
SIAM J. IMAGING SCIENCES c© 2014 Society for Industrial and Applied Mathematics
Vol. 7, No. 2, pp. 1388–1419

iPiano: Inertial Proximal Algorithm for Nonconvex Optimization∗

Peter Ochs†, Yunjin Chen‡, Thomas Brox†, and Thomas Pock‡

Abstract. In this paper we study an algorithm for solving a minimization problem composed of a differentiable
(possibly nonconvex) and a convex (possibly nondifferentiable) function. The algorithm iPiano
combines forward-backward splitting with an inertial force. It can be seen as a nonsmooth split
version of the Heavy-ball method from Polyak. A rigorous analysis of the algorithm for the proposed
class of problems yields global convergence of the function values and the arguments. This makes the
algorithm robust for usage on nonconvex problems. The convergence result is obtained based on the
Kurdyka–�Lojasiewicz inequality. This is a very weak restriction, which was used to prove convergence
for several other gradient methods. First, an abstract convergence theorem for a generic algorithm
is proved, and then iPiano is shown to satisfy the requirements of this theorem. Furthermore, a
convergence rate is established for the general problem class. We demonstrate iPiano on computer
vision problems—image denoising with learned priors and diffusion based image compression.

Key words. nonconvex optimization, Heavy-ball method, inertial forward-backward splitting, Kurdyka–
�Lojasiewicz inequality, proof of convergence

AMS subject classifications. 32B20, 47J06, 47J25, 47J30, 49M15, 62H35, 65K10, 90C53, 90C26, 90C06, 90C30,
94A08

DOI. 10.1137/130942954

1. Introduction. The gradient method is certainly one of the most fundamental but also
one of the most simple algorithms to solve smooth convex optimization problems. In the
last several decades, the gradient method has been modified in many ways. One of those
improvements is to consider so-called multistep schemes [38, 35]. It has been shown that
such schemes significantly boost the performance of the plain gradient method. Triggered
by practical problems in signal processing, image processing, and machine learning, there
has been an increased interest in so-called composite objective functions, where the objective
function is given by the sum of a smooth function and a nonsmooth function with an easy-
to-compute proximal map. This initiated the development of the so-called proximal gradient
or forward-backward method [28], which combines explicit (forward) gradient steps w.r.t. the
smooth part with proximal (backward) steps w.r.t. the nonsmooth part.

In this paper, we combine the concepts of multistep schemes and the proximal gradient
method to efficiently solve a certain class of nonconvex, nonsmooth optimization problems.

∗Received by the editors October 28, 2013; accepted for publication (in revised form) April 2, 2014; published
electronically June 17, 2014. The first and third authors acknowledge funding by the German Research Foundation
(DFG grant BR 3815/5-1).

http://www.siam.org/journals/siims/7-2/94295.html
†Department of Computer Science and BIOSS Centre for Biological Signalling Studies, University of Freiburg,

Georges-Köhler-Allee 052, 79110 Freiburg, Germany (ochs@cs.uni-freiburg.de, brox@cs.uni-freiburg.de).
‡Institute for Computer Graphics and Vision, Graz University of Technology, Inffeldgasse 16, A-8010 Graz, Austria

(cheny@icg.tugraz.at, pock@icg.tugraz.at). The second and fourth authors were supported by the Austrian science
fund (FWF) under the START project BIVISION, Y729.

1388

http://www.siam.org/journals/siims/7-2/94295.html
mailto:ochs@cs.uni-freiburg.de
mailto:brox@cs.uni-freiburg.de
mailto:cheny@icg.tugraz.at
mailto:pock@icg.tugraz.at


iPIANO: INERTIAL PROXIMAL ALGORITHM FOR NONCONVEX OPTIMIZATION 1389

Although the transfer of knowledge from convex optimization to nonconvex problems is very
challenging, it aspires to find efficient algorithms for certain nonconvex problems. Therefore,
we consider the subclass of nonconvex problems

min
x∈RN

f(x) + g(x) ,

where g is a convex (possibly nonsmooth) and f is a smooth (possibly nonconvex) function. The
sum f+g comprises nonsmooth, nonconvex functions. Despite the nonconvexity, the structure
of f being smooth and g being convex makes the forward-backward splitting algorithm well
defined. Additionally, an inertial force is incorporated into the design of our algorithm, which
we termed iPiano. Informally, the update scheme of the algorithm that will be analyzed is

xn+1 = (I + α∂g)−1(xn − α∇f(xn) + β(xn − xn−1)) ,

where α and β are the step size parameters. The term xn − α∇f(xn) is referred to as the
forward step, β(xn−xn−1) as the inertial term, and (I +α∂g)−1 as the backward or proximal
step.

For g ≡ 0 the proximal step is the identity, and the update scheme is usually referred
to as the Heavy-ball method. This reduced iterative scheme is an explicit finite differences
discretization of the so-called Heavy-ball with friction dynamical system

ẍ(t) + γẋ(t) +∇f(x(t)) = 0 .

It arises when Newton’s law is applied to a point subject to a constant friction γ > 0 (of the
velocity ẋ(t)) and a gravity potential f . This explains the name “Heavy-ball method” and
the interpretation of β(xn − xn−1) as inertial force.

Setting β = 0 results in the forward-backward splitting algorithm, which has the nice
property that in each iteration the function value decreases. Our convergence analysis reveals
that the additional inertial term prevents our algorithm from monotonically decreasing the
function values. Although this may look like a limitation on first glance, demanding monoton-
ically decreasing function values anyway is too strict as it does not allow for provably optimal
schemes. We refer to a statement of Nesterov [35]: “In convex optimization the optimal meth-
ods never rely on relaxation. First, for some problem classes this property is too expensive.
Second, the schemes and efficiency estimates of optimal methods are derived from some global
topological properties of convex functions.”1 The negative side of better efficiency estimates
of an algorithm is usually the convergence analysis. This is even true for convex functions. In
case of nonconvex and nonsmooth functions, this problem becomes even more severe.

Contributions. Despite this problem, we can establish convergence of the sequence of func-
tion values for the general case, where the objective function is required only to be a composi-
tion of a convex and a differentiable function. Regarding the sequence of arguments generated
by the algorithm, existence of a converging subsequence is shown. Furthermore, we show that
each limit point is a critical point of the objective function.

1Relaxation is to be interpreted as the property of monotonically decreasing function values in this context.
Topological properties should be associated with geometrical properties.



1390 P. OCHS, Y. CHEN, T. BROX, AND T. POCK

To establish convergence of the whole sequence in the nonconvex case is very hard. How-
ever, with slightly more assumptions to the objective, namely, that it satisfies the Kurdyka–
�Lojasiewicz inequality [30, 31, 26], several algorithms have been shown to converge [14, 5, 3, 4].
In [5] an abstract convergence theorem for descent methods with certain properties is proved.
It applies to many algorithms. However, it cannot be used for our algorithm. Based on their
analysis, we prove an abstract convergence theorem for a different class of descent methods,
which applies to iPiano. By verifying the requirements of this abstract convergence theorem,
we manage to also show such a strong convergence result. From a practical point of view of
image processing, computer vision, or machine learning, the Kurdyka–�Lojasiewicz inequality
is almost always satisfied. For more details about properties of Kurdyka–�Lojasiewicz functions
and a taxonomy of functions that have this property, we refer the reader to [5, 10, 26].

The last part of the paper is devoted to experiments. We exemplarily present results on
computer vision tasks, such as denoising and image compression, and show that entering the
staggering world of nonconvex functions pays off in practice.

2. Related work.

Forward-backward splitting. In convex optimization, splitting algorithms usually originate
from the proximal point algorithm [39]. It is a very general algorithm, and results on its
convergence affect many other algorithms. Practically, however, computing one iteration
of the algorithm can be as hard as the original problem. Among the strategies to tackle
this problem are splitting approaches such as Douglas–Rachford [28, 18], several primal-dual
algorithms [12, 37, 23], and forward-backward splitting [28, 16, 7, 35]; see [15] for a survey.

The forward-backward splitting schemes seem to be especially appealing to generalize to
nonconvex problems. This is due to their simplicity and the existence of simpler formulations
in some special cases such as, for example, the gradient projection method, where the backward
step is the projection onto a set [27, 22]. In [19] the classical forward-backward algorithm,
where the backward step is the solution of a proximal term involving a convex function, is
studied for a nonconvex problem. In fact, the same class of objective functions as in the
present paper is analyzed. The algorithm presented here comprises the algorithm from [19] as
a special case. Also Nesterov [36] briefly discusses this algorithm in a general setting. Even
the reverse setting is generalized in the nonconvex setting [5, 11], namely, where the backward
step is performed on a nonsmooth, nonconvex function.

