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Abstract 

Background: Identifying lncRNA-disease associations not only helps to better com-

prehend the underlying mechanisms of various human diseases at the lncRNA level 

but also speeds up the identification of potential biomarkers for disease diagnoses, 

treatments, prognoses, and drug response predictions. However, as the amount of 

archived biological data continues to grow, it has become increasingly difficult to 

detect potential human lncRNA-disease associations from these enormous biological 

datasets using traditional biological experimental methods. Consequently, develop-

ing new and effective computational methods to predict potential human lncRNA 

diseases is essential.

Results: Using a combination of incremental principal component analysis (IPCA) 

and random forest (RF) algorithms and by integrating multiple similarity matrices, we 

propose a new algorithm (IPCARF) based on integrated machine learning technology 

for predicting lncRNA-disease associations. First, we used two different models to com-

pute a semantic similarity matrix of diseases from a directed acyclic graph of diseases. 

Second, a characteristic vector for each lncRNA-disease pair is obtained by integrating 

disease similarity, lncRNA similarity, and Gaussian nuclear similarity. Then, the best fea-

ture subspace is obtained by applying IPCA to decrease the dimension of the original 

feature set. Finally, we train an RF model to predict potential lncRNA-disease associa-

tions. The experimental results show that the IPCARF algorithm effectively improves 

the AUC metric when predicting potential lncRNA-disease associations. Before the 

parameter optimization procedure, the AUC value predicted by the IPCARF algorithm 

under 10-fold cross-validation reached 0.8529; after selecting the optimal parameters 

using the grid search algorithm, the predicted AUC of the IPCARF algorithm reached 

0.8611.

Conclusions: We compared IPCARF with the existing LRLSLDA, LRLSLDA-LNCSIM, 

TPGLDA, NPCMF, and ncPred prediction methods, which have shown excellent per-

formance in predicting lncRNA-disease associations. The compared results of 10-fold 

cross-validation procedures show that the predictions of the IPCARF method are better 

than those of the other compared methods.
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Background

Bioinformatics has received increasing attention from both the public and the scientific 

community as biomedicine and sequencing technology developed. In bioinformatics, 

regions of the human genome that do not encode protein sequences are usually tran-

scribed as noncoding RNAs (ncRNAs) [1]. Based on the length of such transcripts, ncR-

NAs can be partitioned into small ncRNAs and long ncRNAs (lncRNAs). �e difference 

is that lncRNAs are more than 200 nucleotides in length [2], and they comprise the vast 

majority of noncoding RNAs. In recent years, lncRNAs have attracted wide attention 

from researchers. Increasing evidence indicates that lncRNAs usually play carcinogenic 

or tumour suppressor roles in human cancers [3, 4], including prostate cancer [5], hepa-

tocellular carcinoma (HCC) [6] , colon cancer [7] , lung cancer [8], bladder cancer [9], 

and others.

lncRNAs have attracted wide attention from researchers in recent years. However, 

many lncRNA characteristics are still unclear, including their transcriptional regulation, 

structures, various biological processes or functions, and the molecular mechanisms of 

various diseases. At present, some new lncRNAs are discovered every year. �is increas-

ing number of lncRNAs has made using biological experimental methods for identify-

ing lncRNA-disease associations more challenging. �e use of biological experiments to 

identify lncRNA-disease associations introduces bottlenecks due to their experimental 

time and cost requirements. �us, predicting potential lncRNA-disease associations 

through computational methods could effectively reduce the screening range of bio-

logical experiments, thereby also reducing the time and cost of biological experiments. 

In addition, using predictive calculation methods will help to discover the causes and 

mechanisms of diseases as soon as possible, which is highly important in disease diagno-

sis, drug prognosis, and target discovery.

