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Abstract

We present a novel texture compression scheme, called iPACKMAN, targeted for hardware implementation. In

terms of image quality, it outperforms the previous de facto standard texture compression algorithms in the ma-

jority of all cases that we have tested. Our new algorithm is an extension of the PACKMAN texture compression

system, and while it is a bit more complex than PACKMAN, it is still very low in terms of hardware complexity.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Texture

1. Introduction

For rasterization-based hardware architectures, the avail-
able bandwidth in the system is what usually limits per-
formance [AMN03]. To that end, many different techniques
have been proposed and implemented to reduce bandwidth
requirements. One of these is hardware texture compression

(TC), introduced by Knittel et al. [KSKS96] and Beers et
al. [BAC96]. The core idea is simply to use (lossy) com-
pression on the images, and store the compressed version of
the texture. When accessing the texture during rendering, the
compressed texture is transferred over the bus, and decom-
pressed on-the-fly as needed, thus saving bandwidth.

To facilitate a hardware implementation, a texture com-
pression/decompression system must have the following fea-
tures. First, the cost in gates should be low, especially for
mobile phones. To better exploit a texture cache [HG97,
IEH99], textures can be stored in the cache in compressed
form. If some type of texture filtering is used, then several
units of texture decompression are needed, making the need
for low complexity even higher. For example, for trilinear
mipmapping, eight units are needed in order to deliver a fil-
tered color per clock. Second, to make addressing simple and
random access possible, a fixed compression rate (in terms of
bits per pixel) is needed. Any fixed rate coder must be lossy
if it is to compress, and hence all TC systems described in
the literature are lossy fixed rate coders (to the best of our
knowledge). Third, avoiding look-up tables (LUTs) that de-
pend on the current texture is preferred, since that eliminates
the need to update this LUT, and also avoids the level of in-
direction and the latency it introduces. Finally, the execution
time for compressing a texture should be reasonably short,
though this is not of extreme importance, since compression
usually is done off-line as a preprocess.

Our new texture compression scheme was originally tar-
geted for mobile phones, but is in no way limited to those
platforms, and can thus be used for PC graphics cards
and game consoles as well. It builds upon PACKMAN
texture compression [SAM04], which has low complex-
ity and reasonable image quality. In the present work, we
have improved the image quality substantially over PACK-
MAN at only a slight increase in implementation complex-
ity. In the majority of cases, this improved PACKMAN,
or iPACKMAN for short, provides better image quality
than the de facto standard, S3TC (called DXTC in Di-
rectX) [MB98, INH99] and the recently proposed PVR-
TC [Fen03]. iPACKMAN compresses to a rate of 4 bits per
pixel (bpp).

The basic idea of iPACKMAN is to use larger blocks,
4×4 pixels instead of 2×4 for PACKMAN. This is nothing
new, but compared to PACKMAN, it gives greater opportu-
nities to obtain better image quality (or compression rate)
because spatial redundancy in a larger area can be exploited.
Two new variants of the PACKMAN scheme are introduced
in our paper, and the best of these is chosen for each 4× 4
block. We show image quality comparisons on standard im-
age benchmarks and provide hardware diagrams of our al-
gorithm.

2. Previous Work

In this section, we present work that is related to texture
compression with hardware implementation as target.

Delp and Mitchell [DM79] developed a simple scheme,
called block truncation coding (BTC) for image compres-
sion. Even though their applications were not texture com-
pression per se, several of the other schemes described in this
section are based on their ideas. Their scheme compressed
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gray scale images by considering a block of 4× 4 pixels at
a time. For such a block, two 8-bit gray scale values were
stored, and each pixel in the block then used a single bit to
index to one of these gray scales. This resulted in 2 bits per
pixel (bpp).

A simple extension, called color cell compression (CCC),
of BTC was presented by Campbell et al. [CDF∗86]. Instead
of using an 8-bit gray scale value, they use the 8-bit value
as an index into a color palette. This allowed for compres-
sion of colored textures at 2 bpp. However, this does require
a memory lookup in the palette, and the palette is restricted
in size. Knittel et al. [KSKS96] suggested that CCC was im-
plemented in hardware and used in a texturing system. In
fact, they also used a texture cache (after decompression,
however), but did not explore the many different parameters
when designing a cache.