As the amount of data to be processed is growing and algorithms are supposed to exploit
all the data in each iteration, inexact methods become interesting, though we do not consider
erroneous estimates in this paper. Forward-backward splitting schemes also seem to work for
nonconvex problems with erroneous estimates [44, 43]. A mathematical analysis of inexact
methods can be found, e.g., in [14, 5], but with the restriction that the method is explicitly
required to decrease the function values in each iteration. The restriction comes with sig-
nificantly improved results with regard to the convergence of the algorithm. The algorithm
proposed in this paper provides strong convergence results, although it does not require the
function values to decrease.

Optimization with inertial forces. In his seminal work [38], Polyak investigates multistep
schemes to accelerate the gradient method. It turns out that a particularly interesting case is
given by a two-step algorithm, which has been coined the Heavy-ball method. The name of the



iPIANO: INERTIAL PROXIMAL ALGORITHM FOR NONCONVEX OPTIMIZATION 1391

method is due to the fact that it can be interpreted as an explicit finite difference discretization
of the so-called Heavy-ball with friction dynamical system. It differs from the usual gradient
method by adding an inertial term that is computed by the difference of the two preceding
iterations. Polyak showed that this method can speed up convergence in comparison to the
standard gradient method, while the cost of each iteration stays basically unchanged.

The popular accelerated gradient method of Nesterov [35] obviously shares some similar-
ities with the Heavy-ball method, but it differs from it in one regard: while the Heavy-ball
method uses gradients based on the current iterate, Nesterov’s accelerated gradient method
evaluates the gradient at points that are extrapolated by the inertial force. On strongly con-
vex functions, both methods are equally fast (up to constants), but Nesterov’s accelerated
gradient method converges much faster on weakly convex functions [17].

The Heavy-ball method requires knowledge of the function parameters (the Lipschitz con-
stant of the gradient and the modulus of strong convexity) to achieve the optimal convergence
rate, which can be seen as a disadvantage. Interestingly, the conjugate gradient method for
minimizing strictly convex quadratic problems can be expressed as the Heavy-ball method.
Hence, it can be seen as a special case of the Heavy-ball method for quadratic problems.
In this special case, no additional knowledge of the function parameters is required, as the
algorithm parameters are computed online.

The Heavy-ball method was originally proposed for minimizing differentiable convex func-
tions, but it has been generalized in different ways. In [45], it has been generalized to the case
of smooth nonconvex functions. It is shown that, by considering an appropriate Lyapunov
objective function, the iterations are attracted by the connected components of stationary
points. In section 4 it will become evident that the nonconvex Heavy-ball method is a special
case of our algorithm, and also the convergence analysis of [45] shows some similarities to
ours.

In [2, 1], the Heavy-ball method has been extended to maximal monotone operators, e.g.,
the subdifferential of a convex function. In a subsequent work [34], it has been applied to a
forward-backward splitting algorithm, again in the general framework of maximal monotone
operators.

3. An abstract convergence result.

3.1. Preliminaries. We consider the Euclidean vector space R
N of dimension N ≥ 1 and

denote the standard inner product by 〈·, ·〉 and the induced norm by ‖·‖22 :=
√

〈·, ·〉. Let
F : RN → R ∪ {+∞} be a proper lower semicontinuous function.

Definition 3.1 (effective domain, proper). The (effective) domain of F is defined by
domF := {x ∈ R

N : F (x) < +∞}. The function is called proper if domF is nonempty.

In order to give a sound description of the first order optimality condition for a nonconvex,
nonsmooth optimization problem, we have to introduce the generalization of the subdifferential
for convex functions.

Definition 3.2 (limiting-subdifferential). The limiting-subdifferential (or simply subdifferen-
tial) is defined by (see [40, Def. 8.3])

(1) ∂F (x) = {ξ ∈ R
N | ∃yk → x, F (yk) → F (x), ξk → ξ, ξk ∈ ∂̂F (yk)} ,



1392 P. OCHS, Y. CHEN, T. BROX, AND T. POCK

which makes use of the Fréchet subdifferential defined by

∂̂F (x) = {ξ ∈ R
N | lim inf

y→x
y �=x

1

‖x−y‖2
(F (y)− F (x)− 〈y − x, ξ〉) ≥ 0} ,

when x ∈ domF and by ∂̂F (x) = ∅ else.
The domain of the subdifferential is dom ∂F := {x ∈ R

N | ∂F (x) = ∅}.
In what follows, we will consider the problem of finding a critical point x∗ ∈ domF of F ,

which is characterized by the necessary first-order optimality condition 0 ∈ ∂F (x∗).
We state the definition of the Kurdyka–�Lojasiewicz property from [4].
Definition 3.3 (Kurdyka–�Lojasiewicz property).
1. The function F : RN → R∪{∞} has the Kurdyka–�Lojasiewicz property at x∗ ∈ dom ∂F

if there exist η ∈ (0,∞], a neighborhood U of x∗, and a continuous concave function
ϕ : [0, η) → R+ such that ϕ(0) = 0, ϕ ∈ C1((0, η)); for all s ∈ (0, η) it is ϕ′(s) > 0,
and for all x ∈ U ∩ [F (x∗) < F < F (x∗)+η] the Kurdyka–�Lojasiewicz inequality holds,
i.e.,

ϕ′(F (x)− F (x∗))dist(0, ∂F (x)) ≥ 1 .

2. If the function F satisfies the Kurdyka–�Lojasiewicz inequality at each point of dom ∂F ,
it is called a KL function.

Roughly speaking, this condition says that we can bound the subgradient of a function
from below by a reparametrization of its function values. In the smooth case, we can also say
that up to a reparametrization the function h is sharp, meaning that any nonzero gradient
can be bounded away from 0. This is sometimes called a desingularization. It has been
shown in [4] that a proper lower semicontinuous extended valued function h always satisfies
this inequality at each nonstationary point. For more details and other interpretations of this
property, and also for different formulations, we refer the reader to [10].

A big class of functions that have the KL property is given by real semialgebraic functions
[4]. Real semialgebraic functions are defined as functions whose graph is a real semialgebraic
set.

Definition 3.4 (real semialgebraic set). A subset S of RN is semialgebraic if there exists a
finite number of real polynomials Pi,j , Qi,j : R

N → R such that

S =

p⋃

j=1

q⋂

i=1

{x ∈ R
N : Pi,j(x) = 0 and Qi,j < 0} .

3.2. Inexact descent convergence result for KL functions. In the following, we prove
an abstract convergence result for a sequence (zn)n∈N := (xn, xn−1)n∈N in R

2N , xn ∈ R
N ,

x−1 ∈ R
N , satisfying certain basic conditions, N := {0, 1, 2, . . .}. For convenience we use

the abbreviation ∆n := ‖xn − xn−1‖2 for n ∈ N. We fix two positive constants a > 0 and
b > 0 and consider a proper lower semicontinuous function F : R2N → R ∪ {∞}. Then, the
conditions we require for (zn)n∈N are as follows:
(H1) For each n ∈ N, it holds that

F (zn+1) + a∆2
n ≤ F (zn) .



iPIANO: INERTIAL PROXIMAL ALGORITHM FOR NONCONVEX OPTIMIZATION 1393

(H2) For each n ∈ N, there exists wn+1 ∈ ∂F (zn+1) such that

‖wn+1‖2 ≤
b

2
(∆n +∆n+1) .

(H3) There exists a subsequence (znj )j∈N such that

znj → z̃ and F (znj ) → F (z̃) as j → ∞ .

Based on these conditions, we derive the same convergence result as in [5]. The statements
and proofs of the subsequent results follow the same ideas as those in [5]. We modified the
involved calculations according to our conditions (H1), (H2), and (H3).

Remark 1. These conditions are very similar to those in [5]; however, they are not identical.
The difference comes from the fact that [5] does not consider a two-step algorithm.

• In [5] the corresponding condition to (H1) (sufficient decrease condition) is F (xn+1)+
a∆2

n+1 ≤ F (xn).
• The corresponding condition to (H2) (relative error condition) is ‖wn+1‖2 ≤ b∆n+1.