As this research field has deepened, several lncRNA-disease association databases 

have been compiled. �e LncRNADisease [10] is an lncRNA-disease association data-

base established in 2013, and it was the first database in this area. Lnc2Cancer [11] was 

established in 2015; this dataset mainly includes data associations between cancer and 

lncRNAs. Compared with LncRNADisease, the entries in Lnc2Cancer are more compre-

hensive and complete. NONCODE [12] is a comprehensive knowledge base containing 

almost all ncRNAs, and LNCipedia [13] is a comprehensive human lncRNA database. By 

integrating a variety of data, the current version contains 120,353 human lncRNA tran-

scripts. Moreover, it provides a tool for predicting protein-coding capabilities.

A semisupervised learning scheme called Laplacian regularized least squares for 

lncRNA-disease association (LRLSLDA) was proposed by Chen et al. [14] to predict new 

human lncRNA-disease associations. �is was the first study to automatically predict 

lncRNA-disease associations. Later, Chen Xing made some improvements based on the 

LRLSLDA model. Sun et al. [15] proposed a global network-based computing framework 

(RWRlncD), in which a potential lncRNA-disease association is predicted by executing 

a random walk with restart (RWR) method on the lncRNA functional similarity net-

work. A method for predicting potential lncRNA-disease associations by constructing 
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lncRNA-disease association networks and rnRNA-disease bipartite networks was pro-

posed by Yang et al. [16]. In 2015, a new hypergeometric distribution model (HGLDA) 

was developed by Chen et  al. [1] to predict potential lncRNA-disease associations. 

Zhou et al. [17] proposed the RWRHLD method, which integrated the miRNA-related 

lncRNA-lncRNA crosstalk network, the disease similarity network, and the known 

lncRNA-disease-related network into a new network and then predicted potential 

lncRNA-disease associations based on the integrated network.

�e above prediction models provide different perspectives and research ideas for the 

predicting lncRNA-disease associations and usher in the beginning of lncRNA-disease 

prediction. �ese methods provided reference data for the study of disease mechanisms 

and the functions of lncRNAs. However, the existing models still have some shortcom-

ings; they are complex, suffer from high computational complexity, and neglect parame-

ter selection. �erefore, considerable research on lncRNA-disease association prediction 

remains to be conducted.

�e existing methods for predicting the lncRNA-disease associations have achieved 

solid results, but they have some limitations, and much room still exists for improve-

ment. In this study, we develop a new automated method for predicting lncRNA-disease 

associations based on incremental principal component analysis (IPCA) and random 

forest (RF) technology, which we named IPCARF. First, we integrated disease seman-

tic similarity, lncRNA functional similarity, and Gaussian interaction spectrum kernel 

similarity to obtain characteristic vectors of lncRNA-disease pairs. Second, we apply the 

IPCA method to effectively reduce the feature dimension of the dataset and obtain the 

best feature subspace from the original feature set. Finally, we train an RF model to pre-

dict potential lncRNA-disease associations.

Results

All the experiments were done in the Python 3.7 software on the Keras library with a 

TensorFlow background.

Selecting a classi�cation algorithm

To choose an optimal classifier, we first compared the prediction results of several clas-

sic classifier algorithms on the experimental dataset. We compared RF classifiers with 

logistic regression (LR), k-nearest neighbor (KNN), linear discriminant analysis (LDA), 

naive bayes (NB), and support vector machine (SVM) algorithms. �e parameters of all 

the algorithms were temporarily used as default parameter values.

First, we calculated and visualized confusion matrices based on the results of the six 

types of algorithms. �e results are shown in Fig. 1. �e horizontal axes of these confu-

sion matrices denote the predicted label values, and the vertical axes denote the true 

label values. �e dark colour on the diagonals indicates the classification accuracy. �e 

darker the colour, the higher the accuracy. Figure 1 intuitively shows that among the six 

classification algorithms, the RF algorithm obtains the best results.

Cross-validation is a commonly used method in machine learning that can greatly 

reduce errors caused by sample selection. In our experiments, we used 10-fold cross-

validation (10CV) to assess the classification prediction ability of six different clas-

sification algorithms. �e detailed results of these six different methods are shown in 
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Fig. 2, where (a)–(e) show that the accuracy, precision, recall, F1-score, and AUC val-

ues predicted by the RF algorithm are 0.868, 0.825, 0.916, 0.868, and 0.8147, respec-

tively. Among the six algorithms, the RF algorithm achieves the highest values on all 

five evaluation indicators.