The S3TC texture compression method by Iourcha et
al. [INH99] is probably the most popular scheme. It is used
in DirectX [MB98] and there are extensions for it in OpenGL
as well. Their work can be seen as a further extension of
CCC. The block size for S3TC is 4× 4 pixels that are com-
pressed into 64 bits. Two base colors are stored in each 16
bits, and each pixel stores a two-bit index into a local color
set that consists of the two base colors and two additional
colors in-between the base colors. This means that all colors
lie on a line in RGB space. S3TC’s compression rate is 4
bpp. One disadvantage of S3TC is that only four colors can
be used per block. Ivanov and Kuzmin attack this problem by
using colors from neighboring blocks as well [IK00]. How-
ever, this increases the memory bandwidth used to decode a
block, which is non-desirable.

Akenine-Möller and Ström present a variation of the
S3TC scheme that compresses a 3 × 2 block into 32
bits [AMS03]. This scheme, called POOMA, is targeted for
mobile phones as well. The major difference is that each
base color uses fewer bits, and that only one in-between
color is used. Also, note that the block width is three, which
is awkward for hardware implementations.

Beers et al. use a traditional approach called vector quanti-
zation [BAC96], and they could compress textures to as low
as 1 bpp or 2 bpp. However, vector quantization as well as
palettized textures, do require an additional memory access
to determine which color to use. This is not feasible for a
high-performance computer graphics pipeline.

A radically different approach is taken by Fen-
ney [Fen03]. Two low-resolution images derived from the
original texture are stored, and during decompression, a (lo-
cal) bilinear magnification of those textures are created, and
to create the final color of the texel, a linear blend is done be-
tween the two. Two modes are described that give 4 bpp and
2 bpp, respectively. In the 4 bpp version, two base colors are
stored per 4×4 block, together with modulation data. To do
the bilinear magnification, the neighboring 2× 2 blocks are

+ =

color luminance final image

Figure 1: Here, the core idea of PACKMAN is illustrated. To

the left, the base colors for each 2× 4 block is shown. The

image in the middle shows the per pixel luminance modula-

tion. The rightmost image shows the decompressed image.

needed. Once these are in the texture cache, decompression
should be fast.

Perebrin combines mipmapping and texture compres-
sion [Per99]. Each 4×4 block is compressed in YUV space,
and it is assumed that box filtering is used for the mipmaps.
Luminance is decomposed using the Haar wavelet basis, and
the chrominance information is first subsampled before it is
compressed. The bit rate is about 4.6 bpp.

3. Review of PACKMAN Texture Compression

In this section, we briefly describe the original PACKMAN-
texture compression scheme [SAM04], since it is fundamen-
tal to our new algorithm.

The texture image is split into 2× 4 blocks, where each
block is represented by 32 bits. A single color, called a base

color, is stored for each block in 4+4+4 = 12 bits RGB (or
RGB444 for short). 20 bits remains, and those modulate the
luminance for each pixel in the block. An example is shown
in Figure 1. More specifically, a constant, called a modifier

value, is chosen from a small table of stored numbers, and
that constant is added to each of the color components of the
base color. A table consists of only four different numbers,
and so each pixel index needs two bits for choosing which
constant to use. Thus, these indices use 2× 4× 2 = 16 bits.
At this time, 28 bits have been used, and the remaining 4
bits are used as a table codeword to select one table out of
16 different tables, comprising a codebook.

The PACKMAN hardware decompression procedure for
a single pixel is described in more detail below:

1. The 12-bit base color is expanded from 4 bits per color
component to 8 bits. As an example, RGB=(0,2,15) is
converted to (0,34,255).

2. The 4-bit table codeword is used to pick a specific table
of four numbers from the codebook of tables. Using, for
example, a table codeword of 1 means that the following
table is selected: {−12,−4,4,12} (see the codebook in
Table 1).

3. The 2 pixel index bits associated with the pixel are used to
choose a modifier value from the table, for instance −12.

4. The final step computes the final decompressed color by
adding the modifier value to the expanded base color.
Then the color is clamped to [0,255]. For example, if the
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table codeword 0 1 2 3 4 5 6 7

-8 -12 -31 -34 -50 -47 -80 -127
-2 -4 -6 -12 -8 -19 -28 -42
2 4 6 12 8 19 28 42
8 12 31 34 50 47 80 127

Table 1: First half of the codebook for PACKMAN.

pixel index is 0, the modifier is −12, and the final color
is (0,34,255) + (−12,−12,−12) = (0,22,243), where
values have been clamped to [0,255].