In some sense, our condition (H2) accepts a larger relative error.
• (H3) (continuity condition) in [5] is the same here, but for (xnj)j∈N.

Remark 2. Our proof and the proof in [5] differ mainly in the calculations that are involved;
the outline is the same. There is hope of finding an even more general convergence result,
which comprises ours and [5].

Lemma 3.5. Let F : R2N → R ∪ {∞} be a proper lower semicontinuous function which
satisfies the Kurdyka–�Lojasiewicz property at some point z∗ = (x∗, x∗) ∈ R

2N . Denote by U ,
η, and ϕ : [0, η) → R+ the objects appearing in Definition 3.3 of the KL property at z∗. Let
σ, ρ > 0 be such that B(z∗, σ) ⊂ U with ρ ∈ (0, σ), where B(z∗, σ) := {z ∈ R

2N : ‖z − z∗‖2 <
σ}.

Furthermore, let (zn)n∈N = (xn, xn−1)n∈N be a sequence satisfying conditions (H1), (H2),
and

(2) ∀n ∈ N : zn ∈ B(z∗, ρ) ⇒ zn+1 ∈ B(z∗, σ) with F (zn+1), F (zn+2) ≥ F (z∗) .

Moreover, the initial point z0 = (x0, x−1) is such that F (z∗) ≤ F (z0) < F (z∗) + η and

(3) ‖x∗ − x0‖2 +
√

F (z0)− F (z∗)

a
+

b

a
ϕ(F (z0)− F (z∗)) <

ρ

2
.

Then, the sequence (zn)n∈N satisfies

(4) ∀n ∈ N : zn ∈ B(z∗, ρ),

∞∑

n=0

∆n < ∞, F (zn) → F (z∗) as n → ∞ ;

(zn)n∈N converges to a point z̄ = (x̄, x̄) ∈ B(z∗, σ) such that F (z̄) ≤ F (z∗). If, additionally,
condition (H3) is satisfied, then 0 ∈ ∂F (z̄) and F (z̄) = F (z∗).

Proof. The key points of the proof are the facts that for all j ≥ 1,

zj ∈ B(z∗, ρ) and(5)

j∑

i=1

∆i ≤
1

2
(∆0 −∆j) +

b

a
[ϕ(F (z1)− F (z∗))− ϕ(F (zj+1)− F (z∗))].(6)



1394 P. OCHS, Y. CHEN, T. BROX, AND T. POCK

Let us first see that ϕ(F (zj+1) − F (z∗)) is well defined. By condition (H1), (F (zn))n∈N is
nonincreasing, which shows that F (zn+1) ≤ F (z0) < F (z∗) + η. Combining this with (2)
implies F (zn+1)− F (z∗) ≥ 0.

As for n ≥ 1, the set ∂F (zn) is nonempty (see condition (H2)); every zn belongs to domF .
For notational convenience, we define

Dϕ
n := ϕ(F (zn)− F (z∗))− ϕ(F (zn+1)− F (z∗)) .

Now, we want to show that for n ≥ 1 the following holds: if F (zn) < F (z∗) + η and zn ∈
B(z∗, ρ), then

(7) 2∆n ≤ b
a
Dϕ

n + 1

2
(∆n +∆n−1) .

Obviously, we can assume that ∆n = 0 (otherwise it is trivial), and therefore (H1) and
(2) imply F (zn) > F (zn+1) ≥ F (z∗). The KL inequality shows wn = 0, and (H2) shows
∆n +∆n−1 > 0. Since wn ∈ ∂F (zn), using the KL inequality and (H2), we obtain

ϕ′(F (zn)− F (z∗)) ≥ 1

‖wn‖2
≥ 2

b(∆n−1 +∆n)
.

As ϕ is concave and increasing (ϕ′ > 0), condition (H1) and (2) yield

Dϕ
n ≥ ϕ′(F (zn)− F (z∗))(F (zn)− F (zn+1)) ≥ ϕ′(F (zn)− F (z∗))a∆2

n .

Combining both inequalities results in

( b
a
Dϕ

n)
1

2
(∆n−1 +∆n) ≥ ∆2

n ,

which by applying 2
√
uv ≤ u+ v establishes (7).

As (2) only implies zn+1 ∈ B(z∗, σ), σ > ρ, we cannot use (7) directly for the whole
sequence. However, (5) and (6) can be shown by induction on j. For j = 0, (2) yields
z1 ∈ B(z∗, σ) and F (z1), F (z2) ≥ F (z∗). From condition (H1) with n = 1, F (z2) ≥ F (z∗),
and F (z1) ≤ F (z0), we infer

(8) ∆1 ≤
√

F (z1)− F (z2)

a
≤

√
F (z0)− F (z∗)

a
,

which combined with (3) leads to

‖x∗ − x1‖2 ≤ ‖x0 − x∗‖2 +∆1 ≤ ‖x0 − x∗‖2 +
√

F (z0)− F (z∗)

a
<

ρ

2
,

and therefore z1 ∈ B(z∗, ρ). Direct use of (7) with n = 1 shows that (6) holds with j = 1.
Suppose (5) and (6) are satisfied for j ≥ 1. Then, using the triangle inequality and (6),

we have

‖z∗ − zj+1‖2 ≤ ‖x∗ − xj+1‖2 + ‖x∗ − xj‖2
≤ 2‖x∗ − x0‖2 + 2

∑j
i=1

∆i +∆j+1

≤ 2‖x∗ − x0‖2 + (∆0 −∆j) + ∆j+1

2 b
a
[ϕ(F (z1)− F (z∗))− ϕ(F (zj+1)− F (z∗))]

≤ 2‖x∗ − x0‖2 +∆0 +∆j+1 + 2 b
a
[ϕ(F (z0)− F (z∗))] ,



iPIANO: INERTIAL PROXIMAL ALGORITHM FOR NONCONVEX OPTIMIZATION 1395

which shows, using ∆j+1 ≤
√

1

a
(F (zj+1)− F (zj+2)) ≤

√
1

a
(F (z0)− F (z∗)) and (3), that

zj+1 ∈ B(z∗, ρ). As a consequence, (7), with n = j + 1, can be added to (6), and we can
conclude (6) with j + 1. This shows the desired induction on j.

Now, the finiteness of the length of the sequence (xn)n∈N, i.e.,
∑∞

i=1
∆i < ∞, is a conse-

quence of the following estimation, which is implied by (6):

j∑

i=1

∆i ≤ 1

2
∆0 +

b
a
ϕ(F (z1)− F (z∗)) < ∞ .

Therefore, xn converges to some x̄ as n → ∞, and zn converges to z̄ = (x̄, x̄). As ϕ is concave,
ϕ′ is decreasing. Using this and condition (H2) yields wn → 0 and F (zn) → ζ ≥ F (z∗).
Suppose we have ζ > F (z∗); then the KL inequality reads ϕ′(ζ − F (z∗))‖wn‖2 ≥ 1 for all
n ≥ 1, which contradicts wn → 0.

Note that, in general, z̄ is not a critical point of F , because the limiting subdifferential
requires F (zn) → F (z̄) as n → ∞. When the sequence (zn)n∈N additionally satisfies con-
dition (H3), then z̃ = z̄, and z̄ is a critical point of F , because F (z̄) = limn→∞ F (zn) =
F (z∗).

Remark 3. The only difference from [5] with respect to the assumptions is (2). In [5],
zn ∈ B(z∗, ρ) implies F (zn+1) ≥ F (z∗), whereas we require F (zn+1) ≥ F (z∗) and F (zn+2) ≥
F (z∗). However, as Theorem 3.7 shows, this does not weaken the convergence result compared
to [5]. In fact, Corollary 3.6, which assumes F (zn) ≥ F (z∗) for all n ∈ N and which is also
used in [5], is key in Theorem 3.7.

The next corollary and the subsequent theorem follow as in [5] by replacing the calculation
with our conditions.

Corollary 3.6. Lemma 3.5 holds true if we replace (2) by

η < a(σ − ρ)2 and F (zn) ≥ F (z∗) ∀n ∈ N .

Proof. By condition (H1), for zn ∈ B(z∗, ρ), we have

∆2
n+1 ≤

F (zn+1)− F (zn+2)

a
≤ η

a
< (σ − ρ)2 .

Using the triangle inequality on ‖zn+1 − z∗‖2 shows that zn+1 ∈ B(z∗, σ), which implies (2)
and concludes the proof.

