
09 August 2022

POLITECNICO DI TORINO
Repository ISTITUZIONALE

IP-XACT for Smart Systems Design: Extensions for the Integration of Functional and Extra-Functional Models / Vinco,
Sara; Lora, Michele; Macii, Enrico; Poncino, Massimo. - ELETTRONICO. - (2016), pp. 1-8. ((Intervento presentato al
convegno Forum on Specification & Design Languages (FDL), 2016 tenutosi a Bremen nel 14-16 settembre 2016
[10.1109/FDL.2016.7880379].

Original

IP-XACT for Smart Systems Design: Extensions for the Integration of Functional and Extra-Functional
Models

Publisher:

Published
DOI:10.1109/FDL.2016.7880379

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2651259 since: 2020-02-22T22:16:57Z

IEEE

IP-XACT for Smart Systems Design:
Extensions for the Integration of Functional

and Extra-Functional Models

Sara Vinco∗, Michele Lora†, Enrico Macii∗, Massimo Poncino∗

∗Dept. of Control & Computer Engineering, †Dept. of Computer Science,
Politecnico di Torino, Università degli Studi di Verona,

Torino, Italy Verona, Italy
name.surname@polito.it michele.lora@univr.it

Abstract—Smart systems are miniaturized devices integrating
computation, communication, sensing and actuation. As such,
their design can not focus solely on functional behavior, but it
must rather take into account different extra-functional concerns,
such as power consumption or reliability. Any smart system can
thus be modeled through a number of views, each focusing on
a specific concern. Such views may exchange information, and
they must thus be simulated simultaneously to reproduce mutual
influence of the corresponding concerns.

This paper shows how the IP-XACT standard, with some
necessary extensions, can effectively support this simultaneous
simulation. The extended IP-XACT descriptions allow to model
extra-functional properties with a homogeneous format, defined
by analysing requirements and characteristic of three main
concerns, i.e., power, temperature and reliability. The IP-XACT
descriptions are then used to automatically generate a skeleton
of the simulation infrastructure in SystemC. The skeleton can
be easily populated with models available in the literature, thus
reaching simultaneous simulation of multiple concerns.

I. I NTRODUCTION

Compared to classical embedded systems, smart systems are
characterized by theirsmartness, that is, the ability to learn
from the previous experience and to seamlessly react to the
surrounding environment [1]. This tight interaction with the
physical environment implies a high level of heterogeneity, in
terms of both components and design constraints. Correctness
lies indeed not only in the functionality, but also in a number
of extra-functional constraints that must be met or optimized,
ranging from power consumption to reliability [2]. Further-
more, due to their heterogeneity, many different stakeholders
are involved in the design flow, each focused on a particular
set of concerns. This impacts on the traditional design flow,
that must take into account such extra-functional aspects in
all simulation, validation and optimization steps. This isfar
from trivial, since it requires to integrate models captured in
different dedicated languages and tools [3], [4].

Functional languages and standards responded to this evolv-
ing scenario with extensions covering new aspects and do-
mains [5]–[7]. As an example, Hardware-Description Lan-
guages (HDL), like SystemC and Verilog, support extra-
traditional domains, such as power and mechanical systems,
thanks to their Analog and Mixed-Signal (AMS) exten-

This work has been partially supported by the European project CONTREX
(FP7-ICT-2013-10-611146).

sions [8]–[11]. Such extensions may allow to include in a
single simulation multiple aspects of the same system, all
implemented with the same language and managed by the same
simulation kernel [12].

The IP-XACT standard for interface specification [13] did
not fall behind. Initially designed for digital IP specification, it
has indeed been recently extended to cover also AMS descrip-
tions, physical design and power characteristics of the IPs[7].
The extensions are mainly devoted to physical characteristics
of circuit and package (e.g., supply nets, combinational paths,
and compliance with energy conservation laws). They are thus
useful when dealing with the final product,e.g., to integrate it
in a larger system or to apply further redesign and synthesis.
However, the modeled information focuses on too low-level
information, that does not allow to build an integrated simula-
tion framework comprising simultaneously both functionality
and extra-functional aspects (e.g., power and heat flows).

To overcome this gap, this work shows how IP-XACT, with
necessary extensions, can effectively support the design of
smart systems with the integration of extra-functional aspects
in a single simulation framework. The novel contributions of
this work are:

• the identification of asuitable simulation framework, sup-
porting the modeling of different views and concerns, to
reconcile different aspects of the same system in a single
simulation framework. In particular, the paper exemplifies
the idea by focusing on three different extra-functional
concerns, particularly important for smart systems design,
i.e., power consumption, thermal dissipation and reliability;

• the definition ofextensions to the IP-XACT standard, that
allow to model extra-functional aspects, with the applica-
tion to the identified concerns;

• the IP-XACT files are then used forautomatic generation
of a skeleton of the simulation code, that can be easily
populated with state-of-the-art models to reach seamless
simulation of the overall system.

The paper is organized as follows. Section II provides
the necessary background. Section III outlines the proposed
approach, that is detailed in Sections IV, V and VI. Section VII
concludes the paper with some remarks.

II. BACKGROUND

A. Multi-view modeling
Broman et. al. in [3] proposed the application of the

ISO/IEEE standard 42010 [14] to the field of heterogeneous
systems. The authors considered that any system includes
different aspects of interest (calledconcerns), including,e.g.,
functionality, power, temperature or reliability. Stakeholders
involved in the design flow may be interested in more than one
concern,e.g., to consider at the same time reliability aspects
and power consumption. It is thus necessary to produce models
capable of capturing multiple concerns of the same system
simultaneously. The system is thus subdivided into different
views, each focusing on a specific concern and implementing
a subset of the overall system behavior. Views may exchange
relevant information to reproduce mutual effects,e.g., between
power consumption and temperature, or between reliabilityand
functionality. This must be implemented through an informa-
tion exchange mechanism, reproducing how different concerns
may influence each other.

Implementing multi-view modeling allows to cover multiple
views in a single simulation framework, thus covering simulta-
neously heterogeneous aspects of the same system. This would
provide a powerful tool to the stakeholders involved in the
design of the system.