The codebook consists of 16 different tables, each con-
taining 4 different values. The tables associated with the ta-
ble indices are shown Table 1. Tables 8–15 equal tables 0–7
scaled by a factor of two, and the first and second values of
each table are the fourth and third values negated. Thus, only
16 numbers need to be stored, and these are constant for all
textures.

4. iPACKMAN Texture Compression

In this section, our new iPACKMAN texture compression
system will be presented. First, we describe the underlying
design and discuss the motivation for the design choices.
Then follows subsections for decompression and compres-
sion.

4.1. Basic Design and Motivation

When smooth blocks are encountered by PACKMAN, one of
the leftmost tables with small modifier values can be used—
see the codebook in Table 1. This means that the lumi-
nance of these blocks can be represented rather accurately—
better that what the rather limited number of bits (12) of the
base color would suggest. A PACKMAN-compressed image
therefore has significantly less luminance banding than an
image in which all pixels have been quantized to 12 bits.
However, the chrominance has never more resolution than
12 bits. Therefore, in areas where the luminance is more or
less constant, but where the chrominance shifts slowly over
the blocks, chrominance banding can be visible, since even
the smallest possible jump in chrominance is rather big with
a 12-bit representation. Since only a single chrominance per
block is used, the banding edges follow block boundaries,
which makes this artifact worse. iPACKMAN attempts to
overcome this problem as we will see.

One way to combat these chrominance banding artifacts
is to improve the color representation for slowly changing
areas. Instead of encoding the base color of each block inde-
pendently with RGB444, it is possible to group two adjacent
2× 4 blocks together to a 4× 4 block, and encode the base
colors differentially with respect to each other.

In order to see how much can be gained from such an
approach, we selected twenty test images of various kinds,
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Figure 2: A histogram over the difference between average

colors of adjacent blocks quantized to 555. The color com-

ponent deviating the most is used for each block. Note that

the blocks where the largest deviation is between −4 and 3
(marked with black bars) account for 88% of the blocks.

calculated the average color for adjacent pairs of 2 × 4
blocks, and quantized them to RGB555. The difference
(R1−R2,G1−G2,B1−B2) was then formed, and the differ-
ence from the color component deviating the most was regis-
tered. A histogram of these differences is shown in Figure 2.
As can be seen in the figure, there is a strong peak around
zero, which means that the average color of most blocks does
not differ much from colors of adjacent blocks. In fact, if we
count the number of blocks where the difference in all three
components falls in the interval [−4,3] (marked with black
bars), we see that 88% of the blocks fall into this category.
Thus, an overwhelming majority of the blocks can be coded
differentially using three bits per color component.

Certainly, some blocks cannot be coded this way. There-
fore, one bit must be preserved that determines whether we
use differential coding in the 4× 4 block or not. Preferably,
this bit is taken from the table codeword, making it three
bits (eight possible tables) instead of four bits (16 tables).
This results in a drop in image quality, but a surprisingly
small one, only about 0.2 dB averaged over our 20 test im-
ages. Alternatively, the bit it could be taken from, say, the
blue component of the color code word, but that would defy
the purpose of increasing the color accuracy. Taking the bit
from the pixel index bits would be hard because two bits are
needed per texel. Since we have two table codewords in the
4 × 4 block (one for each subblock), we end up with one
spare bit. We use this bit to indicate whether the subblocks
are vertically oriented (two 2× 4 blocks side by side) or if
they are horizontally oriented (two 4× 2 blocks on top of
each other).

The bit layout of a 4 × 4 block is shown to the left in
Figure 3, and each block contains the following information:
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Figure 3: This diagram shows a possible iPACKMAN de-

compressor. The bit layout can be seen to the left. Com-

pared to the original PACKMAN decompressor, only the

logic inside the dashed triangle has been added. As can be

seen, the total system consists of very little, except for six

adders (three six-bit adders and three nine-bit adders), a few

MUXes (multiplexor units), and little logic.

• a diffbit, which indicates whether differential or normal
coding is used,

• a flipbit, indicating whether vertical (flipbit=0) or horizon-
tal (flipbit=1) orientation is used,

• 16 2-bit pixel indices (one for each texel),
• two 3-bit table codewords (one for each subblock), indi-

cating which table to use from the codebook, and
• two color codewords, which are used (independently or

together) to encode the base color for the first subblock
and the base color for the second subblock.