The work that is done in Lemma 3.5 and Corollary 3.6 allows us to formulate an abstract
convergence theorem for sequences satisfying conditions (H1), (H2), and (H3). It follows, with
a few modifications, as in [5].

Theorem 3.7 (convergence to a critical point). Let F : R2N → R ∪ {∞} be a proper lower
semicontinuous function and (zn)n∈N = (xn, xn−1)n∈N be a sequence that satisfies (H1), (H2),
and (H3). Moreover, let F have the Kurdyka–�Lojasiewicz property at the cluster point x̃
specified in (H3).

Then, the sequence (xn)∞n=0 has finite length, i.e.,
∑∞

n=1
∆n < ∞, and converges to x̄ = x̃

as n → ∞, where (x̄, x̄) is a critical point of F .



1396 P. OCHS, Y. CHEN, T. BROX, AND T. POCK

Proof. By condition (H3), we have znj → z̄ = z̃ and F (znj ) → F (z̄) for a subsequence
(znj )n∈N. This together with the nondecreasingness of (F (zn))n∈N (by condition (H1)) imply
that F (zn) → F (z̄) and F (zn) ≥ F (z̄) for all n ∈ N. The KL property around z̄ states the
existence of quantities ϕ, U , and η as in Definition 3.3. Let σ > 0 be such that B(z̄, σ) ⊂ U
and ρ ∈ (0, σ). Shrink η such that η < a(σ − ρ)2 (if necessary). As ϕ is continuous, there
exists n0 ∈ N such that F (zn) ∈ [F (z̄), F (z̄) + η) for all n ≥ n0 and

‖x∗ − xn0‖2 +
√

F (zn0)− F (z∗)

a
+

b

a
ϕ(F (zn0)− F (z∗)) <

ρ

2
.

Then, the sequence (yn)n∈N defined by yn = zn0+n satisfies the conditions in Corollary 3.6,
which concludes the proof.

4. The proposed algorithm: iPiano.

4.1. The optimization problem. We consider a structured nonsmooth, nonconvex opti-
mization problem with a proper lower semicontinuous extended valued function h : RN →
R ∪ {+∞}, N ≥ 1:

(9) min
x∈RN

h(x) = min
x∈RN

f(x) + g(x) ,

which is composed of a C1-smooth (possibly nonconvex) function f : RN → R with L-Lipschitz
continuous gradient on dom g, L > 0, and a convex (possibly nonsmooth) function g : RN →
R ∪ {+∞}. Furthermore, we require h to be coercive, i.e., ‖x‖2 → +∞ implies h(x) → +∞,
and bounded from below by some value h > −∞.

The proposed algorithm, which is stated in subsection 4.3, seeks a critical point x∗ ∈ domh
of h, which is characterized by the necessary first-order optimality condition 0 ∈ ∂h(x∗). In
our case, this is equivalent to

−∇f(x∗) ∈ ∂g(x∗) .

This equivalence is explicitly verified in the next subsection, where we collect some details
and state some basic properties which are used in the convergence analysis in subsection 4.5.

4.2. Preliminaries. Consider the function f first. It is required to be C1-smooth with
L-Lipschitz continuous gradient on dom g; i.e., there exists a constant L > 0 such that

(10) ‖∇f(x)−∇f(y)‖2 ≤ L‖x− y‖2 ∀x, y ∈ dom g .

This directly implies that domh = dom g is a nonempty convex set, as dom g ⊂ dom f . This
property of f plays a crucial role in our convergence analysis due to the following lemma
(stated as in [5]).

Lemma 4.1 (descent lemma). Let f : RN → R be a C1-function with L-Lipschitz continuous
gradient ∇f on dom g. Then for any x, y ∈ dom g it holds that

(11) f(x) ≤ f(y) + 〈∇f(y), x− y〉+ L

2
‖x− y‖22 .



iPIANO: INERTIAL PROXIMAL ALGORITHM FOR NONCONVEX OPTIMIZATION 1397

Proof. See, for example, [35].

We assume that the function g is a proper lower semicontinuous convex function with an
efficient to compute proximal map.

Definition 4.2 (proximal map). Let g be a proper lower semicontinuous convex function.
Then, we define the proximal map

(I + α∂g)−1(x̂) := arg min
x∈RN

‖x− x̂‖22
2

+ αg(x) ,

where α > 0 is a given parameter, I is the identity map, and x̂ ∈ R
N .

An important (basic) property that the convex function g contributes to the convergence
analysis is the following.

Lemma 4.3. Let g be a proper lower semicontinuous convex function; then it holds for any
x, y ∈ dom g, s ∈ ∂g(x) that

(12) g(y) ≥ g(x) + 〈s, y − x〉 .

Proof. This result follows directly from the convexity of g.

Finally, consider the optimality condition 0 ∈ ∂h(x∗) in more detail. The following propo-
sition proves the equivalence to−∇f(x∗) ∈ ∂g(x∗). The proof is mainly based on Definition 3.2
of the limiting subdifferential.

Proposition 4.4. Let h, f , and g be as before; i.e., let h = f + g with f continuously dif-
ferentiable and g convex. Sometimes, h is then called a C1-perturbation of a convex function.
Then, for x ∈ domh holds

∂h(x) = ∇f(x) + ∂g(x) .

Proof. We first prove “⊂”. Let ξh ∈ ∂h(x); i.e., there is a sequence (yk)
∞
k=0

such that

yk → x, h(yk) → h(x), and ξhk → ξh, where ξhk ∈ ∂̂h(yk). We want to show that ξg :=
ξh −∇f(x) ∈ ∂g(x). As f ∈ C1 and ξh ∈ ∂h(x), we have

yk
k→∞−→ x,

g(yk) = h(yk)− f(yk)
k→∞−→ h(x) − f(x) = g(x),

ξgk := ξhk −∇f(yk)
k→∞−→ ξh −∇f(x) =: ξg .

It remains to show that ξgk ∈ ∂̂g(yk). First, remember that lim inf is superadditive; i.e., for two
sequences (an)

∞
n=0, (bn)

∞
n=0 in R it is lim infn→∞(an + bn) ≥ lim infn→∞ an + lim infn→∞ bn.

However, convergence of an implies lim infn→∞(an + bn) = limn→∞ an + lim infn→∞ bn. This
fact together with f ∈ C1 allows us to conclude

0 ≤ lim inf
(
h(y′k)− h(yk)−

〈
y′k − yk, ξ

h
k

〉)
/‖y′k − yk‖2

≤ lim inf
(
f(y′k)− f(yk) + g(y′k)− g(yk)−

〈
y′k − yk,∇f(yk) + ξgk

〉)
/‖y′k − yk‖2

= lim (f(y′k)− f(yk)− 〈y′k − yk,∇f(yk)〉) /‖y′k − yk‖2
+ lim inf

(
g(y′k)− g(yk)−

〈
y′k − yk, ξ

g
k

〉)
/‖y′k − yk‖2

= lim inf
(
g(y′k)− g(yk)−

〈
y′k − yk, ξ

g
k

〉)
/‖y′k − yk‖2 ,



1398 P. OCHS, Y. CHEN, T. BROX, AND T. POCK

where lim inf and lim are over y′k → yk, y
′
k = yk. Therefore, ξ

g
k ∈ ∂̂g(yk). The other inclusion

“⊃” is trivial.

As a consequence, a critical point can also be characterized by the following definition.

Definition 4.5 (proximal residual). Let f and g be as before. Then, we define the proximal
residual

r(x) := x− (I + ∂g)−1(x−∇f(x)) .

It can be easily seen that r(x) = 0 is equivalent to x = (I + ∂g)−1(x − ∇f(x)) and
(I + ∂g)(x) = (I − ∇f)(x), which is the first-order optimality condition. The proximal
residual is defined with respect to a fixed step size of 1. The rationale behind this becomes
obvious when g is the indicator function of a convex set. In this case, a small residual could
be caused by small step sizes as the reprojection onto the convex set is independent of the
step size.

4.3. The generic algorithm. In this paper, we propose an algorithm, iPiano, with the
generic formulation in Algorithm 1. It is a forward-backward splitting algorithm incorporating
an inertial force. In the forward step, αn determines the step size in the direction of the
gradient of the differentiable function f . The step in gradient direction is aggregated with
the inertial force from the previous iteration weighted by βn. Then, the backward step is the
solution of the proximity operator for the function g with the weight αn.