B. Heterogeneous smart system simulation
Approaches available in the literature for smart system

simulation face the challenges posed by heterogeneity and in-
tegration of different concerns with a variety of strategies. The
most straightforward solution consists of integrating different
tools, each native of a specific aspect of the system [15]–
[18]. Despite guaranteeing the correctness in the modelingof
specific aspects, this solution introduces heavy and error-prone
overheads in the integration of the different tools [12].

Many frameworks have been proposed for simulating dif-
ferent concerns in a single framework or tool. Top-down
approaches, like PtolemyII [19], support a number of Models
of Computation (MoC), so that any component can be modeled
with the most suitable simulation semantics. Even if this allows
to cover also physical phenomena, integration of different
MoCs is manual, and reuse of existing components requires
long configuration and integration times. Extra-functional fea-
tures and orthogonalization of concerns are explicitly sup-
ported by the MetroII [20] simulation environment, that allows
to annotate physical quantities into functional descriptions.
However, MetroII does not ease the reuse of existing IPs:
designers must convert system components to the MetroII se-
mantics, and to annotate the extra-functional values manually.

Other approaches exploit SystemC-AMS flexibility to build
a single framework covering different aspects, ranging from
communication protocols to physical behaviors [9], [21]. How-
ever, this kind of solutions restricts the support to a single
aspect (e.g., power [9]) or model extra-functional evolution
with high-level models (e.g., waveforms or physical equations),
thus missing more complex behaviors like energy flows and
thermal evolution [21].

C. IP-XACT
IP-XACT aims at easing IP integration and reuse through the

formalization of IP interfaces and protocols [13]. It defines
a standard XML format, that supports two main description

schemas. Acomponent definitionis univocally identifiable by
the quadruple calledVLNV, composed by the component’s
Vendor, Library of IPs,Nameof the component and itsVersion.
A component definition essentially contains the interface of an
IP, provided as a list of ports. Each port is defined by a name,
a type, a direction, width and usage information. Adesign
definition represents the instances of components in a system
and the interconnection between them.

Over time, some extensions have been proposed to the IP-
XACT standard. A lot of effort has been spent on extending the
support to SW and to HW-SW communication [22]–[26]. Ac-
cellera proposed an extension supporting analog-mixed signal
descriptions and IP characteristics in terms of physical design
and power distribution [7]. However, these extensions focus
on the implemented physical circuit, and thus can not be used
to build a runtime simulation environment.

A successful support for extra-functional simulation has
been provided by [9], that extends IP-XACT to the modeling
of power flows. Despite of the similarityw.r.t. the current
approach, [9] limits the scope to the sole power view, thus
not fully supporting the simulation of a smart system.

D. SystemC
Despite of being a HDL, SystemC has been widely adopted

for the modeling of both digital HW, embedded SW and
networked systems [27], [28]. This flexibility is realized thanks
to the discrete event semantics (that well matches all the
mentioned domains) and to its being a C++-based language.
However, SystemC is strictly limited to discrete-time descrip-
tions, thus not covering a wide range of components and
behaviors of typical smart systems.

The support for smart systems has been widened by its
analog and mixed-signal extension,i.e., SystemC-AMS. To
cover a wide variety of domains, SystemC-AMS provides three
different modeling formalisms, supporting different commu-
nication styles and representations.Timed Data-Flow(TDF)
models are scheduled statically by considering their producer-
consumer dependencies in the discrete time domain.Linear
Signal Flow(LSF) supports the modelling of continuous time
through a library of pre-defined primitive modules (e.g., inte-
gration, delay). Finally, theElectrical Linear Network(ELN)
formalism models electrical networks through the instantiation
of pre-defined primitives associated with electrical equations,
e.g., resistors or capacitors. As such, SystemC-AMS is expres-
sive enough to allow for the modeling of physical quantities
evolution within SystemC models.

III. OVERVIEW

A. Application of multi-view modeling to Smart Systems
The goal of this work is to apply the multi-view modeling

presented in Section II-A to the context of smart system design.
To do this, we consider a smart system as a set of different

overlapping views, each focusing on a specific concern. Each
component of the smart system may participate to a number
of views by providing view-specific models and interfaces,
thus implementing the features of the componentw.r.t. a
specific design concern. This concept is depicted in Figure 1.
The system is modeled through three views (one for the
functionality, and two extra-functional views). The same com-
ponent (Component1) is provided with one model per view,

Extra-functional View 1 Extra-functional View 2

Functional View

Component1 Component1

Component1

Fig. 1. Multi-view simulation applied to the context of smart system design.
The system is provided with a number of views, and each component may
provide a model for each view. Solid arrows depict inter-view communication
for Component1 , while dashed lines depict intra-view communication.

each implementing the evolution of the componentw.r.t. the
modeled concern.

Each view restricts the focus to a specific concern of the
system.Intra-view communicationis used to model the ex-
change of information among component models belonging to
the same view (i.e., modeling the same concern). This kind of
communication is required to share local information globally
(within the view), and to compute global information about the
modeled concern (e.g., to reproduce energy and heat flows).
This type of communication is strictly carried by concern-
specific signals and ports (the dashed arrows in Figure 1).

Vice-versa,extra-view communicationaims at modeling in-
formation exchanges between different views of the system
(the solid arrows in Figure 1). This kind of communication
is necessary to model mutual influences between different
concerns,e.g., the impact of functionality on power consump-
tion, or of the latter on thermal dissipation. This kind of
communication can employ concern-specific signals and ports,
but it may also adopt standard signals to represent custom
information that is not necessary for characterizing the single
concerns but rather to determine the mutual effect, depending
on the information nature.