If the diffbit is set, the two color codewords are (R1
5,G

1
5,B

1
5)

and (∆R2
3,∆G2

3,∆B2
3). The first base color is obtained by ex-

panding the first color code word (R1
5,G

1
5,B

1
5) to 24 bits.

The second base color is obtained by adding the two color
code words (R1

5 + ∆R2
3,G

1
5 + ∆G2

3,B
1
5 + ∆B2

3) and thereafter
expanding the result to 24 bits. If diffbit is not set, normal
RGB444 encoding is used for both base colors, and the first
and second base colors are obtained directly by expanding
the color codewords (R1

4,G
1
4,B

1
4) and (R2

4,G
2
4,B

2
4) to 24 bits.

4.2. Decompression

Figure 3 illustrates a hardware diagram for an iPACKMAN
decompressor. Below we describe in more detail how a sin-
gle texel is decompressed using such hardware:

1. First, the base color needs to be obtained. In the dif-

ferential mode (diffbit = 1), we should either use the
five bit value R1

5 directly, in which case MUX (Mul-
tiplexor unit) U chooses zero, or we should use the
sum R1

5 + ∆R2
3, in which case MUX U chooses ∆R2

3.

The sign of ∆R2
3 is extended to six bits before the ad-

dition. For instance, if (R1
5,G

1
5,B

1
5) = (4,15,27) and

(∆R2
3,∆G2

3,∆B2
3) = (−4,−2,3), the resulting 5-bit color

is (0,13,30). No clamping is necessary since the encoder
can make sure these values never overflow. In the non-
differential mode, (diffbit = 0), we want either R1

4 or R2
4,

both four bits. R1
4 can be selected the same way as R1

5,
where the last bit will be treated as junk and removed in a
subsequent step. R2

4 can be selected by correctly switch-
ing MUX V , and is padded with a zero-bit to fit the 5-bit
MUX V . The green and blue channels are selected the
same way as the red channel.

2. The next step is to extend the 4- or 5-bit value coming out
of MUX V to an 8-bit value. This can be done inexpen-
sively by padding the missing lower order bits with the
higher order bits. For instance, a four bit value 1011bin

will be converted to 10111011bin, and our five bit exam-
ple above (0,13,30) will become (0,107,247). The ex-
tender will need to get diffbit in order to know if it should
extend from five or four of the incoming five bits. This is
also where the junk bits in R1

4 and R2
4 are removed.

3. MUX W will choose which of the two table codewords to
use. The 3-bit table codeword is fed to the codebook of
tables, and thus a specific table of four values is chosen.
Using, for example, a table codeword of 011bin means
that the following table is selected: {−42,−13,13,42}
(see the codebook below).

4. Four input bits are used to select which pixel to decom-
press using MUX Q. The resulting 2 pixel index bits are
connected to the codebook, which thus selects a specific
modifier value from the selected table of four numbers.
For instance, if the pixel index is 11bin, using the table
selected above, the modifier value is 42.

5. The final step computes the final decompressed color by
adding the modifier value to the expanded base color.
Then the color is clamped to [0,255]. For the exam-
ple above, we will get (0,107,247) + (42,42,42) =
(42,149,255), where values have been clamped to
[0,255].

The MUXes marked with U , V and W are oper-
ated by signals U through W from the control logic.
The control logic takes the in-parameters diffbit, flipbit,
and w = w3w2w1w0, where w are four bits describing
which texel to decompress. The bits w3w2 contain the y-
coordinate in the block, and w1w0 contain the x-coordinate.

U = diffbit AND W
V = diffbit OR ¬W
W = (flipbit AND w1) OR ( ¬flipbit AND w3),

where ¬ is the NOT -operator. The codebook consists of
eight different tables, each containing 4 different values. The
codebook was generated by starting from random numbers
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and then optimizing them by minimizing the error for a set
of training images. The tables associated with the table code-
words are shown below. Note that the first and second values
of each table are the third and fourth values negated. Thus,
only sixteen of the numbers need to be stored, which is the
same number as for PACKMAN.

table index 0 1 2 3 4 5 6 7

-8 -17 -29 -42 -60 -80 -106 -183
-2 -5 -9 -13 -18 -24 -33 -47
2 5 9 13 18 24 33 47
8 17 29 42 60 80 106 183

4.3. Compression

In PACKMAN, the search space was small enough so that
exhaustive search could be carried out by iterating over all
possible colors (212), all possible tables (24), and all possi-
ble modifier values (22). However, for iPACKMAN, the col-
ors for two subblocks are dependent, meaning that the color
search space increases to (224), making exhaustive search
harder. We have developed three schemes for iPACKMAN
compression.

