtime environment used in the current
prototype has minimal support for reading and writing
character devices such as tap. We have thus built a
C-based library of low-level functions to open, read,
write and close a tap device, and use C#’s “PInvoke”
feature to invoke them. Our choice of tap (layer-2 device)
over tun (point-to-point device that works at layer-3), is
motivated by its extensibility to virtual machines, which
we describe in Section III-C.

B. Routing IP on the P2P Overlay

When a host needs to be added to the IPOP virtual
network, the host administrator is required to set up a tap
device in the host, and bring it up with an IP address
that is unique in the virtual IP address space 1. IPOP
runs on the host as a P2P node whose address is the
160 bit SHA-1 hash of the IP address of the tap device.
Figure 2 shows the traffic flow between two hosts on the
virtual network. It shows how applications running on
two different hosts communicate over the IPOP virtual
network. The application running on Host A generates
IP-based traffic which the kernel transmits through the
tap0 interface. The Ethernet frame is captured, an IP

1The MAC address of the interface, however, does not need to be
unique.

packet extracted from it, and then encapsulated inside a
P2P packet (Figure 3). The P2P packet, in turn, is sent
to the P2P node whose address is the 160 bit SHA-1
hash of the destination IP address. Once the P2P packet
is received at the destination node, the IP packet is
extracted, an Ethernet frame is built from it, and the
frame is written to the tap0 interface on the host.

IPOP has been designed with the goal of providing
open access among a set of trusted nodes spanning
multiple sites through network virtualization. When end
resources are physical machines, providing an open
access through IPOP requires the host firewall rules to
be relaxed only for the traffic coming from the virtual
interface. No changes are required to the site firewall
rules. However, when end resources are virtual machines
as described in the next section, we do not even require
changes to the host firewall rules.

C. IPOP extensions for virtual machines

A driving application for IPOP in the context of Grid
computing is to interconnect O/S virtual machines (e.g.
VMware [53], Xen [14], UML [19]) with the IP overlay,
thereby virtualizing key Grid resources [43]. A machine
(physical or virtual) running IPOP must have a way
of connecting to other P2P nodes, without necessarily
having a public IP address. We have implemented and
tested our prototype with VMware’s bridged and NAT
network interfaces. In both cases IPOP runs within the
VM. For UML virtual machines, we run IPOP outside
the VM “guest” — i.e. in the physical machine’s O/S
which hosts the VM. In this case, the VM’s virtual
Ethernet card is configured with an IP address in the
virtual address space, and routes and static ARP entries
are set as described earlier. The virtual Ethernet card of
the UML guest attaches itself to a tap device on the host,
and the UML kernel uses tap reads and writes to transmit
Ethernet frames. A tap device can be opened by at most



Fig. 3. Structure of an IPOP encapsulated IP packet. The outer IP
header is used to transport the Brunet packet to each node in the P2P
overlay. The Encapsulated packet is unwrapped when it reaches its
final destination.

one process, and hence IPOP cannot directly read and
write Ethernet frames from the same tap device. The tap
device is therefore bridged [4] to another tap device on
the host, from which IPOP can read and write Ethernet
frames.

The advantage of running IPOP inside the VM guest
is that no administrative privileges are required on the
physical host. However, with UML we still require
setting up tap and bridge on the physical host which
requires root access. In [32], purely user-level imple-
mentation of UML networking switch has been proposed
that does not require tap and bridge setup on the physical
host; a similar implementation can also be conceived in
the context of IPOP.

D. Crossing firewalls and NATs

One of the many benefits we derive from overlaying
IP on a P2P network is the overlay we use, Brunet[16],
already deals with connecting nodes which are behind
firewalls and NAT devices. In this section we briefly
sketch how that is done.

As documented by the client-server based STUN[45]
protocol, there are four types of NAT in common use
today. Of these four types, all have the property that
if a UDP packet is sent from IP address A port pa

to IP address B port pb, the NAT device will allow
packets from IP address B port pb to flow to IP address
A port pa. Any system that does not permit this is
broken because it is allowing outbound packets without
allowing any response to those packets, which meets the
requirements of almost no applications. In addition to the
above property, three out of four of the common NAT
types (all but the symmetric) use the same mapping for

the NAT’s port → internal (IP, port) pair. Thus each
connection in the P2P network is an opportunity for
a node to discover if any IP translation is going on,
and if so record its translated address. Once a node
discovers that its address is being translated, it advertises
that translated address to another nodes over the Brunet
network. Finally, since the Brunet connection protocol
specifies that each node try to contact the other, to the
firewall, one of the packets will appear to be the response
to a previous request and thus will be allowed to pass.