In the experiment, we also recorded the execution times of the six algorithms to com-

pare and evaluate the runtime efficiency of each algorithm. �e runtime comparison 

chart for the six algorithms in Fig. 2f shows that the SVM algorithm has the longest exe-

cution time, while the NB algorithm has the shortest, but the prediction results of these 

Fig. 1 Confusion matrix of six algorithms (this figure is generated in the Python language environment with 

a 3.7 version)

Fig. 2 Evaluation results of six algorithms (this figure is generated in the Python language environment with 

a 3.7 version)
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algorithms (such as the accuracy of the NB algorithm) are not as good as those of the RF 

algorithm. �erefore, we choose the RF algorithm as the experimental classifier. Figure 3 

shows a box plot of the prediction results of the six classifiers using 10CV.

�e results are further verified based on the experimental results shown in Fig. 3. 

�e RF algorithm obtains the best prediction results among the six algorithms. �ere-

fore, in our model, we chose the RF algorithm to integrate with the IPCA method to 

predict lncRNA-disease associations.

Comparison of the proposed IPCARF and the traditional RF algorithm

�rough the above experiment, we selected the RF classifier as the classifier in the 

improved algorithm. Next, we used the IPCA algorithm to improve the performance 

of the RF classifier. We compared the prediction effect of the IPCARF algorithm 

with that of the traditional RF algorithm using 10CV. �e experimental results are 

shown in Fig.  4, which shows that the accuracy, precision, recall, and F1-score val-

ues obtained when using the IPCARF algorithm for prediction are higher than those 

obtained when using only the RF algorithm for prediction. �e ROC curve results 

verify that the prediction result of the IPCARF method is better than that of the RF 

method. In addition, the runtime of the IPCARF algorithm is lower than that of the 

Fig. 3 Box plots of evaluation results of six algorithms (this figure is generated in the Python language 

environment with a 3.7 version)
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RF. �erefore, it can be concluded that introducing the IPCA algorithm into the RF 

model effectively improves the performance of the classifier.

Discussion

Analysis of parameters

In the above experiment, we did not consider the effect of different parameter values on 

the prediction results of the algorithms; we used the default parameter settings for all 

the algorithms. In practical applications, after selecting a suitable model, the parameter 

settings are particularly important Because different parameters have different effects on 

model predictive ability.

�e parameters used in IPCARF also affect its prediction performance. We have 

performed many experiments and found that, except for the n_estimators parameter, 

changes in the other parameters have relatively little impact on the prediction results of 

IPCARF. �erefore, here, we consider only the influence of the n_estimator parameter 

on the prediction results of the IPCARF algorithm. In this experiment, we set the value 

range of the n_estimators parameter to [100, 500, 1000, 1500, 2000, and 2500]; then, we 

selected the optimal n_estimator parameter value using the grid search (GS) method.

�e grid search method is a commonly used parameter optimization algorithm [18]. 

A grid search is a method of finding parameters. Its core principle is to first define the 

parameter area to be searched and then divide the area into grids. �e intersections in 

the grid form the parameter combinations to be searched. In other words, all the inter-

sections in the grid are parameter combinations (c, g) that should be searched, and each 

combination (c, g) is retrieved during the grid search process. To obtain the best (c, g) 

combination, the k-fold method is used to test the classification accuracy of each group 

(c, g), and the group with the highest accuracy among all selected (c, g) is selected as the 

parameters for building the model.

Fig. 4 Comparison of prediction results of IPCARF and RF algorithms (this figure is generated in the Python 

language environment with a 3.7 version)
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In our experiment, the best n_estimator parameter value found after executing the 

GS algorithm was 1500. �us, we adopt n_estimators = 1500 to further compare the 

execution performances of the IPCARF and RF algorithms. �e experimental results are 

shown in Fig. 5.

Figure  5a–d displays the accuracy, precision, recall, and F1-score results of the two 

algorithms. Figure 5e shows that the AUC values predicted by the two algorithms are 

0.8257 and 0.8611, and Fig. 5f shows that the running time of the IPCAFR algorithm is 

significantly lower than that of the RF algorithm.