The fastest of them starts out by quantizing the aver-
age colors of the subblocks to 555 bits, and computes the
difference between these. If the difference in each compo-
nent is within the interval [−4,3], it uses the differential
mode. It then tries all tables and modifier values for each
subblock, and uses the parameters that gives smallest error
compared to the original image. Finally, the same proce-
dure is carried out with the block flipped, and the best mode
(flipped/not flipped) is chosen. If the colors cannot be dif-
ferentially coded, they are encoded individually, quantizing
the average color of the block to 444 bits. This is really fast:
about 60 milliseconds for a 128×128 texture on a 1.2 GHz
laptop computer.

However, due to the fact that the luminance is later mod-
ified, it is not certain that the 555 color closest to the base
color is the best quantization. Therefore, in our second com-
pression approach, all color pairs within ±1 quantization
steps are searched. For each color pair, all possible tables
and modifier values are tried out. For the non-differential
mode, exhaustive search can be used to find the 444 repre-
sentation of the base color. This search method takes about
20 seconds for a 128×128 image, which is still much faster
than the exhaustive mode for PACKMAN. The reason is that
most blocks are differentially coded, and therefore the costly
exhaustive search is mostly avoided.

If the two base colors are just out of reach of each other to
be coded differentially, it can sometimes be better to move
one of the colors closer so that differential coding becomes
possible, than to use 444 encoding. A third scheme uses
this fact, and tries differential encoding for all blocks whose

base colors differ less than [−9,8] from each other. Non-
differential coding is also tried for all these blocks, and the
best representation wins. This scheme is slow: about seven
minutes per 128×128 texture.

4.3.1. Error Metric

When finding which of two representations is better, the two
representations are decompressed, and an error metric is cal-
culated over the block. The choice of error metric affects
the selection of the luminance modifier. Disregarding clamp-
ing, finding the correct luminance modifier means finding
a scalar k such that the base color b plus the modification
k(1,1,1) is as close as possible to the desired color d:

b+ k(1,1,1) ≈ d.

For two colors u = (ur,ug,ub) and v = (vr,vg,vb), a simple
error metric is described by:

e
2
normal(u,v) = (ur − vr)

2 +(ug − vg)
2 +(ub − vb)

2
.

The optimal k can be found by projecting the difference d−
b onto (1,1,1). However, since the eye is more sensitive to
green than to red and blue, it makes sense (from a perceptual
point of view) to let green come closer to its desired value at
the cost of a worse representation of blue and red. This can
be done by changing to a more perceptually balanced error
metric:

e
2
percept(u,v) = w

2
r (ur −vr)

2 +w
2
g(ug−vg)

2 +w
2
b(ub−vb)

2
,

where wg can be larger than wr and wb and where w2
r +w2

g +

w2
b = 1. epercept can be written in matrix form as

e
2
percept(u,v) = (u−v)T

W
T

W (u−v)

where W = diag(wr,wg,wb). It turns out that the opti-
mal k again can be found by projecting a = d − b onto
f = (1,1,1), but now using the weighted scalar product
〈a|f〉 = aTW TW f instead of the unweighted 〈a|f〉 = aT f

as used before. We define luminance Y of a color c as
Y (c) = 0.299cr +0.587cg +0.114cb, as is common in broad-
cast TV systems. If we choose the weights (wr,wg,wb) =
(
√

0.299,

√
0.587,

√
0.114), we find that the weighted scalar

product results in a projection along a line of constant lu-
minance, which means that the projected color has exactly

the same luminance as the desired color, that is, Y (b +
k(1,1,1)) = Y (d). This is a highly desirable effect. It means
that edges come out much clearer since a monotonic ramp in
luminance will be monotonic even after compression, some-
thing which is not guaranteed otherwise. In Figure 7 (color
plate), we show two example images compressed with the
normal and the perceptual error metric. Note that edges be-
tween different color areas are clearer with the perceptual
error metric (this difference may be more pronounced on-
screen than in print).

It should be noted that using YCrCb as done above is only
a first-order approximation, and that other color spaces could
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be used, such as, for example, CIE-Luv and Lab. However,
these are non-linear spaces, which makes analysis more dif-
ficult.

