
IP Watermarking Techniques:
Survey and Comparison

Amr T. Abdel-Hamid∗, Sofiène Tahar∗ and El Mostapha Aboulhamid§
∗Electrical and Computer Engineering Department, Concordia University, Montréal, Canada

Email: {at abdel, tahar}@ece.concordia.ca
§Dep. d’informatique et de recherche operationnelle, Université de Montréal, Montréal, Canada

Email: aboulham@iro.umontreal.ca

Abstract— Intellectual property (IP) block reuse is essential
for facilitating the design process of System-on-a-Chip. Sharing
IP blocks in such a competitive market poses significant high
security risks. IPs can be read, copied or even partitioned to cover
the authorship proof. Creators and owners of IP designs want
assurance that their content will not be illegally redistributed by
consumers. Consumers, on the other hand, want assurance that
the content they buy is legitimate. Digital watermarking, used
with most of the shared digital media, has emerged as a candidate
solution for helping copyright protection of IP blocks. In this
paper, we outline IP watermarking and survey the current state-
of-the-art of different schemes and algorithms. We also highlight
the main technical problems that should be solved in order to
let IP watermarking be used widely in industry.

I. INTRODUCTION

Fast advancing IC (integrated circuit) processing technolo-
gies have enabled the integration of full systems an a single
chip forming the new paradigm of the “System-on-a-Chip”
(SOC) technology. Incremental changes to current design
methodologies are inadequate for enabling full potential SOC
implementation. As proposed in [2], the required shift needed
for SOC design rests on two main industrial trends: The
wide availability of reusable virtual components, and, the
development of application-oriented IC integration platform
to reduce development time and efforts. Reusable virtual com-
ponents or intellectual property (IP) blocks are most effective
when coming to reducing cost and development time of SOC
designs.

Sharing IP designs poses significant high security risks.
Most of these IPs need time and effort to be designed and
verified, yet they can be easily copied, or modified to cover
the authorship proof. Creators and owners of IP designs want
assurance that their content will not be illegally redistributed
by consumers, and consumers want assurance that the content
they buy is legitimate.

Throughout history, watermarking was widely used for
copyright protection as well as data hiding. Recently, digital
watermarking has emerged as a candidate solution for the
copyright protection problem of digital media (such as video,
pictures, or music). IP watermarking is being also introduced
as a candidate to protect this sensitive copyright information.

A. System-on-a-Chip (SOC): Design Path

The SOC revolution did not only add new functionalities
and larger systems, but also changed the way such systems

used to be designed. Integration between hardware and soft-
ware from the early design stages is becoming essential to
insure better performance and functionality. Co-design, and
co-verification approaches are needed to enable the design and
implementation of such systems. According to [2], a System-
on-a-Chip is defined as “a complex IC that integrates the major
functional elements of a complete end-product into a single
chip or a chipset”.

An SOC design process starts at the system level (Figure
1), where different high level aspects, like specifications and
requirements are delivered [1]. The system level model is
designed by introducing the requirements in both the archi-
tectural and algorithmic designs [2]. In the algorithmic (func-
tional) design, the product requirements are established and a
verified specification of the system’s function is produced. This
level results in the main functional specification of the system
needed to be implemented. Afterwards at the architectural
level, the system specification is decomposed and mapped into
architectural blocks according to the algorithmic design. In this
level, the architecture or a family of architectures on which the
system will be realized is defined. These architectures include
components, such as microprocessors, memory components,
operating systems. The behavioral models, of both software
and hardware, are generated by assigning every function to a
specific hardware or software resource. This process results in
the behavioral specifications of the system.

The partitioned modules are developed separately in the
lower levels, yet the specification is used for mutual test-
ing and simulation during different implementation levels.
The software part is developed using different programming
languages that are compatible with the hardware afterwards.
In the hardware part, the design takes the same hierarchical
approach usually used in the hardware design path (Figure 1).

To facilitate and enhance such long design process, IP
blocks are used at different hardware/software design levels.
IP blocks, either reusable or those needed to be designed,
are defined in the architectural level. These pre-designed, pre-
tested IP blocks allows system engineers to make necessary
modifications and meet users requirements in a timely fashion.

B. IP Blocks and Distribution Threats

IP blocks are delivered in three main flavors depending
on price, applications, and contracts between companies. The

Proceedings of The 3rd IEEE International Workshop on System-on-Chip
for Real-Time Applications ISBN 0-7695-1929-6/03 $17.00 © 2003 IEEE

Partitioning

System-Level Model

Behevioral Model (S/W Spec.)