B. Methodology overview
Figure 2 represents the proposed flow, where colored boxes

are for the novel contributions. As a first step, we analyzed the
typical concerns of interestfor the modeling and simulation
of smart systems (1). This allowed to determine the necessary
extensions of the IP-XACT standard, with the goal of applying
multi-view modeling to the context of smart system simulation
(2). This constitutes the main novelty of the current work.
The extended IP-XACT format allows tomodel all functional
and extra-functional interfacesof system components with the
same formalism (3). Note that the construction of the IP-XACT
description of a system is manual, as it is specific of the single
case study. The IP-XACT files determine a skeleton of the
simulation framework, in terms of component interfaces andof
system connections. The next step is thusautomatic generation
of a skeleton of the simulation framework(4). In this work, the
target language is SystemC, whose extensions allow to cover
a wide range of concerns with a single language. Finally, the
generated code must bepopulated with state-of-the-art models
describing the behavior of system components in the context
of each view (5). This consists of implementing the SystemC
modules with suitable models available at state-of-the-art. This

1. ANALYSIS OF

CONCERNS AND

VIEWS

2. DEFINITION OF IP-XACT

EXTENSIONS FOR NON-

FUNCTIONAL CONCERNS

SYSTEM COMPONENTS AND

CONNECTIONS

3. COMPONENT INTERFACES

AND CONNECTIONS FOR

EACH VIEW

IP-

XACT

4. GENERATION OF

SIMULATION

FRAMEWORK SKELETON

SYSTEMC

5. MODEL

IMPLEMENTATION AND

SYSTEM SIMULATION

SYSTEMC

Fig. 2. Overview of the proposed approach. Colored boxes represent the
novelty proposed by the current work.

step is strictly dependent on the system under development,
and is thus entirely manual.

IV. A NALYSIS OF TYPICAL SMART SYSTEM CONCERNS

The extra-functional characterization of smart system may
focus on a number of physical concerns. In this work, we
currently focus on three main concerns, that are tradition-
ally considered the most relevant physical phenomena [29]:
power consumption (or production),heating, and reliability.
Such concerns, together with functionality, constitute the most
relevant aspects of a smart system, and the main focus of this
work. Each concern determines the construction of a specific
view of the system.

Table I reports the views corresponding to each concern,
described in terms of modeled behaviors of interest and of
mutual influencew.r.t. the other views:

• the functionality viewrepresents the “computational” be-

TABLE I. T YPICAL SMART SYSTEM VIEWS, WITH CORRESPONDING

CONCERNS AND POSSIBLE INTERSECTIONS WITH OTHER VIEWS.

View Behavior of interest Mutual influence

FUNCTIONALITY Functional implementa-
tion

State (e.g., EFSM state, fetched in-
struction) and duty cycle influenc-
ing power consumption and ther-
mal behavior. Hazards due to ar-
chitectural choices (e.g., pipeline)
impacting on reliability.

POWER Power (consumption or
production), current
(consumption or
production), operating
voltage

Power, current, voltage influencing
heating production and reliability.
Faulty behavior due to lack of en-
ergy.

THERMAL Temperature (absolute or
relative), heat flow

Overheating worsening batteries
and capacitors performance, and
causing faulty behavior (e.g., de-
lays). Reliability degradation due
to thermal cycling.

RELIABILITY Expected lifetime,
Mean Time To Failure
(MTTF), failure rate
(λ =

1

MTTF
)

May affect component functional-
ity due to lower MTTF and through
the use of fault-tolerant circuitry.

havior of devices. Functionality can be modeled in a
variety of fashions, ranging from state machines (e.g., for
digital HW) to sequential SW. Power consumption may
vary with the evolution of the functionality, since different
amounts of power may be necessary to perform different
computation. Thermal behavior may be influenced by the
active portions of the system, or by the operating frequency.
Finally, architectural choices,e.g., pipelines, and heavy
computation cycles may increase circuit stress and error
probability, with the result of worsening reliability;

• the power viewrepresents the energy flows inside of the
smart system,i.e., how energy flows from power producers
(power sources and storage) to consumers. As anticipated,
power evolution is influenced by functionality,e.g., by
the component operating mode or the fetched instruc-
tion (in case of CPUs). Vice-versa, power may influence
both functionality and reliability by introducing component
failures due to energy lacks or peaks. The power view
is strongly connected to the system thermal view, since
energy consumption produces heating.

• the thermal view focuses on the heat exchanges in the
system, and on modeling the evolution of component
temperature over time. Temperature is heavily influenced
by both power consumption and the functionality, since
circuit stress caused by computation increases tempera-
ture. Temperature influences power consumption,e.g. by
degrading the capacity of energy storage components or
by introducing fluctuations in the operating point of com-
ponents. Temperature peaks and fluctuations may cause an
increase in the error rate, and thus affect reliability.

• the reliability view measures the expected lifetime of the
system, in terms of the Mean Time To Failure (MTTF) or
of its reciprocalλ. As anticipated, reliability of a system
or a component heavily depends on the other views, as
it depends on the power operating point (e.g., on power
consumption), thermal range and computation stress on the
circuitry. Vice-versa, reliability impacts on the other views,
since failures can strike any kind of component, including
functional components, energy sources or storage devices,
and thermal dissipation devices. Furthermore, in case of
fault tolerant systems, it may modify the functional view,
e.g., by imposing error correction or detection circuitry.

The outline clearly highlighted the presence of mutual effects
between concerns. This proves that composing a stakeholder’s
viewpoint requires the simultaneous modeling and simulation
of all views, not to miss critical dependencies and unexpected
evolution caused by the mutual interaction of different con-
cerns. This concept is exemplified by Figure 1: functionality
impacts on power consumption (view 1) and thus on temper-
ature (view 2); this may cause an overheating, and force to
reduce the functional operating frequency.

V. EXTRA-FUNCTIONAL IP-XACT EXTENSIONS

This Section presents how multi-view modeling can be
supported by IP-XACT, either by adopting (and adapting)
the current standard, or by proposing necessary extensions.
The changesw.r.t. the standard are summarized below, and
exemplified in Figures 3– 5. To improve the effectiveness of
the proposed approach, all proposed extensions have been for-
malized in additional XSD schemas, that define the namespace
extra-functional.