This NAT traversal protocol makes use of the same
facts about NATs that the STUN[45] protocol uses. Fur-
thermore, this approach is decentralized and introduces
no single points of failure or dedicated servers (unlike
the STUN protocol).

While this NAT/firewall traversal may seem like a
subversion of network policies, this is arguably not the
case. In fact, both nodes in this scenario are actively
attempting to contact the other, and as such, any unre-
quested packets are still filtered by the NAT or firewall.

E. Multiple IPs and mobility

The current solution of mapping IP addresses to
Brunet addresses using SHA-1 hashes requires one P2P
node per IP address. Because of this requirement, a
single IPOP node running on a host cannot ”route for”
multiple virtual IPs (eg. multiple VMs hosted by a physi-
cal machine). The problem is aggravated when virtual IP
addresses are mobile — a situation that can occur when
virtual machines are allowed to migrate ([47], [13]). A
solution to this problem involves using the P2P system
as a distributed hash table (DHT) [52][54][42].

We call our proposed protocol for mapping an IP
destination to a Brunet address “Brunet-ARP”. An IPOP
node informs about each virtual IP address it “routes
for” to the Brunet node whose address is 160 bit SHA-
1 hash of that IP address. We call this node “Brunet-
ARP-Mapper”. Now when a node has an IP packet
to send, it inquires about the brunet destination from
the corresponding “Brunet-ARP-Mapper” whose Brunet
address is the 160 bit SHA-1 hash of the destination
IP address. This information can then be cached at the
source node. When a VM migrates (retaining its IP
address), the information is updated at its corresponding
“Brunet-ARP-Mapper”.

The issues related to the “Brunet-ARP-Mapper” for
an IP address being down have been dealt with in the
DHT literature [52][54][42]; and IPOP too can benefit
from these solutions.

IV. EXPERIMENTS

In this section we present and discuss a series of exper-
iments that have been used to evaluate the performance
of the current IPOP prototype. The purpose of these



experiments are to show the feasibility of overlaying IP
over P2P using current technologies, and to highlight the
applications that can benefit from the IPOP architecture.
It is worth noting that the P2P network has not been
optimized in any form to support IP traffic.

To evaluate the performance of our system, we have
conducted a variety of experiments. First, we evaluate
latency and throughput of a single hop of the overlay
network (Section IV-B). We also report on the perfor-
mance of multi-hop routing on a larger-scale overlay de-
ployed on top of the Planet-Lab [7] testbed (Section IV-
D). These experiments quantify the overhead of the
user-level routing layer. We also performed experiments
to evaluate the performance of an MPI-based parallel
application running on nodes interconnected by IPOP
(Section IV-C).

A. Experimental setup

Figure 4 shows the experimental set up we used for
our measurements in both LAN and WAN environments.
The LAN testbed consist of F1, F2, F4 that reside in
the ACIS laboratory private network at the University of
Florida. The machine F1 is a VM based on VMware
GSX Server 2.5.1 (build 5336), running on a dual
(hyperthreaded) Intel Xeon 2.40 GHz host. The machine
F2 is a physical host with Intel Pentium III 1122 MHz
processor. The machine F4 is a VM based on VMware
ESX Server 2.1.1 (build-9157) running on Intel Xeon
2.00 GHz host. It has a private interface (connected
to the LAN) and a public interface (connected to the
campus public network). Machine F3 is in a different
University of Florida LAN, and is a VM based on
VMware GSX Server 3.1.0 (build-9089), running on a
dual (hyperthreaded) Intel Xeon 3.20 GHz host. In the
WAN testbed, we have two machines V1 and L1 which
are situated at Virginia Institute of Marine Sciences and
Louisiana State University, respectively. Both V1 and L1
machines are behind site firewalls. These machines are
connected to the machines at University of Florida via
Abilene. V1 is a is a 4-way (hyperthreaded) Intel Xeon
2.8 GHz host. L1 is a VM based on VMware GSX Server
3.1.0 (build-9089), running on a dual (hyperthreaded)
Intel Xeon 3.20 GHz host. All the machines run Linux
(kernel 2.4).