Algorithm 1. Inertial proximal algorithm for nonconvex optimization (iPiano)
• Initialization: Choose a starting point x0 ∈ domh and set x−1 = x0. Moreover,

define sequences of step size parameter (αn)
∞
n=0 and (βn)

∞
n=0.

• Iterations (n ≥ 0): Update

(13) xn+1 = (I + αn∂g)
−1(xn − αn∇f(xn) + βn(x

n − xn−1)) .

In order to make the algorithm specific and convergent, the step size parameters must
be chosen appropriately. What “appropriately” means will be specified in subsection 4.4 and
proved in subsection 4.5.

4.4. Rules for choosing the step size. In this subsection, we propose several strategies
for choosing the step sizes. This will make it easier to implement the algorithm. One may
choose among the following variants of step size rules depending on the knowledge about the
objective function.

Constant step size scheme. The most simple strategy, which requires the most knowledge
about the objective function, is outlined in Algorithm 2. All step size parameters are chosen
a priori and are constant.

Remark 4. Observe that our law on α, β is equivalent to the law found in [45] for mini-
mizing a smooth nonconvex function. Hence, our result can be seen as an extension of their
work to the presence of an additional nonsmooth convex function.

Backtracking. The case where we have only limited knowledge about the objective function
occurs more frequently. It can be very challenging to estimate the Lipschitz constant of ∇f
beforehand. Using backtracking the Lipschitz constant can be estimated automatically. A



iPIANO: INERTIAL PROXIMAL ALGORITHM FOR NONCONVEX OPTIMIZATION 1399

Algorithm 2. Inertial proximal algorithm for nonconvex optimization with constant pa-
rameter (ciPiano)

• Initialization: Choose β ∈ [0, 1), set α < 2(1 − β)/L, where L is the Lipschitz
constant of ∇f , choose , x0 ∈ domh, and set x−1 = x0.

• Iterations (n ≥ 0): Update xn as follows:

(14) xn+1 = (I + α∂g)−1(xn − α∇f(xn) + β(xn − xn−1))

sufficient condition that the Lipschitz constant at iteration n to n+ 1 must satisfy is

(15) f(xn+1) ≤ f(xn) +
〈
∇f(xn), xn+1 − xn

〉
+

Ln

2
‖xn+1 − xn‖22 .

Although there are different strategies for determining Ln, the most common is to define
an increment variable η > 1 and to look for the minimal Ln ∈ {Ln−1, ηLn−1, η

2Ln−1, . . .}
satisfying (15). Sometimes it is also feasible to decrease the estimated Lipschitz constant
after a few iterations. A possible strategy is as follows: if Ln = Ln−1, then search for the
minimal Ln ∈ {η−1Ln−1, η

−2Ln−1, . . .} satisfying (15).
In Algorithm 3 we propose an algorithm with variable step sizes. Any strategy for esti-

mating the Lipschitz constant may be used. When changing the Lipschitz constant from one
iteration to another, all step size parameters must be adapted. The rules for adapting the
step sizes will be justified during the convergence analysis in subsection 4.5.

Algorithm 3. Inertial proximal algorithm for nonconvex optimization with backtracking
(biPiano)

• Initialization: Choose δ ≥ c2 > 0 with c2 close to 0 (e.g., c2 := 10−6) and
x0 ∈ domh, and set x−1 = x0.

• Iterations (n ≥ 0): Update xn as follows:

(16) xn+1 = (I + αn∂g)
−1(xn − αn∇f(xn) + βn(x

n − xn−1)) ,

where Ln > 0 satisfies (15) and

βn = (b− 1)
/(

b− 1

2

)
, b :=

(
δ +

Ln

2

)/(
c2 +

Ln

2

)
,

αn = 2(1 − βn)/(2c2 + Ln) .

Lazy backtracking. Algorithm 4 presents another alternative to Algorithm 1. It is related
to Algorithms 2 and 3 in the following way. Algorithm 4 makes use of the Lipschitz continuity
of ∇f in the sense that the Lipschitz constant is always finite. As a consequence, using
backtracking with only increasing Lipschitz constants, after a finite number of iterations n0 ∈
N the estimated Lipschitz constant will no longer change, and starting from this iteration the
constant step size rules as in Algorithm 2 are applied. Using this strategy, the results that
will be proved in the convergence analysis are satisfied only as soon as the Lipschitz constant
is high enough and no longer changing.



1400 P. OCHS, Y. CHEN, T. BROX, AND T. POCK

Algorithm 4. Nonmonotone inertial proximal algorithm for nonconvex optimization with
backtracking (nmiPiano)

• Initialization: Choose β ∈ [0, 1), L−1 > 0, η > 1, and x0 ∈ domh, and set
x−1 = x0.

• Iterations (n ≥ 0): Update xn as follows:

(17) xn+1 = (I + αn∂g)
−1(xn − αn∇f(xn) + β(xn − xn−1)) ,

where Ln ∈ {Ln−1, ηLn−1, η
2Ln−1, . . .} is minimal and satisfies

(18) f(xn+1) ≤ f(xn) +
〈
∇f(xn), xn+1 − xn

〉
+

Ln

2
‖xn+1 − xn‖22

and αn < 2(1− β)/Ln.

General rule of choosing the step sizes. Algorithm 5 defines the general rules that the step
size parameters must satisfy.

Algorithm 5. Inertial proximal algorithm for nonconvex optimization (iPiano)
• Initialization: Choose c1, c2 > 0 close to 0, x0 ∈ domh, and set x−1 = x0.
• Iterations (n ≥ 0): Update

(19) xn+1 = (I + αn∂g)
−1(xn − αn∇f(xn) + βn(x

n − xn−1)) ,

where Ln > 0 is the local Lipschitz constant satisfying

(20) f(xn+1) ≤ f(xn) +
〈
∇f(xn), xn+1 − xn

〉
+

Ln

2
‖xn+1 − xn‖22 ,

and αn ≥ c1, βn ≥ 0 are chosen such that δn ≥ γn ≥ c2 is defined by

(21) δn :=
1

αn
− Ln

2
− βn

2αn
and γn :=

1

αn
− Ln

2
− βn

αn

and (δn)
∞
n=0 is monotonically decreasing.

It contains Algorithms 2, 3, and 4 as special instances. This is easily verified for Algo-
rithms 2 and 4. For Algorithm 3 the step size rules are derived from the proof of Lemma 4.6.

As Algorithm 5 is the most general algorithm, let us now analyze its behavior.

4.5. Convergence analysis. In all of what follows, let (xn)∞n=0 be the sequence generated
by Algorithm 5 and with parameters satisfying the algorithm’s requirements. Furthermore,
for more convenient notation we abbreviate Hδ(x, y) := h(x) + δ‖x− y‖22, δ ∈ R, and ∆n :=
‖xn − xn−1‖2. Note that for x = y it is Hδ(x, y) = h(x).

Let us first verify that the algorithm makes sense. We have to show that the requirements
for the parameters are not contradictory, i.e., that it is possible to choose a feasible set of
parameters. In the following lemma, we will only show the existence of such a parameter set;



iPIANO: INERTIAL PROXIMAL ALGORITHM FOR NONCONVEX OPTIMIZATION 1401

however, the proof helps us to formulate specific step size rules.
Lemma 4.6. For all n ≥ 0, there are δn ≥ γn, βn ∈ [0, 1), and αn < 2(1 − βn)/Ln. Fur-

thermore, given Ln > 0, there exists a choice of parameters αn and βn such that additionally
(δn)

∞
n=0 is monotonically decreasing.
Proof. By the algorithm’s requirements we have

δn =
1

αn
− Ln

2
− βn

2αn
≥ 1

αn
− Ln

2
− βn

αn
= γn > 0 .

The upper bound for βn and αn comes from rearranging γn ≥ c2 to βn ≤ 1− αnLn/2− c2αn

and αn ≤ 2(1− βn)/(Ln + 2c2), respectively.
The last statement follows by incorporating the descent property of δn. Let δ−1 ≥ c2

be chosen initially. Then, the descent property of (δn)
∞
n=0 requires one of the equivalent

statements

δn−1 ≥ δn ⇔ δn−1 ≥
1

αn
− Ln

2
− βn

2αn
⇔ αn ≥ 1− βn

2

δn−1 +
Ln

2

to be true. An upper bound on αn is obtained by

γn ≥ c2 ⇔ αn ≤ 1− βn

c2 +
Ln

2

.