Coding

Behevioral Model (H/W Spec.)

Gate Implementation

RTL Implementation

Gate Model (Firm IP)

RTL Model (Soft IP)

Synthesis

Layout (Hard IP)

System Integration

System Level Design (Co-design Level)

Architectural Design

S/W Design

Algorithmic Design

H/W Design

Fig. 1. SOC Design Flow and Different Forms of IP Blocks

Virtual Socket Interface (VSI) architecture document [19]
describes such levels as (Figure 1):

Soft IP: are delivered in the form of synthesizable hardware
design language (HDL), i.e., high level designs. They have the
advantage of being more flexible and the disadvantage of not
being as predictable in terms of performance (e.g., timing,
area, power). Soft IPs typically have increased Intellectual
Property risks because RTL (register transfer level) source
code is required by the integrator.

Firm IP: have been optimized in structure and in topology
for performance and area through floor planning/placement,
possibly using a generic technology library. Firm IPs offer
a compromise between Soft and Hard. More flexible and
portable than Hard, yet more predictive of performance and
area than Soft. Firm IPs include a combination of synthesiz-
able RTL, reference technology library, detailed floorplan, and
a full or partial netlist. Firm IPs do not include routing. Risks
are equivalent to those of Soft IPs if RTL is included and are
less if it is not included.

Hard IP: have been optimized for power, size, or perfor-
mance and mapped to a specific technology. Examples include
netlists that are fully placed, and routed, or optimized custom
physical layout. They have the advantage of being much more
predictable, but consequently are less flexible and portable due
to process dependencies. Hard IPs require, at a minimum, a
high level behavioral model, a test list, full physical and timing
models along with the final layout. The ability to protect Hard
IPs is much better because of copyright facilities and there is
no requirement for an RTL code to be included.

The VSI Alliance IP protection development working group
[8] identifies three main approaches to secure IPs. First, a
deterrent approach where the owner uses legal means trying

to stop attempts for illegal distribution, i.e., using patents,
copyrights and trade secrets. This method does not provide any
physical protection to the IP. Second, a protection approach
where the owner tries to prevent the unauthorized usage of the
IP physically by license agreements and encryption. Third, a
detection approach where the owner detects and traces both
legal and illegal usages of the designs as in watermarking
and fingerprinting. This tracking should be clear enough to
be considered as evidence in front of a court if needed.
The VSI alliance proposed the usage of the three approaches
for proper protection of IP designs. The detection approach
directly interacts with the system design, and is considered
an overhead on the design cycle. IP watermarking and IP
fingerprinting are the main approaches used for detection.

In this paper, we outline IP watermarking and fingerprinting
techniques for copyright protection, surveying the current
state-of-the-art of IP digital watermarking research. Also, we
highlight the main technical problems that must be solved
before digital watermarking can be widely used in industry.

The rest of the paper is organized as follows: Section II
describes briefly the preliminaries of digital watermarking
and the main attack classes against watermarking. Section
III overviews the main approaches used for IP watermarking.
It describes the main advantages and disadvantages of each
technique as well as a comparison between them. Finally,
Section IV extracts the main guidelines and conclusions for
future IP watermarking development directions.

II. DIGITAL WATERMARKING

In [9], Kahn mentioned many examples throughout history
about hiding data on another media as a cover. The author
tells about a prisoner of war who hides messages in letters to
home using the dots and dashes on i, j, t and f to spell out
a hidden text in Morse code. As another example, the clear
signature of most of the famous artists on their paintings was
one of the first copyright watermarks ever known.

In their survey about data hiding techniques, Petitcolas
et al. [15] defined the term steganography as “having a
covert communication between two parties whose existence
is unknown to a possible attacker”. Steganography is divided
into three main application classes. First, information hiding,
which utilize the secrecy and undetectability of steganography
to transfer secret data without detection, used mainly for
espionage applications. Second, content verification applica-
tions (authentication), where a fragile watermark is introduced
to secure the contents integrity. Finally, intellectual property
protection applications, where the watermark is mainly used
to convey the information about content ownership and intel-
lectual property rights.