5. Results

In this section, we present results showing the image qual-
ity of different texture compression schemes. Our new
iPACKMAN system is compared to PACKMAN [SAM04],
S3TC [INH99], and to the 4-bit version of PVR-TC [Fen03].

For PACKMAN, we have used exhaustive search in order
to maximize quality, and for S3TC we have used ATI’s The
Compressonator v1.23.1049. The weights (1,1,1) were used
to maximize the quality metric. This may be the reason why
S3TC performs better in our paper compared to Fenney’s re-
sults. There is no publicly available codec for PVR-TC, so
therefore we reverted to comparing exactly the same images
used by Fenney [Fen03]. Most of these images are taken
from an image test suite by Kodak. These are non-square,
and therefore the top left 512×512 part of the images were
used. None of these images were part of the training set used
for optimizing the codebook.

Fenney reported his results in root mean square error

(RMSE):

RMSE =

√

1

w×h
∑
x,y

∆R2
xy +∆G2

xy +∆B2
xy,

where w and h are the width and the height of the image, and
∆Rxy, ∆Gxy and ∆Bxy are the pixel differences in pixel (x,y)
between the original and the decompressed image in the red,
green and blue component respectively. We have chosen to
present our results in Peak Signal to Noise Ratio (PSNR)
instead:

PSNR = 10log10

(

3×2552

RMSE2

)

, (1)

where the scale factor 3 in the numerator is due to the fact
that 3×2552 is the peak energy in a pixel.

Table 2 and Figure 4 show the result for our test suite of
images. We use Equation 1 to convert the RMSE numbers
from Fenney’s paper to PSNR; his original RMSE values
are preserved in brackets. The rightmost column in Table 2
shows the PSNR increase iPACKMAN gives averaged over
all the images compared to each of the other texture com-
pression schemes. iPACKMAN is thus 2.54 dB better than
PACKMAN, 0.41 dB better than S3TC and 0.65 dB better
than PVR-TC. To put this in perspective, a common rule
of thumb used in the image compression community says
that 0.25 dB makes for a visible difference. In Figure 4, the
same results are showed in the form of a diagram. Consider-
ing individual images, we see that iPACKMAN outperforms
PACKMAN for every image in the test, and it also beats
S3TC and PVR-TC in five out of the seven images.
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Figure 4: Here the results from Table 2 are summarized as

a graph. As can be seen, iPACKMAN is better than PACK-

MAN for all images, and iPACKMAN is better than S3TC

and PVR-TC for 5 out of 7 images.

Every compression system has its relative strengths and
weaknesses. For instance, even though iPACKMAN on av-
erage outperforms S3TC for the images in our small test
set, there are several blocks in these images where S3TC
is better than iPACKMAN . In Figure 8 (color plate), the
top row shows a part of an image with smooth chrominance
transitions. Here S3TC is clearly superior to iPACKMAN,
and Fenney’s scheme based on a low frequency modulation
would probably perform even better. The relative strength
for iPACKMAN is in luminance detail—the bottom row
of Figure 8 depicting a face shows how iPACKMAN pre-
serves luminace detail better than S3TC, due to the possibil-
ity to have more than four colors in a 4× 4 block. We have
also included a game texture (middle row of Figure 8). Fig-
ure 9 (color plate) also shows how iPACKMAN performs on
text; black or white text on colored blackground (or colored
text on black or white background) looks significantly bet-
ter than if both the text and the background are colored. The
strengths of iPACKMAN in luminance can also be seen in
Figure 5.

Without real hardware implementations of each decom-
pressor, it is hard to compare the complexity of the different
schemes. However, given the few number of components of
iPACKMAN, as shown in Figure 3, it is quite clear that our
system is of very low complexity.

6. Transparency

Most texture compression schemes can also handle trans-
parency in some way. To be able to do that as well, more bits
per block are needed. Here, we will describe two different
solutions.