The only thing that remains to show is that there exist αn > c1 and βn ∈ [0, 1) such that
these two relations are fulfilled. Consider the condition for a nonnegative gap between the
upper and lower bounds for αn:

1− βn

c2 +
Ln

2

− 1− βn

2

δn−1 +
Ln

2

≥ 0 ⇔ δn−1 +
Ln

2

c2 +
Ln

2

≥ 1− βn

2

1− βn
.

Defining b := (δn−1 + Ln

2
)/(c2 + Ln

2
) ≥ 1, it is easily verified that there exists βn ∈ [0, 1)

satisfying the equivalent condition

(22)
b− 1

b− 1

2

≥ βn .

As a consequence, the existence of a feasible αn follows, and the descent property for δn
holds.

In the following proposition, we state a result which will be very useful. Although iPiano
does not imply a descent property of the function values, we construct a majorizing func-
tion that enjoys a monotonic descent property. This function reveals the connection to the
Lyapunov direct method for convergence analysis as used in [45].

Proposition 4.7.
(a) The sequence (Hδn(x

n, xn−1))∞n=0 is monotonically decreasing and thus converging. In
particular, it holds that

(23) Hδn+1
(xn+1, xn) ≤ Hδn(x

n, xn−1)− γn∆
2
n .



1402 P. OCHS, Y. CHEN, T. BROX, AND T. POCK

(b) It holds that
∑∞

n=0
∆2

n < ∞ and, thus, limn→∞∆n = 0.
Proof.
(a) From (19) it follows that

xn − xn+1

αn
−∇f(xn) +

βn
αn

(xn − xn−1) ∈ ∂g(xn+1).

Now using x = xn+1 and y = xn in (11) and (12) and summing both inequalities it
follows that

h(xn+1) ≤ h(xn)−
( 1

αn
− Ln

2

)
∆2

n+1 +
βn
αn

〈
xn+1 − xn, xn − xn−1

〉

≤ h(xn)−
( 1

αn
− Ln

2
− βn

2αn

)
∆2

n+1 +
βn
2αn

∆2
n ,

where the second line follows from 2 〈a, b〉 ≤ ‖a‖22 + ‖b‖22 for vectors a, b ∈ R
N . Then,

a simple rearrangement of the terms shows

h(xn+1) + δn∆
2
n+1 ≤ h(xn) + δn∆

2
n − γn∆

2
n ,

which establishes (23) as δn is monotonically decreasing. Obviously, the sequence
(Hδn(x

n, xn−1))∞n=0 is monotonically decreasing if and only if γn ≥ 0, which is true
by the algorithm’s requirements. By assumption, h is bounded from below by some
constant h > −∞; hence (Hδn(x

n, xn−1))∞n=0 converges.
(b) Summing up (23) from n = 0, . . . , N yields (note that Hδn(x

0, x−1) = h(x0))

N∑

n=0

γn∆
2
n ≤

N∑

n=0

Hδn(x
n, xn−1)−Hδn+1

(xn+1, xn)

= h(x0)−HδN+1
(xN+1, xN ) ≤ h(x0)− h < ∞ .

Letting N tend to ∞ and remembering that γN ≥ c2 > 0 holds implies the state-
ment.

Remark 5. The function Hδ is a Lyapunov function for the dynamical system described
by the Heavy-ball method. It corresponds to a discretized version of the kinetic energy of the
Heavy-ball with friction.

In the following theorem, we state our general convergence results about Algorithm 5.
Theorem 4.8.
(a) The sequence (h(xn))∞n=0 converges.
(b) There exists a converging subsequence (xnk)∞k=0

.
(c) Any limit point x∗ := limk→∞ xnk is a critical point of (9) and h(xnk) → h(x∗) as

k → ∞.
Proof.
(a) This follows from the Squeeze theorem as for all n ≥ 0 it holds that

H−δn(x
n, xn−1) ≤ h(xn) ≤ Hδn(x

n, xn−1),

and thanks to Proposition 4.7(4.7) and (4.7) it holds that

lim
n→∞

H−δn(x
n, xn−1) = lim

n→∞
Hδn(x

n, xn−1)− 2δn∆
2
n = lim

n→∞
Hδn(x

n, xn−1) .



iPIANO: INERTIAL PROXIMAL ALGORITHM FOR NONCONVEX OPTIMIZATION 1403

(b) By Proposition 4.7(4.7) and Hδ0(x
0, x−1) = h(x0) it is clear that the whole sequence

(xn)∞n=0 is contained in the level set {x ∈ R
N : h ≤ h(x) ≤ h(x0)}, which is bounded

thanks to the coercivity of h and h = infx∈RN h(x) > −∞. Using the Bolzano–
Weierstrass theorem, we deduce the existence of a converging subsequence (xnk)∞k=0

.
(c) To show that each limit point x∗ := limj→∞ xnj is a critical point of (9), recall that

the subdifferential (1) is closed [40]. Define

ξj :=
xnj − xnj+1

αnj

−∇f(xnj) +
βnj

αnj

(xnj − xnj−1) +∇f(xnj+1).

Then, the sequence (xnj , ξj) ∈ Graph(∂h) := {(x, ξ) ∈ R
N ×R

N | ξ ∈ ∂h(x)}. Further-
more, it holds that x∗ = limj→∞ xnj , and due to Proposition 4.7(4.7), the Lipschitz
continuity of ∇f , and

‖ξj − 0‖2 ≤
1

αnj

∆nj+1 +
βnj

αnj

∆nj
+ ‖∇f(xnj+1)−∇f(xnj)‖2

it holds that limj→∞ ξj = 0. It remains to show that limj→∞ h(xnj ) = h(x∗). By the
closure property of the subdifferential ∂h we have (x∗, 0) ∈ Graph(∂h), which means
that x∗ is a critical point of h.
The continuity statement about the limiting process as j → ∞ follows by the lower
semicontinuity of g, the existence limj→∞ ξj = 0, and the convexity property in
Lemma 4.3

lim sup
j→∞

g(xnj ) = lim sup
j→∞

g(xnj ) +
〈
ξj , x∗ − xnj

〉
≤ g(x∗) ≤ lim inf

j→∞
g(xnj ) .

The first equality holds because the subadditivity of lim sup becomes an equality when
the limit exists for one of the two summed sequences2; here limj→∞

〈
ξj, x∗ − xnj

〉
= 0

exists. Moreover, as f is differentiable it is also continuous; thus limj→∞ f(xnj) =
f(x∗). This implies limj→∞ h(xnj ) = h(x∗).

Remark 6. The convergence properties shown in Theorem 4.8 should be the basic require-
ments of any algorithm. Very loosely speaking, the theorem states that the algorithm ends
up in a meaningful solution. It allows us to formulate stopping conditions, e.g., the residual
between successive function values.

Now, using Theorem 3.7, we can verify the convergence of the sequence (xn)n∈N generated
by Algorithm 5. We assume that after a finite number of steps the sequence (δn)n∈N is constant
and consider the sequence (xn)n∈N starting from this iteration (again denoted by (xn)n∈N). For
example, if δn is determined relative to the Lipschitz constant, then as the Lipschitz constant
can be assumed constant after a finite number of iterations, δn is also constant starting from
this iteration.

Theorem 4.9 (convergence of iPiano to a critical point). Let (xn)n∈N be generated by Algo-
rithm 5, and let δn = δ for all n ∈ N. Then, the sequence (xn+1, xn)n∈N satisfies (H1), (H2),
and (H3) for the function Hδ : R

2N → R ∪ {∞}, (x, y) �→ h(x) + δ‖x − y‖22.
2In general, the existence of (ξj)∞j=0 is not guaranteed. Compared to the general case, additionally

limj→∞ ξj = 0 is known here.



1404 P. OCHS, Y. CHEN, T. BROX, AND T. POCK

Moreover, if Hδ(x, y) has the Kurdyka–�Lojasiewicz property at a cluster point (x∗, x∗),
then the sequence (xn)n∈N has finite length, xn → x∗ as n → ∞, and (x∗, x∗) is a critical
point of Hδ; hence x∗ is a critical point of h.

Proof. First, we verify that assumptions (H1), (H2), and (H3) are satisfied. We consider
the sequence zn = (xn, xn−1) for all n ∈ N and the proper lower semicontinuous function
F = Hδ.