Copyright marking (widely known as watermarking), as
opposed to steganography, has the additional requirement of
robustness against possible attacks. Robust watermarking have
the property of being infeasible to remove them or make
them useless without destroying the object at the same time.
This means that usually it has to be embedded in the most
perceptually significant components of the object [15].

Proceedings of The 3rd IEEE International Workshop on System-on-Chip
for Real-Time Applications ISBN 0-7695-1929-6/03 $17.00 © 2003 IEEE

Key

(stego-object)
Watermarked Digital Media

Watermark Insertion

Cover Media

Watermark Encryptor Key

Watermark Embedding

Watermark Extraction

Watermark Extractor Watermark

Embeded Data

Fig. 2. Digital Watermarking

Figure 2 describes a generic model of watermarking [6]. The
process is divided into two parts: watermarking embedding,
and watermark extraction (also known as tagging and tracking,
respectively). In the embedding phase, the embedded data,
which is the message that one wishes to send secretly, is
usually hidden in another media referred to as a cover-text,
or cover-image (in our case cover-code or cover-media). This
produces the stego-text or other stego-object. A key (stego-key)
is used to control the hiding process, thus restricting detection
and/or recovery of the embedded data to parties who know it
(or who know some derived key value). This stego-key can be
either a public key or a private key depending on the scheme
of the watermarking. In the extraction phase, the stego-object
is used with the key to extract the watermark and identifies
it. The robustness and strength of a watermark are measured
usually using benchmarks, e.g., Stirmark [14] for images.

III. IP WATERMARKING: STATE-OF-THE-ART

IP watermarking is comparatively a new field. In this
survey, our aim is to discuss these approaches, exposing the
main advantages and disadvantages of each, as well as, the
different attack schemes that the intruder might. We will start
by categorizing the main attacks against IP watermarking in
the next subsection as well as different intruder schemes.
There are three main watermarking schemes discussed in
the open literature: Constraint-Based watermarking, Finite
State Machines watermarking, and Digital Signal Processing
watermarking. Each associated with one or more algorithm
or technique, which will be discussed in the subsections to
follow.

A. Attacks Against IP Watermarking

Some of the essential aspects (may be even the most
essential one) that have to be studied with any security
system, are attacks and risks against such techniques. Digital
watermarking attacks are categorized in four main classes [6]:
unauthorized removal, unauthorized embedding, unauthorized
detection, and system attacks. The same categorization applies
for IP watermarking schemes, yet unauthorized detection is not
considered a high risk for IPs.

Removal attacks aim at the removal of the watermark
information [18]. This is tried without breaking the security
of the watermark, i.e., without searching for the key used
in the embedding. Removal attacks are divided into either

elimination attacks or masking attacks. The intruder tries to
eliminate the watermark completely in the elimination attacks.
As an example, the intruder tries to estimate the watermark and
subtract it from the watermarked design. On the other hand,
masking attacks do not aim at removing the watermark itself,
but rather aim at distorting the watermark detector such that it
will not be able to sense the availability of the watermark. This
attack is considered one of the main measures for robustness
of a watermark. Collision attacks, de-noising, compression and
demodulation are used in such attacks in case of multimedia
objects (or data). In IP watermarking, finite state machine
reduction for instance can be used in some cases to delete
the watermark.

Embedding attacks (forging) aim at embedding another
watermark in the design, this can be done either by ghost
searching, where the intruder tries to find a ghost watermark
and consider it as his watermark, or by re-embedding the
watermark if he/she has the tools necessary to do this.

System attacks aim on attacking the concept of watermark-
ing its self, as an example, attacking the cryptographic base
of the watermarking, or removing the chip that check the
watermark physically in case of video for instance. This kind
of attacks cannot to be avoided by the watermarking schemes,
yet the VISA IP protection group solves this by protecting
the design through different transactions, i.e., using protection
techniques to overcome such problem.

B. Constraint-Based IP Watermarking

Kahng el al. [10] proposed the constraint-based IP water-
marking as one of the leading approaches for IP watermarking.
This approach is a generic algorithm that can be used at
different levels of the design flow.

it is based on the usage of available tools used mainly to
solve NP-hard problems. The algorithm adds extra constraints
to such solutions that would make it yield the new water-
marked design as discussed in details below. The approach is
based on a generic optimizer and the constraint-satisfaction
(SAT) problems. The watermarking tool proposed is mainly
composed of the following parts (Figure 3):

1) An optimization problem, which is an NP-hard problem
that needs constraints and heuristics to be solved.