1. <ipxact:component xsi:schemaLocation="... ./extrafunctional/index.xsd">

2. <ipxact:vendor>vendor2</ipxact:vendor>

3. <ipxact:library>fdl16</ipxact:library>

4. <ipxact:name>cpu</ipxact:name>

5. <ipxact:version>1.3</ipxact:version>

6. <extrafunctional:concern>power</extrafunctional:concern>

7. <ipxact:model>

8. <ipxact:ports>

9. <ipxact:port><ipxact:name>cpu_state</ipxact:name>

10. <ipxact:wire ipxact:allLogicalDirectionsAllowed="false">

11. <ipxact:direction>in</ipxact:direction>

12. <ipxact:vector>

13. <ipxact:left>2</ipxact:left><ipxact:right>0</ipxact:right>

14. </ipxact:vector>

15. <ipxact:wireTypeDefs><ipxact:wireTypeDef>

16. <ipxact:typeName ipxact:constrained="false"> std_logic_vector

</ipxact:typeName>

17. <ipxact:typeDefinition>IEEE.std_logic_1164.all</ipxact:typeDefinition>

18. <ipxact:viewNameRef>vhdlView</ipxact:viewNameRef>

19. </ipxact:wireTypeDef></ipxact:wireTypeDefs>

20. </ipxact:wire>

21. <ipxact:vendorExtensions/></ipxact:port>

...

22. <ipxact:port><ipxact:name>current_demand</ipxact:name>

23. <ipxact:wire><ipxact:direction>out</ipxact:direction></ipxact:wire>

24. <ipxact:vendorExtensions><extra-functional:wire>

25. <extra-functional:domainTypeDefs><extra-functional:domainTypeDef>

26. <extra-functional:typeName>current</extra-functional:typeName>

27 <extra-functional:typeName>Ampere</extra-functional:typeName>

28. <extra-functional:value✁�✂✄☎✆✝✞✟✠✡✠☛✟✡✠☞✂✌☎☛milli">3.00

</extra-functional:value>

29. <extra-functional:typeDefinition>./extrafunctional/types.xml

</extra-functional:typeDefinition>

30. <accellera:viewNameRef>power_view</accellera:viewNameRef>

31. </extra-functional:domainTypeDef> </extra-functional:domainTypeDefs>

32. </extra-functional:wire></ipxact:vendorExtensions>

33. </ipxact:port>

...

34. <ipxact:port>

35. <ipxact:name>cpu_temperature</ipxact:name>

36. <ipxact:wire><ipxact:direction>in</ipxact:direction></ipxact:wire>

37. <ipxact:vendorExtension><extra-functional:wire>

38. <extra-functional:domainTypeDefs><extra-functional:domainTypeDef>

39. <extra-functional:typeName>temperature</extra-functional:typeName>

40. <extra-functional:unit>Celsius</extra-functional:unit>

41. <extra-functional:typeDefinition>./extrafunctional/types.xml

</extra-functional:typeDefinition>

42. <accellera:viewNameRef>temperature_view</accellera:viewNameRef>

43. </extra-functional:domainTypeDef></extra-functional:domainTypeDefs>

44. </extra-functional:wire></ipxact:vendorExtensions>

45. </ipxact:port>

...

46. </ipxact:ports>

47. </ipxact:model>

Fig. 3. IP-XACT component description generated for the power view of a
digital core. Dots represent additional port declarationsthat are hereby omitted
for the sake of brevity.

A. IP-XACT port tags
The main difference between functional and extra-functional

descriptions lies in the computed and exchanged quantities, and
in the ports used to carry them. IP-XACT supports two types
of ports: transactional ports (used for high level modeling) and
wire ports (that correspond to RTL bit vectors). It is clear that
none of these types suits extra-functional quantities.

To overcome this limitation, this work adopts a strategy
similar to the one implemented in the Accellera extensions [7],
that define additional tags for referencing language-specific
types and to provide a unit measure for port values. Our
extension relies on three novel tags:

• <extra-functional:typeName> specifies the kind
of quantity carried by the port. The Accelera extensions use
atypeName tag to reference language-specific types (e.g.,
electrical of VHDL-AMS). On the contrary, we de-
fined a library of “semantic” types, expressing the kind of
information conveyed by the port. This library is contained
by the XSD schema defining theextra-functional
namespace, that specifies an enumeration of allowed types

based on the analysis in Section IV. The power view
uses the semantic typesvoltage, current, power;
the thermal view usestemperature, while the reliability
view introducesMTTF, lambda andlifetime;

• <extra-functional:unit> specifies the measure
unit of the value. This tag is necessary due to the existence
of different measure systems applicable to the same phys-
ical quantities (e.g., metric versus imperial units). As for
thetypeName tag, the XSD extension schema defines the
enumeration of measure units necessary to model the views
considered in Section IV:Volt (V), Ampere (A),
and Watt (W) for the power view;Celsius (C),
Fahrenheit (F) and Kelvin (K) for the thermal
view; second (s) andPercentage for the reliability
view (the former for MTTF and lifetime, the latter forλ);

• <extra-functional:magnitude> specifies the
magnitude of a quantity. The tag is optional, and it allows
to ease the specification of system of different scales by
providing the typical set of metric prefixes (i.e., Tera,
Giga, Mega, Kilo, milli, micro, nano, pico).

An example of usage of these tags is provided at lines 22–33
of Figure 3: thecurrent_demand port is defined as of type
current (line 26), whose definition is contained in the XSD
extensions file (line 29). The port type is paired also with an
measure unit (Ampere), a prefix (milli) and a default value
(3.0, line 27–28). The usage of the measure unit is crucial
at lines 34–45 to remove ambiguous quantities, by specifying
that thecpu_temperature port expresses temperature in
Celsius rather than in Kelvin.

Note that, while the<extra-functional:magnitude>
tag is mostly used to simplify systems specification,
information specified by the first two tags is crucial to
check thesemantic validity of IP-XACT descriptions. The
unit tag allows to verify that the quantities exchanged
through two connected ports are compatible (necessary for
temperature,e.g., in case of Celsius and Kelvin degrees),
and to check whether any conversion is necessary (i.e.,
when the ports have different prefixes). On the other hand,
the semantic types used for thetypeName tag allow to
guarantee that connected ports carry the same information,
thus avoiding incorrect assignments (e.g., bindings between
a current port and atemperature port). In this way,
the resulting description will always be consistent and sound,
thus preventing misconnected model components [4].

B. IP-XACT descriptions
The organization of IP-XACT descriptions provided for each

system reflects the multi-view modeling approach, as applied
to the context of smart systems (Section III-A).