• Condition (H1) is proved in Proposition 4.7(a) with a = c2 ≤ γn.
• To prove condition (H2), consider wn+1 := (wn+1

x , wn+1
y )⊤ ∈ ∂Hδ(x

n+1, xn) with
wn+1
x ∈ ∂g(xn+1) + ∇f(xn+1) + 2δ(xn+1 − xn) and wn+1

y = −2δ(xn+1 − xn). The
Lipschitz continuity of ∇f and using (19) to specify an element from ∂g(xn+1) imply

‖wn+1‖2 ≤ ‖wn+1
x ‖2 + ‖wn+1

y ‖2
≤ ‖∇f(xn+1)−∇f(xn)‖2 + ( 1

αn
+ 4δ)‖xn+1 − xn‖2

+ βn

αn
‖xn − xn−1‖2

≤ 1

αn
(αnLn + 1 + 4αnδ)∆n+1 +

1

αn
βn∆n .

As αnLn ≤ 2(1 − βn) ≤ 2 and δαn = 1 − 1

2
αnLn − 1

2
βn ≤ 1, setting b = 7

c1
verifies

condition (H2), i.e., ‖wn+1‖2 ≤ b(∆n +∆n+1).
• In Theorem 4.8(4.8) it is proved that there exists a subsequence (xnj+1)j∈N of (xn)n∈N

such that limj→∞ h(xnj+1) = h(x∗). Proposition 4.7(4.7) shows that ∆n+1 → 0 as
n → ∞; hence limj→∞ xnj = x∗. As the term δ‖x − y‖22 is continuous in x and y, we
deduce

lim
j→∞

H(xnj+1, xnj ) = lim
j→∞

h(xnj+1) + δ‖xnj+1 − xnj‖2 = H(x∗, x∗) = h(x∗) .

Now, the abstract convergence Theorem 3.7 concludes the proof.

The next corollary makes use of the fact that semialgebraic functions (Definition 3.4) have
the Kurdyka–�Lojasiewicz property.

Corollary 4.10 (convergence of iPiano for semialgebraic functions). Let h be a semialgebraic
function. Then, Hδ(x, y) is also semialgebraic. Furthermore, let (xn)n∈N, (δn)n∈N, (x

n+1, xn)n∈N
be as in Theorem 4.9. Then the sequence (xn)n∈N has finite length, xn → x∗ as n → ∞, and
x∗ is a critical point of h.

Proof. As h and δ‖x− y‖2 are semialgebraic, Hδ(x, y) is semialgebraic and has the KL
property. Then, Theorem 4.9 concludes the proof.

4.6. Convergence rate. In the following, we are interested in determining a convergence
rate with respect to the proximal residual from Definition 4.5. Since all preceding estimations
are according to ‖xn+1 − xn‖2, we establish the relation to ‖r(x)‖2 first. The following lemmas
about the monotonicity and the nonexpansiveness of the proximity operator turn out to be
very useful for that. Coarsely speaking, Lemma 4.11 states that the residual is sublinearly
increasing. Lemma 4.12 formulates a standard property of the proximal operator.

Lemma 4.11 (proximal monotonicity). Let y, z ∈ R
N , and α > 0. Define the functions

pg(α) :=
1

α
‖(I + α∂g)−1(y − αz)− y‖2



iPIANO: INERTIAL PROXIMAL ALGORITHM FOR NONCONVEX OPTIMIZATION 1405

and
qg(α) := ‖(I + α∂g)−1(y − αz) − y‖2.

Then, pg(α) is a decreasing function of α, and qg(α) increasing in α.
Proof. See, e.g., [36, Lemma 1] or [44, Lemma 4].
Lemma 4.12 (nonexpansiveness). Let g be a convex function and α > 0; then, for all x, y ∈

dom g we obtain the nonexpansiveness of the proximity operator

(24) ‖(I + α∂g)−1(x)− (I + α∂g)−1(y)‖2 ≤ ‖x− y‖2 ∀x, y ∈ R
N .

Proof. The lemma is a well-known fact. See, for example, [6].
The two preceding lemmas allow us to establish the following relation.
Lemma 4.13. We have the following bound:

(25)

N∑

n=0

‖r(xn)‖2 ≤
2

c1

N∑

n=0

‖xn+1 − xn‖2.

Proof. First, we observe the relations 1 ≤ α ⇒ qg(1) ≤ qg(α) and 1 ≥ α ⇒ pg(1) ≤
pg(α) = 1

α
qg(α), which are based on Lemma 4.11. Then, invoking the nonexpansiveness of

the proximity operator (Lemma 4.12), we obtain

βn‖xn − xn−1‖2 ≥ ‖xn − αn∇f(xn) + βn(x
n − xn−1)− (xn − αn∇f(xn))‖2

≥ ‖xn+1 − (I + αn∂g)
−1(xn − αn∇f(xn))‖2 .

(26)

This allows us to compute the following lower bound:

‖xn+1 − xn‖2 ≥ ‖xn+1 − xn‖2 − βn‖xn − xn−1‖2
+ ‖xn+1 − (I + αn∂g)

−1(xn − αn∇f(xn))‖2
≥ ‖xn − (I + αn∂g)

−1(xn − αn∇f(xn))‖2 − βn‖xn − xn−1‖2
≥ min(1, αn)‖r(xn)‖2 − ‖xn − xn−1‖2
≥ c1‖r(xn)‖2 − ‖xn − xn−1‖2 ,

where the first inequality arises from adding zero and using (26), the second uses the triangle
inequality, and the next applies Lemma 4.11 and βn < 1. Now, summing both sides from
n = 0, . . . , N and using x−1 = x0 the statement easily follows.

Next, we prove a global O(1/n) convergence rate for ‖xn+1 − xn‖22 and the residuum
‖r(xn)‖22 of the algorithm. The residuum provides an error measure of being a fixed point and
hence a critical point of the problem. We first define the error µN to be the smallest squared
ℓ2 norm of successive iterates and, analogously, the error µ′

N

µN := min
0≤n≤N

‖xn − xn−1‖22 and µ′
N := min

0≤n≤N
‖r(xn)‖22 .

Theorem 4.14. Algorithm 5 guarantees that for all N ≥ 0

µ′
N ≤ 2

c1
µN and µN ≤ c−1

2

h(x0)− h

N + 1
.



1406 P. OCHS, Y. CHEN, T. BROX, AND T. POCK

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(a) Contour plot of h(x) (b) Energy landscape of h(x)

Figure 1. Contour plot (left) and energy landscape (right) of the nonconvex function h shown in (27). The
four diamonds mark stationary points of the function h.

Proof. In view of Proposition 4.7(4.7), and the definition of γN in (21), summing up both
sides of (23) for n = 0, . . . , N and using that δN > 0 from (21), we obtain

h ≤ h(x0)−
N∑

n=0

γn‖xn − xn−1‖22 ≤ h(x0)− (N + 1) min
0≤n≤N

γnµN .

As γn > c2, a simple rearrangement invoking Lemma 4.13 concludes the proof.

Remark 7. The convergence rate O(1/N) for the squared ℓ2 norm of our error measures
is equivalent to stating a convergence rate O(1/

√
N) for the error in the ℓ2 norm.

Remark 8. A similar result can be found in [36] for the case β = 0.

5. Numerical experiments. In all of the following experiments, let u, u0 ∈ R
N be vectors

of dimension N ∈ N, where N depends on the respective problem. In the case of an image,
N is the number of pixels.

5.1. Ability to overcome spurious stationary points. Let us present some of the quali-
tative properties of the proposed algorithm. For this, we consider minimizing the following
simple problem:

(27) min
x∈RN

h(x) := f(x) + g(x) , f(x) =
1

2

N∑

i=1

log(1 + µ(xi − u0i )
2) , g(x) = λ‖x‖1 ,

where x is the unknown vector, u0 is some given vector, and λ, µ > 0 are some free parameters.
A contour plot and the energy landscape of h in the case of N = 2, λ = 1, µ = 100, and
u0 = (1, 1)⊤ is depicted in Figure 1. It turns out that the function h has four stationary
points, i.e., points x̄, such that 0 ∈ ∇f(x̄) + ∂g(x̄). These points are marked by small black
diamonds. Clearly the function f is nonconvex but has a Lipschitz continuous gradient with



iPIANO: INERTIAL PROXIMAL ALGORITHM FOR NONCONVEX OPTIMIZATION 1407

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 2. The first row shows the result of the iPiano algorithm for four different starting points when
using β = 0; the second row shows the results when using β = 0.75. While the algorithm without an inertial
term gets stuck in unwanted local stationary points in three of four cases, the algorithm with an inertial term
always succeeds in converging to the global optimum.

components

∇f(x)i = µ
xi − u0i

1 + µ(xi − u0i )
2
.