2) An off-the-shelf optimization software/algorithm to solve
such a problem.

3) A set of constraints that should be applied to the design.
4) A well-formed grammar to add extra-constraints to the

previous ones for building the required watermarked design.
This is the main watermarking tool, it is composed of a one-
way encryption functions that convert the watermark of the
code to a set of well-formed constraints.

The watermark is presented to the constraint generator,
where it is first encrypted, then transferred through a hash
function (to shorten its length). Finally, it is converted to a
set of extra constraints, through the well-formed grammar,
forming a new set of constraints which is added to the available
ones. Both the design and the set of constraints are feed to
the black-box optimizer resulting in a watermarked solution.

Proceedings of The 3rd IEEE International Workshop on System-on-Chip
for Real-Time Applications ISBN 0-7695-1929-6/03 $17.00 © 2003 IEEE

Design Design Constraints

Extra Design Constraints

Blackbox Optimizer

Constraint Generator

Watermark

Watermarked Design

Fig. 3. Constraint-Based IP Watermarking

The watermark is then a set of extra constraints that will limit
the set of possible solutions to a smaller set. The watermark
becomes stronger as the “watermark subset” is smaller.

Two factors are used to measure the strength of this ap-
proach: (1) The cost of the optimization problem, where the
harder the solution is, the stronger and more meaningful the
watermark, as resolving it will cost nearly as much as the
re-design of the whole project; (2) The probability (Pc) that
a non-watermarked design would carry this watermark by
coincidence. Although this is a main term of the strength, it
is not calculated exactly, however an upper bound assuming
all constraints to be independent was calculated.

Due to the generic nature of the approach, it was tested and
applied to different levels of the IP design. It was extended
for most of the design levels NP-hard problems. At the system
level, it was used for watermarking of memory graph coloring
solutions by Hong el al. [7], as well as using it in solving linear
programming problems by Megrian et al. [11]. At lower design
levels, the physical level for instance, the approach was used
even more effectively as it was linked to the NP-hard problems
available at such levels such as routing [12].

The main advantage of the approach is its real low overhead,
as the NP-hard problem will be solved anyway as well
as the constraint generator does not cause much overhead.
Nevertheless, the approach has some major drawbacks. First,
the watermark cannot be detected except at the same level of
abstraction, i.e., tracking the watermark is not that easy if the
design is resold at other abstraction levels. The algorithm is
missing a good tracking way at lower design levels. Another
main drawback is the fact that imposing extra-constraints on
a design procedure might not be as successful as thought by
the authors. For instance, some constraints might contradict,
or at least pull the solution away from the optimized solution
expected. In this case, we will need to redo the whole process
of changing our signature to get better results. This might
introduce a high overhead in the design process and might not
yield to satisfactory results in some cases. Finally, exposing
the well-formed grammar in any legal dispute, would weaken
other watermarked designs especially against forging attacks.
This means that the algorithm in a way is dependent on the

secrecy of the defined grammar.
The generic approach though proved to be immune for most

of the available attacks. The idea of injecting the watermark in
a non-linear problem by nature gives it this real high strength.
Removal attacks would need to resolve the NP-hard problem,
which mostly would cost as much as rebuilding the whole
design again, especially if the intruder needs to re-engineer the
design. Forging, by either trying to add the intruder signature
or finding a ghost signature highly depends on the probability
Pc which was proved to reach 2−56 in some cases.

C. Watermarking Finite State Machines

At the behavioral level, Oliveira [13], and Torunoglu et al.
[17] introduced two different techniques used in the water-
marking of sequential parts of the design. Both algorithms
are based on adding new input/output sequences to the finite
state machines (FSM) representation of the design. The main
advantage of both approaches is the ability to detect the
presence of the watermark at all lower design levels.

1) FSM Watermarking Based on Unused Transitions:
Torunoglu and Charbon [17] introduced the first approach
on FSM watermarking. The algorithm is mainly based on
extracting the unused transitions in a state transition graph
(STG) of the behavioral model. These unused transitions are
inserted in the STG associated with a new defined input/output
sequence, which will act as the watermark.

The approach in [17] starts with building the FSM represen-
tation of the function, then visiting every state and finding the
unused state transitions (input/output pairs). In case the FSM
is completely specified (CSFSM), new input/output pairs are
added to expand the FSM. The minimum number of transitions
needed is then calculated, and compared to the maximum
number of free transitions to satisfy the probability (Pc) that
a non-watermarked design would carry this watermark by
coincidence. If this probability cannot be satisfied, input/output
pairs should be added to satisfy the watermark requirements.