B. Analysis: Link latency and throughput

We measured latency by using the round-trip delay
of an ICMP request/response pair. We computed the
average and standard deviation of 1000 measurements.
For the LAN case, we measured the round-trip delay
between machines F2 and F4 (Figure 4), while for the
WAN case, we measured the round-trip delay between
machines F4 and V1. Experiments were performed with
IPOP routing over both TCP and UDP, leveraging the

support for both protocols in Brunet. It should be noted
that IPOP-TCP and IPOP-UDP experiments were per-
formed at different times; due to differences in host load
(which influences IPOP overhead at P2P routers and end-
points) and network conditions, different set of values
were observed for the physical network, both of which
have been reported in this paper.

Table I summarizes the results for the LAN and WAN
latency experiments. In this table, the experiment is
setup with Brunet nodes connected by TCP. Table I
summarizes the results of an experiment with Brunet
nodes connected by UDP. We observe the latency to be
of the order of 6-10ms per ICMP packet when using
IPOP. Latencies of the order of milliseconds/packet have
also been reported in context of other user-level routing
systems, such as VNET [13]. The LAN experiment
provides a rough estimate of the overhead associated
with our implementation of IPOP. We attribute this
overhead to the traversal of kernel TCP/IP stack twice
by any packet sent on the virtual network (once on
the virtual interface, and additionally on the physical
interface). While the relative overhead is high in the
LAN environment, for the WAN used in this experiment
the overhead is 33% of that of the physical network for
both TCP and UDP implementations of IPOP. In a WAN,
the overhead of user-level routing gets amortized over
the number of physical hops (in our case, 10) that make
up a P2P link.

We have measured the average throughput of an
overlay link using the ttcp program, which is commonly
used to test TCP performance in IP networks. It times the
transmission and reception of data between two systems.
For a LAN, we measured the throughput between nodes
F2 and F4 (Figure 4), while for WAN case, we measured
the throughput between machines F4 and V1. In Table II,
we compare the throughput of a single overlay link (TCP
and UDP) over a LAN to that of the physical network,
and we observe it to be only 20% of that of the physical
network. In Table III, we measure the throughput for
with two transfer sizes in a WAN, and interestingly the
overlay link could harness up to 80% of the capacity of
the physical network. Such observations on higher UDP
throughput over TCP have also been reported in context
of VNET in [36]. The measuremts were conducted on
the physical machines (F2 for LAN and V1 for WAN),
but the other side of the connection (F4) was a VM based
on VMware ESX 2.1.1 with 100 Mbps virtual ethernet
card.

C. Analysis: MPI application

We conducted an experiment with an MPI-
based application called LSS (Light Scattering
Spectroscopy) [41]. LSS is an application in biomedical
engineering that analyzes of a set of spectral images
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mean (msec) std. dev (msec) mean (msec) std. dev (msec)
physical 0.898 2.843 physical 0.625 0.214

LAN IPOP-TCP 7.832 21.704 IPOP-UDP 6.859 3.180
physical 38.801 6.541 physical 34.492 0.702

WAN IPOP-TCP 48.539 3.117 IPOP-UDP 45.896 9.782

TABLE I
MEAN AND STANDARD DEVIATION OF 1000 PING ROUND-TRIP TIMES OF TCP AND UDP VERSIONS OF IPOP WITH PHYSICAL NETWORK.

Abs. b/w Rel. b/w
(KBps) (IPOP/Phys)

physical 8255
IPOP-TCP 2389 29%

physical 9416
IPOP-UDP 1905 20%

TABLE II
COMPARISON OF THROUGHPUT OF A SINGLE OVERLAY LINK (TCP
AND UDP) IN LAN TO THAT OF PHYSICAL NETWORK, MEASURED

USING TTCP; TRANSFER SIZE = 92.97 MB

Abs. Abs. Rel. b/w Rel. b/w
b/w b/w IPOP/Phys IPOP/Phys

(KBps) (KBps)
File 13.09 92.97 13.09 92.97

size (MB)
physical 1419 1419

IPOP-TCP 673 688 47% 48%
physical 1538 1531

IPOP-UDP 1239 1150 81% 75%

TABLE III
COMPARISON OF THROUGHPUT (IN KBPS) OF A SINGLE OVERLAY

LINK (TCP AND UDP) OVER WAN TO THAT OF A PHYSICAL

NETWORK FOR TRANSFER SIZES OF 13.09 MB AND 92.97 MB

obtained experimentally from a tissue sample against
a set of database files containing known spectra
generated analytically using Mie scattering theory.
The application finds the analytical spectrum that best
fits the experimental data by applying a least-square
fitting algorithm for each database record and selecting
the fit with minimum error across all records. It is
an application that exhibits both compute-intensive
behavior (in the computation of the least-square fits)
and data-intensive behavior (in the access of large
lookup database files).