Each component is provided with oneIP-XACT component
descriptionper supported concern, thus reflecting the fact that
the component participates to multiple views. Such IP-XACT
component descriptions define the view-specific interface of
the component as made of two types of ports: view-specific
ports (e.g., a current port when the concern is power) and
ports used for inter-view communication. Figure 3 shows an
example of IP-XACT component description of a CPU, where
the concern of interest is power. The description lists three
ports for the power view of the CPU: an extra-functional
view-specific port (i.e., the current_demand port, lines

1. <ipxact:design xsi:schemaLocation="... ./extrafunctional/index.xsd">

2. <ipxact:vendor>vendor</ipxact:vendor>

3. <ipxact:library>fdl_submission</ipxact:library>

4. <ipxact:name>toplevel</ipxact:name>

5. <ipxact:version>1.0</ipxact:version>

6. <extrafunctional:concern>power</extrafunctional:concern>

7. <ipxact:componentInstances>

8. <ipxact:componentInstance>

9. <ipxact:instanceName>cpu</ipxact:instanceName>

11. <ipxact:componentRef vendor="vendor" library="fdl16"

name=“cpu" version="1.0" concern="power"/>

12. </ipxact:componentInstance>

13. <ipxact:componentInstance>

14. <ipxact:instanceName>battery</ipxact:instanceName>

15. <ipxact:componentRef vendor="vendor" library="fdl16"

name=“battery" version="1.0" concern="power"/>

16. </ipxact:componentInstance>

17. </ipxact:componentInstances>

18. <ipxact:adHocConnections>

19. <ipxact:adHocConnection>

20. <ipxact:name>processor_consumption</ipxact:name>

21. <ipxact:portReferences>

22. <ipxact:internalPortReference

componentRef="cpu" portRef="current_demand"/>

23. <ipxact:internalPortReference

componentRef="battery" portRef="required_current"/>

24. </ipxact:portReferences>

25. </ipxact:adHocConnection>

26. <ipxact:adHocConnection>

27. <ipxact:name>battery_level</ipxact:name>

28. <ipxact:portReferences>

29. <ipxact:internalPortReference componentRef="battery" portRef="level"/>

30. <ipxact:internalPortReference

componentRef="cpu" portRef="available_power"/>

31. </ipxact:portReferences>

32. </ipxact:adHocConnection>

33. </ipxact:adHocConnections>

34. <ipxact:ports>

...

35. <ipxact:port>

36. <ipxact:name>cpu_temperature</ipxact:name>

37. <ipxact:wire><ipxact:direction>in</ipxact:direction></ipxact:wire>

38. <ipxact:vendorExtension><extra-functional:wire>

39. <extra-functional:domainTypeDefs><extra-functional:domainTypeDef>

40. <extra-functional:typeName>temperature</extra-functional:typeName>

41. <extra-functional:unit>Celsius</extra-functional:unit>

42. <extra-functional:typeDefinition>./extrafunctional/types.xml

</extra-functional:typeDefinition>

43. <accellera:viewNameRef>temperature_view</accellera:viewNameRef>

44. </extra-functional:domainTypeDef></extra-functional:domainTypeDefs>

45. </extra-functional:wire></ipxact:vendorExtensions>

46. </ipxact:port>

...

47. </ipxact:ports>

48. </ipxact:design>

Fig. 4. IP-XACT design description modeling an energy consumption view
and instantiating the CPU in Figure 3. Dots represent additional tags that are
hereby omitted for the sake of brevity.

22–32), and two ports for inter-view communication (i.e., the
cpu_temperature, used to communicate with the temper-
ature view, at lines 34–45, and thecpu_state port, used to
communicate with the functional view, at lines 8–21).

Each view is described by oneIP-XACT design description,
listing the components participating to the view and their intra-
layer connections. Figure 4 shows an example of IP-XACT
design description for a power view (containing the CPU in
Figure 3 and a battery). The<componentInstance> tag
is used to list components participating to the view, by ref-
erencing the corresponding IP-XACT component descriptions
(lines 8–12 for the CPU).

Intra-view communicationis modeled through port bindings
between components, by using the<adHocConnection>
tag. As an example, lines 19–25 describe the binding be-
tween thecurrent_demand port of the CPU with the
required_current port of the instantiated battery.

Inter-view communicationcan not be represented inside of
the view-specific IP-XACT descriptions, that focus on a single
concern. Ports used for communicating with other layers are
exported by defining an interface for the view (lines 35–46).

1. <ipxact:design xsi:schemaLocation="... ./extrafunctional/index.xsd">

2. <ipxact:vendor>vendor</ipxact:vendor>

3. <ipxact:library>fdl16</ipxact:library>

4. <ipxact:name>smart_system</ipxact:name>

5. <ipxact:version>1.0</ipxact:version>

6. <ipxact:concern>multiple</ipxact:concern>

7. <ipxact:componentInstances>

8. <ipxact:componentInstance>

9. <ipxact:instanceName>functional_view</ipxact:instanceName>

10. <ipxact:componentRef vendor="vendor" library="fdl16"

name☎�toplevel" version="1.0" concern="functional"/>

11. </ipxact:componentInstance>

12. <ipxact:componentInstance>

13. <ipxact:instanceName>power_view</ipxact:instanceName>

14. <ipxact:componentRef vendor="vendor" library="fdl16"

name✁✂toplevel" version="1.0" concern="power"/>

15. </ipxact:componentInstance><ipxact:componentInstance>

16. <ipxact:instanceName>thermal_view</ipxact:instanceName>

17. <ipxact:componentRef vendor="vendor" library="fdl16"

name✁✂toplevel" version="1.0" concern="temperature"/>

18. </ipxact:componentInstance>

19. <ipxact:componentInstance>

20. <ipxact:instanceName>reliability_view</ipxact:instanceName>

21. <ipxact:componentRef vendor="vendor" library="fdl16"

name✁✂toplevel" version="1.0" concern="reliability"/>

22. </ipxact:componentInstance>

23. </ipxact:componentInstances>

24. <ipxact:adHocConnections>

25. <ipxact:adHocConnection><ipxact:name>cpu_state</ipxact:name>

26. <ipxact:portReferences>

27. <ipxact:internalPortReference

componentRef="functional_view" portRef="cpu_state"/>

28. <ipxact:internalPortReference

componentRef="power_view" portRef="cpu_state"/>

29. <ipxact:internalPortReference

componentRef="thermal_view" portRef="cpu_state"/>

30. <ipxact:internalPortReference

componentRef="reliability_view" portRef="cpu_state"/>

31. </ipxact:portReferences></ipxact:adHocConnection>

...