The input/output sequence is calculated, such that the input
sequence is random to the set of unused transition inputs. On
the other hand, the output, which is the hidden information,
is encrypted using a key. Extra transitions are added such that
the output of the given input sequence generates the encrypted
hidden data, i.e., one should have both the key and the input
sequence to be able to read the watermark.

Figure 4 [17] shows an example of the watermarking
process, where Figure 4 (a) shows the original design, Figure 4
(b) describes the watermarked design, and Figure 4 (c) shows
another watermarked solution after augmenting the inputs to
add more transitions. The strength of such process is related
mainly to the same Pc factor described in Section III-2. The
authors in [17] have proven an upper bound for this probability
depending on the number of free transitions used and the
number of free transitions needed.

The approach is very promising, as it works at a very
high level which provides extra strength. Also, it can be
detected at mostly all lower levels sometimes even after
design manufacturing. The approach still has some drawbacks:

Proceedings of The 3rd IEEE International Workshop on System-on-Chip
for Real-Time Applications ISBN 0-7695-1929-6/03 $17.00 © 2003 IEEE

q1q0

q2q3

11/0

1-/0

00/1

00/0
00/1

11/0

q1q0

q2q3

110/0

1-0/0

000/1

000/0
001/1

110/0

q1q0

q2q3

11/0

1-/0

00/1

00/0

(a) (b)

(c)

Fig. 4. FSM Watermarking Based on Unused Transitions

(1) Finding the input sequence that satisfies Pc and is not
considered with a high overhead on the STG is an NP-hard
problem. The authors of [17] proposed exhaustive search, or
Monte-Carlo search [4] to get over this, yet solving this would
propose a high overhead in the design phase; (2) The algorithm
is mechanically removable in case of the knowledge of the
input sequence. So, public-key watermarking cannot be used
with this approach because an intruder who knows the input
sequence of the watermark, can build a machine (program)
that will delete all such transitions from the FSM.

The algorithm is immune for FSM reduction techniques, as
the variables used are usually in other transitions, which makes
it real hard to remove. Yet, if the intruder has the STG but does
not have the input/output mapping (the case of most IP blocks),
he/she might try to tamper the watermarking, by changing the
output of the next state related to the transition. This may
result in a change in functionality. Besides, the intruder might
try to read his/her own watermark using the same concept. The
authors in [17] tried to solve this by building a machine based
on the Genome search [17] to find the tampered watermark.

2) FSM Watermarking by Property Implanting: Oliveira
[13] proposed the implicit manipulation of the STG of the
finite state machine to implant the watermark as a property in
the new one. To watermark a design, the user should define an
arbitrary long string that clearly describes his/her ownership
rights. This data is considered the watermark information.
After encrypting this message using a public key, the user
should then use a one-way hash function, such as MD5 [16],
to obtain a compact signature of this arbitrarily long sentence.
The arbitrary sequence is then broken to input sequence
combinations. For example, if the design has 16 inputs, and
the sequence is 128 bits, it defines a unique sequence of 8
input combinations.

The user then changes the STG in such a way that the
sequence of states reached by this sequence of inputs exhibits
a specific property, which is rare in non-modified STGs. This
property is purely topological and does not depend on the
specific encoding. If, later on, the watermark need to be
uncovered, the designer shows this input sequence and the

property he/she defined.
In order to define the input sequence to change the STG

properties, Oliveira [13] adds extra states and transitions in a
systematic way to satisfy this property. The algorithm has a
low overhead on the design flow, because it does not need to
go through the FSM to find the unused transitions (an NP-
hard problem as discussed above). In [13], it is even proposed
to use a very strong way to build and implant his watermark
without the need of building the FSM of the design.

The approach depends on adding a counter that checks for
the input sequence expected and it reaches a certain value to
indicate that the design has traversed the watermark proposed.
This counter is an internal signal that can only be seen during
simulation of the design, i.e., it cannot be detected from
outside. The author of [13] as well, did not calculate the
probability Pc in any of the designs. Instead, he relied on
another probability Pbeta, which was defined as false positive
detection. The extra states added can be removed sometimes
using a state reduction approach, although the author proposed
to solve this problem by slightly changing the functionality of
the STG. This can never be done mechanically as it is pretty
complicated and might affect the design functionality.