The first solution simply uses four bits of alpha for each
pixel, and so 4× 4× 4 = 64 extra bits are used. This makes
it possible to have 16 different transparency values per pixel.
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Kodak img 1 Kodak img 2 Kodak img 3 Kodak img 4 Kodak img 5 Lena Lorikeet Avg gain

PACKMAN 33.81 34.00 35.37 35.50 32.35 33.56 31.73 +2.54 dB

S3TC 34.78 36.82 38.53 37.96 32.80 35.97 34.37 +0.41 dB

PVR-TC 33.8 [8.98] 37.1 [6.20] 37.9 [5.61] 37.7 [5.76] 32.4 [10.59] 35.9 [7.11] 34.8 [8.08] +0.65 dB

iPACKMAN 36.29 38.08 38.62 38.59 34.12 35.17 33.25 —

Table 2: The PSNR is reported from a test suite of images for PACKMAN, S3TC, PVR-TC, and iPACKMAN. The rightmost

column shows the average gain when comparing iPACKMAN to the other schemes.

Figure 5: Top: Original. Middle: S3TC. Bottom:

iPACKMAN. Note how the ability to have more than

four gray levels per 4×4 block is beneficial to iPACKMAN.

Such a scheme would thus require 64 + 64 = 128 bits, re-
sulting in 8 bits per pixel (bpp). This is equivalent to the way
that the alpha information is represented in the 8 bpp DXT2
and DXT3 formats — their first 64 bits contain color infor-
mation, and the other 64 bits contain 4-bit-per-pixel alpha.

The second solution uses the codebook technique for
transparency as well. However, instead of having a three-
component base color per 2× 4 (or 4× 2) subblock, only a
scalar value is required. Thus, two base alpha values are re-
quired per 4× 4 block, and these can be encoded in 8 bits
(either 5 + 3 or 4 + 4, analogously to the color compression

case). A flipbit and a diffbit for the intensity are also used
(2 bits), as well as two 3-bit table codewords, one for each
sub-block (6 bits). However, these select tables that are eight
values long instead of four values. Hence a 3-bit pixel in-
dex is needed per pixel (48 bits). Again, this sums up to 128
bits per 4×4 block, or 8 bpp. However, this second method
can take advantage of the spatial redundancy of alpha im-
ages to produce better images than the first method. This
way of encoding is more akin to the 8 bpp formats DXT4
and DXT5 techniques, where the coding of the alpha infor-
mation is similar to the coding of the color information (but
different from the techniques proposed in this paper).

It should be pointed out that this is work in progress. Yet
another solution could be to attempt to get transparency into
a variant of the 4 bpp iPACKMAN scheme.

7. Conclusion and Future Work

For mobile devices, such as portable game consoles and mo-
bile phones, it is of uttermost importance to preserve band-
width usage as much as possible as this significantly re-
duces power consumption. Furthermore, for these devices,
the implementation complexity must be kept small due to
size constraints. We argue that our presented iPACKMAN
texture compression system fulfils these demands as it pro-
vides compression at 4 bits per pixel with very small hard-
ware complexity. Furthermore, averaging the PSNR over our
test suite of images, iPACKMAN has proven to provide bet-
ter image quality than both S3TC, PACKMAN, and PVR-
TC. It should noted, however, that iPACKMAN is not lim-
ited to usage on mobile devices.

There are several possible improvements to the
iPACKMAN scheme that are candidates for future work. In
our scheme we have used the same codebook for the dif-
ferentially coded blocks (diffbit= 1) as for the individually
coded blocks (diffbit= 0). It is not hard to imagine that the
differentially coded blocks usually are smoother and that
they therefore should use a codebook with smaller values. It
would also be interesting to attempt to adapt our technique
to normal maps. We have done preliminary work by treating
a XYZ-normal map in tangent space as an RGB texture and
compressed it with iPACKMAN. The result, which can be
seen in Figure 6, indicates that iPACKMAN could be used
at least for some normal maps. Future work should include
a comparison with state-of-the-art normal compression
schemes, and investigate what artifacts iPACKMAN gives.
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Figure 7: Left: Original. Middle: Images compressed using normal error measure. Right: Images compressed using perceptual

error measure. Notice the yellow/white edge (top) and the purple/green edge (bottom). (May look nicer on screen than in print.)

original S3TC PACKMAN iPACKMAN

Figure 8: Top row: Here we show a weakness of iPACKMAN. In general, iPACKMAN performs worse than S3TC in regions

with smooth chrominance transitions. Middle row: A game textue (courtesy of www.gamedevelopers.com). Bottom row:

Note how the block artifacts in S3TC in the eyes region dissapear with iPACKMAN.
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Figure 9: Text compression: Note how black or white text on a colored background works decently for iPACKMAN, whereas

our coder has more difficulties with colored text on colored background.
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