Comparisons with existing works

Previous scholars have developed many effective prediction methods for the prediction 

of lncRNA-disease associations. However, because the data themselves have problems 

such as instability and because the evaluation methods used by various methods are 

inconsistent, the current methods still leave considerable room for improvement. To fur-

ther verify the effect of IPCARF, we compared it with five other existing works, including 

LRLSLDA [14], LRLSLDA-LNCSIM [1], TPGLDA [19], NPCMF [20], and ncPred [21].

�e comparison results showing the AUC values of these algorithms are shown in Fig. 6.

Figure 6 shows that the AUC value obtained when using the IPCARF method to pre-

dict lncRNA-disease associations is better than that of the other comparison algorithms. 

Because of the instability of genetic data, the results of each experimental run differ to 

some degree. Consequently, we repeated the experiment 10 times and took the average 

as the final result. In the experiment, the highest value of AUC obtained when running 

the IPCARF algorithm was 0.906, and the lowest value was 0.861. �ese experimental 

results indicate that the prediction performance of the IPCARF method is slightly better 

than that of the comparative methods.

Fig. 5 Comparison of prediction results of IPCARF and RF algorithms(n_estimators = 1500) (this figure is 

generated in the Python language environment with a 3.7 version)
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Case study

Lung cancer is a common malignant lung tumor. �e top 5 long non-coding RNAs that 

use the IPCARF algorithm to predict lung cancer are: GAS5,XIST,CDKN2B-AS1, PVT1 

and HOTAIR. Four of the top 5 have the latest literature to verify. Ranked No. 1 is GAS5, 

and the research in the literature [22] shows that GAS5 may play a role in suppressing 

cancer. Ranked No. 2 is XIST, and the research in the literature [23] shows that XIST 

plays an important regulatory role in cancer biology. Ranked No. 4 is PVT1, and the 

research in the literature [24] shows that PVT1 can inhibit cell proliferation, migration 

and invasion. Ranked No. 5 is HOTAIR, and the literature [25] found that HOTAIR 

affects the drug resistance of small cell lung cancer cells by regulating the methylation of 

HOXA1.

Conclusions

Biological experiments have continuously been the primary means of identifying 

lncRNA-disease associations. However, the number of newly discovered lncRNAs 

increases every year, and this growing amount of data functions as a bottleneck to 

the experimental identification methods. Fortunately, several publicly available data-

bases have emerged that have introduced greater opportunities for predicting potential 

lncRNA-disease associations through computational methods. Using computational 

methods to predict potential lncRNA-disease associations is important, because such 

associations can effectively improve our understanding of disease pathogenesis and 

guide treatments. In this study, we proposed a novel model called IPCARF to predict 

lncRNA-disease associations and compared it with the existing LRLSLDA, LRLSLDA-

LNCSIM, TPGLDA, NPCMF, and ncPred prediction methods using 10CV. �ese meth-

ods have achieved excellent performances for predicting lncRNA-disease associations. 

�e comparison results show that the prediction results of the IPCARF method are bet-

ter than those of the compared methods.

Fig. 6 Comparisons with existing work (this figure is generated in the Python language environment with a 

3.7 version)
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Although the IPCARF method has achieved good prediction results, it still has some 

limitations that should be improved in future studies. First, the experimental data are 

still not rich enough, which limits the predicted results. As more data related to lncRNA 

diseases becomes available, the IPCARF method will improve. �e complexity and 

inconsistency of biological data also cause certain difficulties in improving and compar-

ing algorithms, especially the inability to obtain completely consistent data sources. In 

future work, we will consider integrating data from different sources to improve the pre-

diction performance of IPCARF by improving the integrity and quality of the experi-

mental data.