D. Digital Signal Processing Watermarking

At the algorithmic level, Chapman et al. [3] proposed a
Digital Signal Processing (DSP) watermarking scheme. The
algorithm is based on the ability of designers to make minor
changes in the decibel (db) requirements of filters.

In this approach, the designer of a high level digital filter
should encode one character (7 bits) as his/her hidden water-
mark data. Then the high level filter design is divided into 7
partitions where each partition is used as a modulation signal
of one of the bits. This means dividing the filter to 7 parts and
use each part as a carrier signal with little db change if the
bit is one or no db change if the bit it zero.

This approach can be used at the DSP design level, which is
a real high level design, yet the authors of [3] did not discuss
the strength of their approach or the probability Pc that this
bits might coincide with another un-watermarked design. The
approach as well depends on a very low data rate, just one
character (7 bits), which makes it really unpractical to be used
in an industrial environment. The approach also is missing a
clear way to track and extract the watermark at lower levels.

IV. IP WATERMARKING: EVALUATION AND COMPARISON

Cox et al. [6] described the main properties that would
judge the suitability of a watermarking scheme for a certain
application. From their property list, we have chosen those
mostly applicable to IP and would affect mostly the decision
when choosing an IP watermarking technique.

Table I shows the five main properties we chose for wa-
termarking evaluation. We started by the embedding cost,
which expresses both the combinational cost of the embedder
and the time needed for embedding such watermark. The
overhead a watermark adds to the design compared to the
actual design. The ability and cost of tracking the watermarked

Proceedings of The 3rd IEEE International Workshop on System-on-Chip
for Real-Time Applications ISBN 0-7695-1929-6/03 $17.00 © 2003 IEEE

TABLE I

COMPARISON OF DIFFERENT IP WATERMARKING APPROACHES

Property Constraint Unused Property DSP
based Transitions Implanting

Embedding Cost Low High Medium Low

Overhead Low Low Medium Low

Tracking Cost High Low Low High

Probability of Coincidence Low Low Low High

Security High Medium Medium High

design afterwards. The probability of coincidence, calculated
by Pc, giving the probability a non-watermarked design might
coincide by accident with a watermarked one. Finally, the
security, which is the ability of the watermark to resist
different hostile attacks. The robustness and the strength of
a watermark are usually measured using benchmarks. For
instance, Stirmark [14] is one of the main benchmarks for
image watermarking techniques. For IP watermarking, there
is no benchmark available so people use the probability of
occurrence, Pc, and other probabilities to measure the strength
of their watermarks.

It became clear from Table I, that the constraint-based
watermarking technique has the advantage of low cost for both
design overhead and embedding. Yet, it has a real drawback of
the inability of tracking this approach through simple tracking
tools. Also, the solution derived using this approach might
shift from the optimum solution that can be generated without
the extra added constraints.

Both of the FSM based approaches (adding either properties
or making use of unused transitions) have problems on their
own. FSM watermarking utilizing unused transitions search
for all unused transitions can cause state space explosion
easily and this is considered a real high embedding cost.
While adding properties for the FSM seems more attractive
in terms of embedding cost, yet its high design overhead, and
vulnerability to reduction techniques is still considered a real
problem as well. Both approaches have the very important
advantage of being tractable all over the IP block life cycle
(sometimes even after manufacturing).

Finally, the DSP watermarking approach has a lower design
overhead and embedding cost as the addition of the watermark
is nearly totaly transparent to the design process. Nevertheless,
the amount of data inserted is very low (1 byte), this would
cause a low Pc. Besides, it is very hard to be tracked in the
output noise of the manufactured design.

Future IP watermarking schemes should be robust enough
to secure the design, yet they should not imply a high overhead
on neither the design process nor the final watermarked
product. Adding a hierarchy of watermarks through the design
cycle can give a more robust watermark against attacks [5].
Starting form high levels of the design (i.e., system level)
and integrating the watermark through many design levels
insures robustness, which decreases the risks of destroying

the watermark. These watermarks should be easily detectable
at lower design levels to insure proper tracking. Efficient
watermark schemes should also use a Public-key encryption
algorithm in the watermarking process, thus allowing third
party entities (like brokers, testers) to get into the distribution
cycle without security hazards. Finally, IP watermarking de-
velopers are missing a strong benchmark like those available,
e.g., for photos. Such benchmark would be a balanced measure
for the strength of different approaches. Benchmarking an IP
watermarking scheme is harder than for instance of photos as
the watermark might be spread in many design levels, given
the different nature through the design span of SOC.