32. <ipxact:adHocConnection>

33. <ipxact:name>battery_mttf</ipxact:name>

34. <ipxact:portReferences>

35. <ipxact:internalPortReference

componentRef="reliability_view" portRef="battery_mttf"/>

36. <ipxact:internalPortReference

componentRef="thermal_view" portRef="battery_mttf"/>

37. <ipxact:internalPortReference

componentRef="power_view" portRef="battery_mttf"/>

38. </ipxact:portReferences>

39. </ipxact:adHocConnection>

40. </ipxact:adHocConnections>

41. </ipxact:design>

Fig. 5. IP-XACT file generated for the top level of the guidingexample.
Dots represent tags hereby omitted for the sake of brevity

The overall system is described in atop-level IP-XACT
design description, that instantiates all the views and im-
plements inter-view communication through port bindings.
Figure 5 shows how the power view (described in Figure 4)
is instantiated (lines 12–15) and bound to the other views to
reproduce inter-layer communication (lines 24–40).

According to the standard, an IP-XACT description is
uniquely identified by the VLNV,i.e., an aggregation of four
identification tags:vendor, library, name andversion.
However, IP-XACT files referring to different views of the
same component (or system) may have the same identification
tags. To overcome this problem, this paper proposes to extend
the VLNV to a VLNVC identifier, composed by adding a tag
called <concern>. This additional tag reports the specific
concern described by the current IP-XACT file (lines 2–6 of
Figures 3–5). This tag must be specified whenever referencing
an IP-XACT design or component extra-functional description.
To allow compatibility with the current standard, the additional
tag is not required when modeling the functional view.

A clear example of the usage of VLNVC is provided by
lines 6–23 of Figure 5. The top level instantiates the views by
referencing the corresponding IP-XACT design descriptions.
Note that all views have the same VLNV attributes, since they

1. SCA_TDF_MODULE (cpu_power_view){

2. public:

3. // intra-view interface

4. sca_tdf::sca_out< double > current_demand;

5. sca_tdf::sca_in< double > available_power;

6. // extra-view interface

7. sca_tdf::sca_out< double > cpu_consumption;

8. sca_tdf::sca_in< double > cpu_temperature;

9. sca_tdf::sca_in< sc_lv<3> > cpu_state;

10. // constructor and destructor

11. cpu_power_view(sc_core::sc_module_name name_){}

12. ~cpu_power_view(){}

13. private:

14. // TDF functions

15. void set_attributes();

16. void initialize();

17. void processing();

18. };

Fig. 6. Example of SystemC-AMS TDF code skeleton generated for the
digital core in Figure 3.

refer to the same version of the same component (i.e., the
values of thevendor, library, name andversion tags
are the same for all IP-XACT files). Thus, the IP-XACT files
would not be distinguishable. The additional<concern> tag
allows to differentiate and to reference either the functionality
(no <concern> tag, lines 6–10), or the extra-functional
views (power at lines 11–15, temperature at lines 16–19 and
reliability at lines 20–23).

Finally, it is worth noting that theconcern tag for the
top-level is set tomultiple (line 6). This keyword will enable
IP-XACT users to develop tool-chains capable of easily iden-
tifying multi-view models, and thus of treating them properly.

VI. A UTOMATIC CODE GENERATION OF THE
SIMULATION SKELETON

The hierarchy of IP-XACT files generated for the system
can be used to enhance the design flow through automatic
code generation, by implementing a skeleton of the simulation
framework. The generated code can be implemented in a
variety of languages, including AMS HDLs and tools such
as Matlab/Simulink. In the context of this paper, the choice
fell on SystemC-AMS, that proved to efficiently support the
implementation of extra-functional behaviors [9], [10].

A. Component code generation
The code generation process reflects the organization of the

IP-XACT files. EachIP-XACT component descriptionis con-
verted to one SystemC module. As a result, each component
of the smart system will be implemented as a number of
SystemC modules, one per supported concern. This enhances
modularity, since multiple aspect of the same component can
be added without affecting the previous implementation.

The instantiated modules can be implemented either as
SystemC standard modules (SC_MODULE) or as SystemC-
AMS TDF modules (SCA_TDF_MODULE, as in Figure 6).
The former choice leaves more freedom to the subsequent
module implementation, since no requirement is imposed on
the semantics (e.g., in terms of level of abstraction and simu-
lation semantics). A SystemC module can indeed encapsulate
both an event-driven implementation (based on processes),
the instantiation of a hierarchy of sub-modules (including
TDF moduels), or a topology of ELN primitives. On the
contrary, the declaration of a TDF module imposes the data

1. #include “cpu_power_view.h"

2. #include "battery_power_view.h"

3. SC_MODULE(smart_system_power_view) {

4. private:

5. // instantiated components

6. cpu_power_view * processor;

7. battery_power_view * battery;

8. …

9. // connecting signals for intra-view communicaiton

10. sca_tdf::sca_signal<double> processor_consumption;

11. sca_tdf::sca_signal<double> battery_level;

12. …

13. public:

14. // ports signals for inter-view communication

15. sc_core::sc_in<double> cpu_temperature, cpu_mttf,

battery_temperature, battery_mttf;

16. sc_core::sc_out<double> cpu_consumption, battery_level;

17. sc_core::sc_in< sc_lv<3> > cpu_state;

18. // constructor

19. SC_CTOR(ostc_system){

20. processor = new cpu_power_view("processor");

21. battery = new battery_power_view("battery");

22. …

23. // intra-view signals binding

24. processor->current_demand(processor_consumption);

25. battery->required_current(processor_consumption);

26. processor->available_power(battery_level);

27. battery->level(battery_level);

28. …

29. } };

Fig. 7. SystemC code skeleton generated for the power view inFigure 4.

flow semantics, realized as a static scheduling. This choice
may be extremely convenient, since it accelerates simulation
by building an efficient interaction between components.