Methods

Data collection

Disease similarity data

�e data on disease similarity compiled by different scientific researchers are not the 

same. Among them, the data compiled by van Driel et al. [26] is the most often cited; it 

is also the most recognized and is considered to be relatively authoritative disease simi-

larity data. A similarity network of 5080 human genetic diseases is constructed by this 

database, which is available at http:// www. cmbi. ru. nl/ MimMi ner/. �e database has a 

matrix file format.

lncRNA-disease association data

In 2013, Chen et al. [10] established the LncRNADisease database (http://210.73.221.6/

lncrnadisease), which was the first database of lncRNA-disease association data, and 

it was manually collected and experimentally verified. Over time and the continuous 

expansion of lncRNA research, the LncRNADisease database has also continuously 

expanded, and the number of entries increases yearly. In this study, we used the v2017 

data from the LncRNADisease database. �e datasets generated and analyzed during the 

current study are presented in Additional file 1.

Disease semantic similarity

Disease semantic similarity model

Referring to the calculation method in [1], two models are used on the directed acyclic 

graph (DAG) of diseases to compute a disease semantic similarity score.

First, the contribution of the disease term t in DAG(D) to the semantic value of disease 

D is defined as follows:

where � represents a semantic contribution attenuation factor.

�en, all the contributions of the ancestral disease and disease D itself are summed, 

and the semantic value of disease D is defined as follows:

(1)

{

C1A(D) = 1

C1A(i) = max
{

� ∗ C1A(i′)|i′ ∈ children of i
}

if i �= D,

(2)
G(D) =

∑

i∈Disease(D)

C1D(i).

http://www.cmbi.ru.nl/MimMiner/
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�e semantic similarity between two diseases D1 and D2 is defined as follows:

where sim1 denotes the disease semantic similarity matrix.

Moreover, the method for calculating disease similarity refers to the calculation 

method proposed in [27], which provides a detailed description.

Gaussian interaction pro�le kernel similarity for disease

Similar diseases may have similar related lncRNAs. �e similarity of Gaussian interac-

tion kernels can be computed from the known lncRNA-disease association network. 

�e Gaussian interaction kernel similarity between diseases D1 and D2 is computed as 

follows:

where −kdis represents the standardized core width, which is calculated by

where m represents the disease number.

Gaussian interaction pro�le kernel similarity for lncRNA

�e Gaussian interaction kernel similarity between lncRNAs L1 and L2 is computed as

where n represents the lncRNA number.

The IPCA algorithm

The PCA algorithm

Principal Component Analysis (PCA) is a commonly used data analysis algorithm and 

an unsupervised linear feature extraction algorithm. PCA has been widely used in appli-

cations such as lossy data compression, feature selection, and dimensionality reduction 

[28]. PCA methods can reduce data from a high-dimensional space to a low-dimensional 

space because it merges similar features due to the variance. �us, PCA can reduce both 

data and the number of data features, which helps to prevent model overfitting.

�e main idea underlying the PCA algorithm is to describe things using fewer data 

features that represent most of the main information. PCA is a statistical method that 

recombines characteristic variables with linear associations into fewer characteristic 

variables. �e PCA algorithm is essentially a transformation of the variables that intro-

duces a set of new variables that are not related to the original variables; instead, these 

(3)sim1(D1,D2) =

∑
i∈Disease(D1)∩Disease(D2)

(C1D1
(i) + C1D2

(i))

C1(D1) + C1(D2)
,

(4)GKS(D1,D2) = exp(−kdis�D1 − D2�
2),

(5)kdis =
1

1

m

∑
m

i=1 �D(i)�2
,

(6)GKS(L1, L2) = exp(−klnc�L1 − L2�
2),

(7)klnc =
1

1

n

∑
n

i=1 �L(i)�2
,
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new variables are linear functions of the original variables. Each new variable is called a 

principal component. �is group of principle is sorted based on variance; the first prin-

cipal component is the one with the largest variance in the linear function. �e second 

principal component is the linear function with the second-largest variance, and the first 

and second principal components are not correlated with each other. �e third princi-

pal component is also uncorrelated with the first and second principal components and 

constitutes the linear function with the third-largest variance. By analogy, the original 

data are transformed using K − L to obtain new data after dimensionality reduction.