REFERENCES

[1] Cadence Corp., ”Cadence System Level Design and Verification”, Ca-
dence Design Systems, White paper, 2002.

[2] H. Chang, L. Cooke, M. Hunt, G. Martin, A. McNelly, and L. Todd,
”Surviving the SOC Revolution: A Guide to Platform-Based Design”,
Kluwer Academic Publishers, 1999.

[3] R. Chapman and T. S. Durrani, ”IP Protection of DSP Algorithms
for System on Chip Implementation”, IEEE Transactions on Signal
Processing, Vol. 48, No. 3, March 2000, pp. 854-861.

[4] E.D. Cashwell and C.J.Everett, “A Practical manual on the Monte Carlo
Method for Random Walk Problems”, Pergamon Press, 1959.

[5] E. Charbon, ”Hierarchical Watermarking in IC Design”, IEEE 1998
Custom Integrated Circuits Conference, Santa Clara, California, USA,
May 1998, pp. 295 - 298.

[6] I. J. Cox, M. L. Miller, and J. A. Bloom, ”Digital Watermarking”, Morgan
Kaufmann Publishers, ISBN 1-55860-714-5, 2002.

[7] I. Hong and M. Potkonjak, ”Techniques for intellectual property protec-
tion of DSP designs”, IEEE International Conference. Acoustics, Speech,
and Signal Processing, Munich, Germany, vol. 5, 1998, pp. 3133-3136.

[8] Intellectual Property Protection Development Working Group, ”Intellec-
tual Property Protection: Schemes, Alternatives and Discussion”, VSI
Alliance, White Paper, Version 1.1, August 2001.

[9] D. Kahn, ”The Codebreakers: The Story of Secret Writing”, Scribner,
1996.

[10] A. B. Kahng, et al., ”Copy Detection for Intellectual Property Pro-
tection of VLSI Design” Proc. IEEE/ACM International Conference on
Computer-Aided Design, San Jose, California, USA, November 1999, pp.
600-604.

[11] S. Megerian, M. Drinic, and M. Potkonjak. ”Watermarking Integer Lin-
ear Programming Solutions”, Proc. 39th IEEE/ACM Design Automation
Conference, New Orleans, LA, USA, June 2002, pp. 8-13.

[12] N. Narayan, et al., ”IP Protection for VLSI Designs Via Watermarking of
Routes,” in Proc. 14th Annual IEEE International ASIC/SOC Conference,
Washington, DC, USA, September 2001, pp. 406-410.

[13] A. L. Oliveira, ”Techniques for the Creation of Digital Watermarks
in Sequential Circuit Designs”, IEEE Transactions om Computer-Aided
Design of Integrated Circuits and Systems, Vol. 20, No. 9, September
2001, pp. 1101-1117.

[14] F. A. P. Petitcolas, R.J. Anderson, and M. G. Kuhn, ”Attacks on
copyright marking systems”, Proceeding of Information Hiding, Second
International Workshop, LNCS 1525, Springer-Verlag, April 1998, pp.
219-239.

[15] F. A. P. Petitcolas, R. J. Anderson, and M. G. Kuhn, ”Information
Hiding- A Survey”, Proceeding of the IEEE, special issue on the
protection of multimedia content, Vol. 87, No. 7, July 1999, pp. 1062-
1078.

[16] R. Rivest, “RFC 1321: The MD5 Message-Digest Algorithm”, Network
Working Group, 1992.

[17] I. Torunoglu, and E. Charbon, ”Watermarking-Based Copyright Protec-
tion of Sequential Functions”, IEEE Journal of Solid-State Circuits, Vol.
35, No. 3, February 2000, pp.434-440.

[18] F. Vahid, and T. Givargis, ”Embedded System Design: A unified
Hardware/Software Introduction”, John Wiley & Sons, 2002.

[19] VSI Alliance, ”VSI Alliance Architecture Document: Version 1.0”, VSI
Alliance, 1997.

Proceedings of The 3rd IEEE International Workshop on System-on-Chip
for Real-Time Applications ISBN 0-7695-1929-6/03 $17.00 © 2003 IEEE