Figure 6 provides an example of SystemC TDF code gen-
erated for the power view of the digital processor (see the
IP-XACT component description in Figure 3). Note that the
code generated for each component is only askeleton of the
SystemC module, containing only the signature of constructor
and destructor (lines 10–12), and, in case of TDF modules,
of member functions imposed by the SystemC-AMS standard
(e.g., processing, initialize, lines 15–17).

The module interface is derived by the IP-XACT component
description. It lists both ports for inter-view and intra-view
communication (e.g., line 4 is the samecurrent_demand
port as in line 22 of Figure 3). Ports inherit both the name
and type from the IP-XACT file. The semantic type of extra-
functional ports is mapped onto thedouble type. This allows
to represent continuous values typical of physical quanti-
ties during simulation, without burdening the execution with
checks on type compatibility, that is ensured by the consistency
of the IP-XACT model.

B. View code generation
The IP-XACT design description of each view leads to the

automatic generation of a SystemC module (SC_MODULE),
that instantiates all components participating to the view
and the signals used for intra-layer communication. Figure7
sketches the code generated for the power view in Figure 4.

Since the instantiated components may be implemented
either in SystemC or in TDF (lines 6–7), the type of signal
used for port binding must reflect the semantics of each
module:sc_signal when both modules are implemented
in SystemC,sca_tdf::sca_signal when both mod-
ules are TDF (e.g., lines 10–11), and SystemC-TDF con-
verters when connected modules follow different semantics.

1. #include “smart_system.h"

2. int sc_main(int argc, char* argv[]) {

3. // instantiate system top level

4. smart_system* toplevel = new smart_system("toplevel");

5. // start simulation

6. sc_start();

7. delete(toplevel);

8. };

1. #include “smart_system_functional_view.h"

2. #include “smart_system_power_view.h"

… // all the necessary header files

3. SC_MODULE(smart_system) {

4. private:

5. // instantiated components

6. smart_system_functional_view * functional;

7. smart_system_power_view * power;

8. smart_system_thermal_view * thermal;

9. smart_system_reliability_view * reliability;

10. …

11. // connecting signals

12. sc_core::sc_signal<double> cpu_temperature;

13. sc_core::sc_signal< sc_lv <3> > cpu_state;

14. ...

15. // constructor

16. SC_CTOR(smart_system){

17. functional = new smart_system_functional_view("functional");

18. power = new smart_system_power_view("power");

19. thermal = new smart_system_thermal_view("thermal");

20. reliability = new smart_system_reliability_view("reliability");

21. …

22. // port binding

23. power->cpu_temperature(cpu_temperature);

24. thermal->cpu_temperature(cpu_temperature);

25. …

26. functional->cpu_state(cpu_state);

27. power->cpu_state(cpu_state);

28. thermal->cpu_state(cpu_state);

29. reliability->cpu_state(cpu_state);

30. ….

31. } };

Fig. 8. Example of top level and main code generated for the guiding
example, by reflecting the IP-XACT description in Figure 5. Dots represent
additional constructs that are hereby omitted for the sake of brevity.

Ports used for communication with other views (e.g., the
cpu_temperature port, line 10) are implemented as stan-
dard SystemC ports (i.e., sc_in or sc_out, lines 14–17).

C. Top level generation
The simulation top level is built automatically starting from

the top level IP-XACT design description. The top level is
implemented as an additionalSC_MODULE, named after the
name tag in the VNLV of the IP-XACT design description (as
depicted in top of Figure 8). The module instantiates all system
views, as determined by the<componentInstance> tags
of the IP-XACT design description (lines 6–9 and 17–20). IP-
XACT port connections are then implemented through port
bindings and the instantiation of support SystemC signals
(lines 12–14 and 22–30).

The proposed approach additionally generates a main simu-
lation file (bottom of Figure 8), that instatiates the top level
module (lines 3–4) and starts simulation (lines 5–7). This file
may be extended by the designer to add a custom testbench,
configuration parameters, or tracing instructions.

D. Population of the simulation framework and simulation
The SystemC modules generated for each component must

be filled with the implementation of concern-specific modelsof
each component. The following of this Section reports pointers
to models available at state-of-the-art. However, the designer
may choose any model. The only constraint is that models must

be implemented by using constructs provided by C++, Sys-
temC and SystemC-AMS. Note that the implemented models
can be reused at later times, thus easing the population of the
SystemC simulation framework. Future work will include the
definition of a library of models that can be easily instantiated,
thus enhancing the effectiveness of the proposed approach.

a) Functional models:the functionality of each component
can be either natively implemented in SystemC, or translated
from any HDL by adopting automatic tools [30], [31].

b) Power models:the most widespread models for power
consumption are functional models, that express power de-
mand as equations, state machines or waveforms over time [9],
[32]. Functional models can be implemented in either C++,
standard SystemC or TDF. Energy providers (e.g., batteries
and super-capacitors) may require the adoption of circuit
models, that emulate the power behavior through an electrical
equivalent circuit [33]. Such models can be easily implemented
by using the ELN model of computation [9].

c) Temperature models:thermal simulation usually falls
back on circuit simulators, that represent temperature in terms
of voltages and heat flows as currents [34]. Similarly to power
circuit models, also thermal models can be easily implemented
with SystemC-AMS ELN primitives [10].

d) Reliability models:they are mainly analytical,i.e., they
determine system failure rate (or derivative quantities,i.e.,
MTTF and life time) as a function of: physical stress (e.g.,
functional duty cycle), operating conditions (e.g., voltage and
current), and material-specific coefficients [35]. These models
are easily implementable in C++, SystemC or TDF.

VII. C ONCLUSIONS

This paper showed how the IP-XACT standard, with few ex-
tensions, can support the simultaneous simulation of multiple
aspects of a smart system. The extended descriptions allow
to uniformly model different functional and extra-functional
views of the system, and to gain automatic generation of a
skeleton of a SystemC simulation infrastructure. This infras-
tructure can be easily filled with the desired models by the
designer, thus gaining a simulatable implementation of thesys-
tem that covers both functionality and extra-functional aspects.
Future work will further automate the proposed approach,
through the automatic construction of the IP-XACT descrip-
tions from a graphical representation, and the construction of
a library of models that can be easily instantiated to populate
the SystemC simulation framework.