LSS has been parallelized by distributing the least-
square computation across multiple processors using
message-passing (MPI) libraries. The parallel version of
LSS involves a master node and one or mode slave
nodes. The analysis of each image against different
databases takes place in parallel, local results are com-
municated back to the master which uses these results
to compute the image parameters. SSH is required to
start the lam daemons on each compute node before
parallel execution begins. The goal of this experiment
was to demonstrate our ability to run an application
requiring MPI, SSH, and NFS over nodes connected
through IPOP. Without network virtualization provided
by IPOP, it would not have been possible to run parallel-
LSS because of inadequate node connectivity of the



# of nodes Image 1 Images 2-6 Total
1 811s 834s 1645s
4 378s 217s 595s

TABLE IV
EXECUTION TIMES (IN SECONDS) FOR LSS IMAGE ANALYSIS FOR

BOTH SEQUENTIAL (1 NODE) AND PARALLEL (4 NODES)
EXECUTIONS. EXECUTION TIMES ARE COLLECTED FOR SIX

CONSECUTIVE LSS ANALYSIS RUNS USING SIX DIFFERENT

IMAGES. THE TIME TO PROCESS THE FIRST IMAGE (WHEN NFS
CACHES ARE COLD) IS REPORTED SEPARATELY.

physical network.
In this experiment, the machine F4 in Figure 4 is used

as a central file server where the image and database
files, LSS and MPI (LAM 7.0.6 implementation) binaries
are stored. This data is available to the other compute
servers through an NFS-based virtual file system [40],
which provides transparent user-level client-side disk
caching that exploits the temporal locality of references
available across runs of LSS that analyze different im-
ages using the same databases.

In the experiment, we run the LSS analysis for six
different images and four database files each of size 32
MB. Table IV shows the LSS execution times for both
sequential (1 node) and parallel executions (4 nodes).
The analysis of first image is slow because initially the
client-side NFS caches are cold, and nodes spend most
of the time doing remote I/O to fetch corresponding
database files. For subsequent images (2 through 6), the
database files are available in the local cache at each
compute node, and the parallel execution achieves a
speed up of 3.8 over the sequential execution.

D. Analysis: Multi-hop routing

We also conducted latency experiments on a TCP-
based Brunet P2P network consisting of 118 nodes
established across Planet-Lab. The experiment was setup
by first deploying the nodes over Planet-Lab. The IPOP
routing layer is self-configured by Brunet as each node
joins/leaves. We then connected two of our testbed nodes
(F2, F4) to this overlay network and measured the
round-trip ping times between them. Figure 5 shows
the distribution of 10000 ping messages collected in one
experiment where there were two overlay hops between
the the source and destination.

An interesting observation was that forward and
backward paths between F2 and F4 were differ-
ent. The ICMP request messages (from F2 to F4)
went through the Planet-Lab node named planet-
lab15.millenium.berkeley.edu, while the responses came
through pli1-br-2.hpl.hp.com.

The results show average ping times in excess
of 1.6 seconds. From pings to the machines
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Fig. 5. Distribution of round-trip latencies for ICMP/ping packets
over 118-node Planet-Lab overlay. Two hops separate the ping source
from the destination.

(planetlab15.millenium.berkeley.edu, pli1-br-
2.hpl.hp.com) over the physical network, we observed
that the average IPOP overhead was approximately 1.4
seconds over that of the same path on the physical
network. We attributed this overhead to the high load
under which Planet-Lab nodes were subject to at the
time of the experiment. Monitoring of the intermediate
Planet-Lab nodes that were used by IPOP to route ICMP
packets in this experiment shows that the CPU load was
in the excess of 10. Because IPOP runs at user-level and
competes for CPU time with other Planet-Lab tasks in
a heavily-loaded environment, its performance suffers.
Our goal in this experiment was to show the feasibility
of applying IPOP to a large distributed network, and
not to characterize IPOP’s performance over Planet-
Lab. Nonetheless, the Planet-Lab experiments provide
directions for future work towards improvements in
performance for IPOP that are driven by IP routing
needs.

V. DISCUSSION

The Planet-Lab experiments showed that, although IP-
level connectivity was established by IPOP, the perfor-
mance delivered by the system suffered because of (a)
contention for resources at intermediate routing nodes,
with CPU loads in excess of 1000%, and (b) long round-
trip latencies (in excess of 100ms) in the physical net-
work among nodes that were used for routing. Currently,
IPOP does not account for host and link performance for
routing, hence choices of intermediate nodes that yield
poor performance for IP routing can be made.