Assume that the size of the original data sample matrix is m × n . �e matrix has m 

dimensions, and each dimension has n samples. �e sample matrix [29] can be expressed 

as follows:

Find the zero-average of each row in the matrix D , that is, subtract the average value of 

each column, expressed as follows:

where ai represents the average of each column of samples, expressed as follows:

�en, calculate the covariance matrix of the sample matrix. For an m × n sample matrix, 

the covariance matrix C is an m × m matrix, and each element Cij of the covariance 

matrix represents the covariance of the variable di, dj.

Next, compute the eigenvalues of the covariance matrix and sort the calculated eigen-

values in descending order. �e eigenvectors relevant to the first k eigenvalues are 

adopted to form a new matrix.

Finally, the projection of the original data sample matrix D on the new eigenvector 

matrix is calculated to obtain the data eigenvectors after dimensionality reduction.

The IPCA algorithm

�e IPCA algorithm mainly improves the covariance matrix and reconstructs the origi-

nal covariance matrix into a low-dimensional matrix that retains most of the informa-

tion of the original covariance matrix.

First, the l2-norm of each column vector of the original covariance matrix is calculated 

as follows:

(8)D =







d11 d12 · · · d1n

d21 d22 · · · d2n

· · · · · · · · · · · ·

dm1 dm2 · · · dmn







(9)D =







d11 − a1 d12 − a2 · · · d1n − an

d21 − a1 d22 − a2 · · · d2n − an

· · · · · · · · · · · ·

dm1 − a1 dm2 − a2 · · · dmn − an







(10)ai =

1

m

m∑

i=1

dji.

(11)
∥

∥bj
∥

∥

2
=

√

√

√

√

m
∑

i=1

∣

∣cji
∣

∣

2
.
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Next, form a new matrix B with the largest top k column vectors in the obtained norm.

Perform QR decomposition on the new matrix B to obtain the low-dimensional matrix 

C1.

Perform singular value decomposition on the C1 matrix. Arrange the obtained singu-

lar value representations in order of importance, discard the unimportant eigenvectors, 

and retain the eigenvalues of the data set after dimensionality reduction.

In short, in the IPCA algorithm, the singular value decomposition of the central data is 

used for linear dimensionality reduction, and only the most important singular vectors 

are retained to project the data into a lower-dimensional space.

The RF classi�cation algorithm

�e RF classification algorithm belongs to the supervised learning subfield of the 

machine learning field. It uses samples from a dataset for training and the trained model 

is applied to perform predictions on real data to evaluate whether the results meet 

expectations.

�e traditional classification algorithms mainly include k-nearest neighbour (KNN) 

[30] algorithms, naive Bayes (NB) [31] algorithms, decision tree algorithms and support 

vector machine (SVM) [32] algorithms. Most of these algorithms are relatively mature, 

and each has a range of suitable application scenarios, but they also leave space for cor-

responding algorithm classification performance improvements. �e decision tree algo-

rithm is a type of split tree approach based on data attribute characteristics. As research 

has deepened, improved decision trees such as ID3, C4.5, classification and regression 

tree (CART), and regression trees have gradually been developed. �e decision tree 

algorithm has advantages such as an easy way to understand the decision results and 

powerful functions, but it may exhibit problems such as weak fitting. �e NB algo-

rithm comes from the field of statistics and predicts the posterior probability based on 

the prior probability. �e advantage of the NB algorithm is its fast calculation speed, 

while its disadvantage is that there may be dependencies between attributes, which often 

leads to lower classification accuracy. �e SVM algorithm performs high-dimensional 

and nonlinear classification by constructing a hyperplane. �e advantages of the SVM 

algorithm are that it is highly efficient and provides good classification accuracy. Its dis-

advantages are the complex structure of its kernel function and a lack of data sensitivity.