REFERENCES

[1] S. Vinco and C. Pilato, “Editorial: Special issue on innovative design
methods for smart embedded systems,”ACM TECS, vol. 15, no. 2, pp.
22e:1–22e:2, 2016.

[2] N. Bombieri, M. Poncino, and G. Pravadelli, Eds.,Smart Systems
Integration and Simulation. Springer, 2016.

[3] D. Broman et al., “Viewpoints, formalisms, languages, and tools for
cyber-physical systems,” inProc. of ACM MPM, 2012, pp. 49–54.

[4] P. Derler, E. A. Lee, and A. S. Vincentelli, “Modeling cyber-physical
systems,”Proc. of the IEEE, vol. 100, no. 1, pp. 13–28, 2012.

[5] Accellera,SystemC-AMS, www.accellera.org/downloads/standards/systemc.

[6] ——, Verilog-AMS, www.accellera.org/downloads/standards/v-ams.

[7] Recommended Vendor Extensions to IEEE 1685-2009 (IP-XACT), Ac-
cellera, 2013, www.accellera.org.

[8] K. Caluwaerts and D. Galayko, “SystemC-AMS modeling of an elec-
tromechanical harvester of vibration energy,” inProc. of IEEE/ECSI
FDL, 2008, pp. 99–104.

[9] S. Vinco et al., “An open-source framework for formal specification
and simulation of electrical energy systems,” inProc. of IEEE/ACM
ISLPED, 2014, pp. 287–290.

[10] Y. Chenet al., “Fast thermal simulation using systemc-ams,”Proc. of
IEEE GLS-VLSI, pp. 1–8, 2016.

[11] A. Holovatyy and V. Teslyuk, “Verilog-AMS model of mechanical
component of integrated angular velocity microsensor for schematic
design level,” inProc. of IEEE CPEE, 2015, pp. 43–46.

[12] F. Fummiet al., “Moving from co-simulation to simulation for effective
smart systems design,” inProc. of IEEE/ACM DATE, 2014, pp. 1–4.

[13] IEEE Standard 1685-2009 (IP-XACT), Accellera, 2010,
www.accellera.org.

[14] “ISO/IEC/IEEE 42010-2011: Systems and Software Engi-
neering, Architecture Description, Recommended Practicefor
Architectural Description of Software-instensinve Systems,”
www.iso.org/iso/cataloguedetail.htm?csnumber=50508, 2011.

[15] M. A. Faruque and F. Ahourai, “A Model-Based Design of Cyber-
Physical Energy Systems,” inProc. of IEEE ASPDAC, 2014, pp. 97–
105.

[16] D. Atienza, G. D. Micheli, L. Beniniet al., “Reliability-aware design
for nanometer-scale devices,” inProc. of ACM/IEEE ASPDAC, 2008,
pp. 549–554.

[17] F. Fummiet al., “Heterogeneous co-simulation of networked embedded
systems,” inProc. of IEEE/ACM DATE, vol. 3, 2004, pp. 168–173.

[18] M. Hsieh et al., “SST + Gem5 = a scalable simulation infrastructure
for high performance computing,” inProc. of ACM SIMUTOOLS, 2012,
pp. 196–201.

[19] J. Ekeret al., “Taming heterogeneity - the Ptolemy approach,”Proc. of
the IEEE, vol. 91, no. 1, pp. 127–144, Jan 2003.

[20] A. Davareet al., “METROII: A design environment for cyber-physical
systems,”ACM TECS, vol. 12, no. 1s, p. 49, 2013.

[21] J. Molina, X. Pan, C. Grimm, and M. Damm, “A framework formodel-
based design of embedded systems for energy management,” inProc.
of IEEE MSCPES, 2013, pp. 1–6.

[22] S. Pendharkar, “On extending IP-XACT for device driversoftware
generation,” 2014, vayavyalabs.com/pdf/ipxactve.pdf.

[23] A. Kamppi et al., “Kactus2: Environment for embedded product de-
velopment using IP-XACT and MCAPI,” inProc. of Euromicro DSD,
2011, pp. 262–265.

[24] A. E. Mrabti et al., “Extending IP-XACT to support an MDE based
approach for SoC design,” inProc. of IEEE/ACM DATE, 2009, pp.
586–589.

[25] A. Kamppi et al., “Extending IP-XACT to embedded system HW/SW
integration,” in IEEE SoC, 2013, pp. 1–8.

[26] E. Vaumorin, “SPIRIT IP-XACT extensions and ex-
ploitation for verification software methodology,” 2006,
www.dempa.co.jp/magillem/pdf/SPIRITMethodology.pdf.

[27] Accellera,SystemC standards, www.accellera.org.

[28] F. Fummi et al., “A SystemC-based framework for modeling and
simulation of networked embedded systems,” inProc. of ECSI/IEEE
FDL, 2008, pp. 49–54.

[29] D. Brooks et al., “Power, thermal, and reliability modeling in
nanometer-scale microprocessors,”IEEE Micro, vol. 27, no. 3, pp. 49–
62, 2007.

[30] N. Bombieri et al., “HIFSuite: Tools for HDL code conversion and
manipulation,”EURASIP JES, pp. 1–20, 2010.

[31] EDAUtils, Verilog to SystemC Translator, www.edautils.com.

[32] V. Tiwari et al., “Instruction level power analysis and optimization of
software,” inProc. of IEEE ICVD, 1996, pp. 326–328.

[33] M. Petriccaet al., “An automated framework for generating variable-
accuracy battery models from datasheet information,” inACM/IEEE
ISLPED, 2013, pp. 365–370.

[34] M. R. Stanet al., “Hotspot: a dynamic compact thermal model at the
processorarchitecture level,”Elsevier Microelectronics Journal, vol. 34,
pp. 1153–1165, 2003.

[35] J. Srinivasan, S. Adveet al., “Lifetime reliability: toward an architec-
tural solution,” IEEE Micro, vol. 25, no. 3, pp. 70–80, May 2005.