These results motivate research in P2P algorithms
that account for physical network performance data (link



latency and bandwidth, node load) to establish routing
paths that adapt dynamically to network conditions.

We consider the following extensions to improve P2P
routing performance:

1) Short-cut connections: We can extend Brunet to
support monitoring of P2P traffic at each overlay node,
and provide for setting up direct edges (if possible) when
communication between a pair of nodes exceeds certain
threshold. This is equivalent to using IP routing between
those two overlay nodes while the P2P provides for
address resolution and boot-strapping of such short-cut
connections. Such enhancement to Chord [52] lookup
protocol has been implemented in i3 [51].

2) Single TCP/IP protocol stack traversal: The high
overhead incurred on LAN is mainly because each
packet has to traverse the kernel TCP/IP stack twice
(once on the virtual interface, and additionally on the
physical interface). Typical Grid computing systems
are based on clusters, in many cases featuring high-
performance network cards [1][5] that support a user-
level communication architecture [15] that avoids the
overhead of traversing the kernel TCP/IP stack. IPOP
nodes can be enhanced to discover if user-level com-
munication libraries are available, and take advantage of
the functionality provided by such cards to bypass one
kernel TCP/IP stack. Through virtualization, applications
running on IPOP overlays would be oblivious to the
choice of tunneling over TCP/IP on a WAN or over a
user-level communication architecture on a cluster LAN.

VI. CONCLUSIONS

In this paper, we have described a novel network
virtualization technique - IPOP - which allows aggregat-
ing resources spanning multiple domains (even behind
firewalls, NATs) into a single virtual network, through
the use of virtual devices and P2P networks. IPOP pre-
serves the TCP/IP protocol stack semantics; this feature,
coupled with the bidirectional connectivity it provides,
enables unmodified distributed applications (written for
LANs) to run seamlessly on WANs, over the virtual net-
work. IPOP leverages the self-configuring, scalable and
fault-tolerant nature of P2P networks to achieve overlay
routing without centralized administrative control.

We have also evaluated the overheads associated with
our current prototype to establish the feasibility of
this approach. Experimental results show that (1) the
average latency overheads for a single hop are in the
range of 6-10ms, which is acceptable for many WAN
applications; (2) the average ttcp throughput delivered
by IPOP in a WAN scenario is as high as 80% of
the physical network’s bandwidth (over Brunet-UDP);
(3) IPOP successfully provided a self-configured overlay
that efficiently supported the execution (across firewalled
nodes) of a parallel application that uses several TCP/IP

services, and (4) IPOP successfully self-configured a
118-node overlay that supported 2-hop virtual IP routing
over the Planet-Lab testbed.

VII. ACKNOWLEDGMENTS

Effort sponsored by the NSF under grants EIA-
0224442, EEC-0228390, ACI-0219925, ANI-0301108
and SCI-0438246 and carried out as a component of
the “SURA Coastal Ocean Observing and Prediction
(SCOOP) Program”, an initiative of the Southeastern
Universities Research Association (SURA). Funding
support for SCOOP has been provided by the Office of
Naval Research, Award# N00014-04-1-0721 and by the
NOAA Ocean Service, Award # NA04NOS4730254. The
authors also acknowledge a SUR grant from IBM. Any
opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and
do not necessarily reflect the views of the sponsors.
The authors would like to thank Justin Davis, Vladimir
Paramygin, Chirag Dekate and David Forrest for assist-
ing in the configuration of resources.

REFERENCES

[1] Ammasso 1100. http://ammasso.com/products.htm.
[2] Cisco vpn client. http://www.cisco.com/en/US/products/

sw/secursw/ps2308/.
[3] fightaids@home. http://fightaidsathome.scripps.edu/.
[4] Linux bridge-stp-howto: About the linux modular bridge and

stp. http://www.linux.com/howtos/BRIDGE-STP-HOWTO/set-
up-the-bridge.shtml.

[5] Myrinet overview. http://www.myricom.com/myrinet/overview/.
[6] Openvpn project webpage. http://openvpn.net.
[7] Planetlab: An open platform for developing, deploying and

accessing planetary-scale services. http://www.planet-lab.org.
[8] Setting up the network (from user-mode linux project page).

http://user-mode-linux.sourceforge.net/networking.html.
[9] Tunneling ipv6 over udp through nat.

[10] P. Dinda A. Sundaraj, A. Gupta. Dynamic topology adaptation
of virtual networks of virtual machines. In Proc. of the 7th
Workshop on Languages, Compilers and Run-time Support for
Scalable Systems, Oct 2004.
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