�e RF method, first proposed by Breiman [33]is a machine learning algorithm con-

sisting of many decision trees. It is a combination of the Bagging [34] and Random Sub-

spaces [35]methods. �e RF algorithm [35] is considered to be an ensemble learning and 

supervised classification method. It first randomly establishes a forest composed of mul-

tiple unrelated decision trees; these multiple decision tree classifier models each learn 

and perform prediction separately. �en, the prediction results of the multiple decision 

tree classifier models are combined to obtain a final prediction result. �ere are two typ-

ical ways of combining the prediction results from different decision tree classifiers in 

RF. One is to average the prediction results of all the decision tree classifiers to obtain 

a prediction result for the entire forest. �e other is to conduct a vote on the predic-

tion results from all decision tree classifiers to select an optimal prediction result as the 
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prediction result of the entire forest. A general flowchart of the RF algorithm is shown in 

Fig. 7.

�e RF algorithm first selects n samples from the original training set as a training 

subset and then generates a decision tree for each subset. �e above steps are repeated 

a total of n times to generate n decision trees that form the random forest. Finally, the 

random forest obtained by training is used to predict test samples, and an optimal clas-

sification result is selected using either the mean method or the voting method.

�e hospital has a large amount of data after the diagnosis of the patient, how to 

extract the data that has a high correlation with the patient’s disease from this large and 

complex data set for analysis. If we can use some high-performance algorithms to effi-

ciently classify these data and make predictions for some diseases, such as the predictive 

analysis of cancer and other diseases, it will have very important and far-reaching signifi-

cance. �e data processed in the medical field are usually high-dimensional, and many 

data sets are extremely unbalanced. Traditional analysis methods cannot get a good 

diagnosis effect. �e random forest can efficiently process high-dimensional data, so it is 

widely used in the medical field.

Long noncoding RNA-disease prediction based on IPCA and RF

In this study, we developed an algorithm called IPCARF based on the IPCA and RF 

methods. First, two semantic similarity matrices, a Gaussian kernel similarity matrix for 

diseases and a Gaussian kernel similarity matrix for lncRNAs are established. Second, a 

feature vector is extracted from the similarity matrix to construct an adjacency matrix. 

�en, the positive samples and negative samples are extracted from the adjacency matrix 

to construct the dataset for prediction. Next, the IPCA method is applied to select 

Fig. 7 Flowchart of the rf (this figure is drawn manually using visio2010 software)
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features and reduce the dataset dimensionality. Finally, the FR classifier is used to make 

predictions. �e IPCARF process is shown in Fig. 8.

Evaluation metrics

To assess the potential classification prediction ability of the IPCARF algorithm, we 

adopted the metrics of precision, accuracy, F1-score, recall, and the receiver operating 

characteristic (ROC) curve to represent the abilities of the six candidate algorithms. �e 

calculation formulas for several of these metrics are defined below:

(12)accuracy =
TP + TN

TP + FN + FP + TN
,

(13)precision =
TP

TP + FP
,

(14)recall =
TP

TP + FN
,

Fig. 8 Flowchart of IPCARF (this figure is drawn manually using Visio2010 software)
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where TP is the number of positive samples correctly classified as positive samples 

by the classifier; TN is the number of negative samples correctly classified as negative 

samples by the classifier; FP is the number of negative samples incorrectly classified as 

positive samples by the classifier; and FN is the number of positive samples incorrectly 

classified as negative samples by the classifier.

Recall is the proportion of positive examples that are accurately predicted (it can be 

called TPR or recall), that is, the proportion of positive examples correctly predicted 

by the classification model to the total number of correctly classified samples. �e 

higher the accuracy, precision, recall, and F1-score are, the better the classification 

performance is.

�e ROC curve is a characteristic of classifier performance. �e abscissa of this 

curve is the false positive rate (FPR), and the ordinate is TPR (recall). �e formula for 

calculating the FPR is shown below:

�e area under the curve (AUC) represents the area under the ROC curve enclosed by 

the coordinate axis. �e value of this area cannot exceed 1. Usually, the ROC curves are 

located above the straight line y = x . Generally, the AUC value should range between 

0.5 and 1. An AUC value closer to 1.0 represents a better classifier performance. An 

AUC <= 0.5 has no application value. Because the ROCs evaluate model results in an 

objective manner, this metric is widely used in practical applications.
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