The Lipschitz constant of ∇f is easily computed as L = µ. The function g is nonsmooth
but convex, and the proximal operator with respect to g is given by the well-known shrinkage
operator

(28) (I + α∂g)−1(y) = max(0, |y| − αλ) · sgn(y) ,

where all operations are understood componentwise. Let us test the performance of the
proposed algorithm on the example shown in Figure 1. We set α = 2(1 − β)/L. Figure 2
shows the results of using the iPiano algorithm for different settings of the extrapolation factor
β. We observe that iPiano with β = 0 is strongly attracted by the closest stationary points,
while switching on the inertial term can help to overcome the spurious stationary points. The
reason for this desired property is that while the gradient might vanish at some points, the
inertial term β(xn − xn−1) is still strong enough to drive the sequence out of the stationary
region. Clearly, there is no guarantee that iPiano always avoids spurious stationary points.
iPiano is not designed to find the global optimum. However, our numerical experiments
suggest that in many cases, iPiano finds lower energies than the respective algorithm without
inertial term. A similar observation about the Heavy-ball method is described in [8].

5.2. Image processing applications. It is well known that nonconvex regularizers are
better models for many image processing and computer vision problems; see, e.g., [9, 21,
25, 41]. However, convex models are still preferred over nonconvex models, since they can be
efficiently optimized using convex optimization algorithms. In this section, we demonstrate the
applicability of the proposed algorithm to solving a class of nonconvex regularized variational



1408 P. OCHS, Y. CHEN, T. BROX, AND T. POCK

models. We present examples for natural image denoising and linear diffusion based image
compression. We show that iPiano can be easily adapted to all of these problems and yields
state-of-the-art results.

5.2.1. Student-t regularized image denoising. In this subsection, we investigate the task
of natural image denoising. For this we exploit an optimized Markov random field (MRF)
model (see [13]) and make use of the iPiano algorithm to solve it. In order to evaluate the
performance of iPiano, we compare it to the well-known bound constrained limited memory
quasi Newton method (L-BFGS) [29].3 As an error measure, we use the energy difference

(29) En = hn − h∗,

where hn is the energy of the current iteration n and h∗ is the energy of the true solution.
Clearly, this error measure makes sense only when different algorithms can achieve the same
true energy h∗, which is in general wrong for nonconvex problems. In our image denoising
experiments, however, we find that all tested algorithms find the same solution, independent
of the initialization. This can be explained by the fact that the learning procedure [13] also
delivers models that are relatively easy to optimize, since otherwise they would have resulted
in a bad training error. In order to compute a true energy h∗, we run the iPiano algorithm
with a proper β (e.g., β = 0.8) for enough iterations (∼1000 iterations). We run all the
experiments in MATLAB on a 64-bit Linux server with 2.53GHz CPUs.

The MRF image denoising model based on learned filters is formulated as

(30) min
u∈RN

Nf∑

i=1

ϑiΦ(Kiu) + g1,2(u, u
0) ,

where u and u0 ∈ R
N denote the sought solution and the noisy input image, respectively, Φ

is the nonconvex penalty function, Φ(Kiu) =
∑

p ϕ((Kiu)p), Ki are learned, linear operators
with the corresponding weights ϑi, and Nf is the number of the filters. The linear operators
Ki are implemented as two-dimensional convolutions of the image u with small (e.g., 7 × 7)
filter kernels ki, i.e., Kiu = ki ∗ u. The function g1,2 is the data term, which depends on the
respective problem. In the case of Gaussian noise, g1,2 is given as

g2(u, u
0) =

λ

2
‖u− u0‖22 ,

and for the impulse noise (e.g., salt and pepper noise), g1,2 is given as

g1(u, u
0) = λ‖u− u0‖1 .

The parameter λ > 0 is used to define the tradeoff between regularization and data fitting.
In this paper, we consider the following nonconvex penalty function, which is derived from

the Student-t distribution:

(31) ϕ(t) = log(1 + t2) .

3We make use of the implementation distributed at http://www.cs.toronto.edu/∼liam/software.shtml.

http://www.cs.toronto.edu/~liam/software.shtml


iPIANO: INERTIAL PROXIMAL ALGORITHM FOR NONCONVEX OPTIMIZATION 1409

(8.39,0.32) (8.00,0.04) (8.00,0.01) (8.00,0.02) (7.97,0.06) (7.94,0.04)

(7.91,0.38) (7.82,0.18) (7.39,0.07) (7.35,0.24) (7.21,0.23)

(6.51,0.21) (6.03,0.42) (4.83,0.48) (4.16,0.51) (3.25,0.45)

(8.00,0.05) (8.00,0.03) (8.00,0.02) (8.00,0.02) (7.97,0.04)

(7.93,0.11) (7.89,0.13) (7.74,0.13) (7.37,0.29) (7.30,0.39) (7.02,0.44)

(6.49,0.24) (5.60,0.39) (4.66,0.39) (3.38,0.78) (3.20,0.71)

(8.00,0.02) (8.00,0.01) (8.00,0.03) (7.99,0.03) (7.97,0.10)

(7.92,0.18) (7.89,0.10) (7.72,0.33) (7.36,0.29) (7.26,0.09)

(6.91,0.28) (6.31,0.25) (5.07,0.48) (4.25,0.47) (3.37,0.67) (3.20,0.82)

(a) Learned filters for the MRF-ℓ2 model

(8.07,0.17) (8.05,0.15) (8.03,0.13) (8.02,0.12) (8.02,0.11) (8.00,0.10)

(8.00,0.09) (7.99,0.07) (7.98,0.06) (7.97,0.08) (7.97,0.05)

(7.96,0.05) (7.96,0.03) (7.95,0.03) (7.95,0.03) (7.94,0.04)

(8.06,0.16) (8.05,0.14) (8.03,0.13) (8.02,0.11) (8.01,0.11)

(8.00,0.09) (7.99,0.08) (7.99,0.10) (7.98,0.07) (7.97,0.08) (7.96,0.04)

(7.96,0.02) (7.95,0.01) (7.95,0.01) (7.95,0.06) (7.94,0.02)

(8.06,0.16) (8.04,0.14) (8.02,0.13) (8.02,0.11) (8.01,0.12)

(8.00,0.11) (7.99,0.08) (7.99,0.08) (7.97,0.05) (7.97,0.09)

(7.96,0.07) (7.96,0.01) (7.95,0.01) (7.95,0.01) (7.94,0.04) (7.94,0.07)

(b) Learned filters for the MRF-ℓ1 model

Figure 3. 48 learned filters of size 7× 7 for two different MRF denoising models. The first number in the
bracket is the weights ϑi, and the second one is the norm ‖ki‖2 of the filters.

Concerning the filters ki, for the ℓ2 model (MRF-ℓ2), we make use of the filters learned
in [13] by using a bilevel learning approach. The filters are shown in Figure 3(a) together
with the corresponding weights ϑi. For the MRF-ℓ1 denoising model, we employ the same
bilevel learning algorithm to train a set of optimal filters specialized for the ℓ1 data term and
input images degraded by salt and pepper noise. Since the bilevel learning algorithm requires
a twice continuously differentiable model, we replace the ℓ1 norm by a smooth approximation
during training. The learned filters for the MRF-ℓ1 model together with the corresponding
weights ϑi are shown in Figure 3(b).

Let us now explain how to solve (30) using the iPiano algorithm. Casting (30) in the form

of (9), we see that f(u) =
∑Nf

i=1
ϑiΦ(Kiu) and g(u) = g1,2(u, u

0). Thus, we have

∇f(u) =

Nf∑

i=1

ϑiK
⊤
i Φ′(Kiu) ,

where Φ′(Kiu) = [ϕ′((Kiu)1) , ϕ
′((Kiu)2), . . . , ϕ

′((Kiu)p)]
⊤ and ϕ′(t) = 2t/(1 + t2). The prox-

imal map with respect to g simply poses pointwise operations. For the case of g2, it is given
by

u = (I + α∂g)−1(û) ⇐⇒ up =
ûp + αλu0p
1 + αλ

, p = 1, . . . , N,

and for the function g1, it is given by the well-known soft shrinkage operator (28), which in



1410 P. OCHS, Y. CHEN, T. BROX, AND T. POCK

(a) Clean image (b) Noisy image (σ = 25) (c) Denoised image

Figure 4. Natural image denoising by using student-t regularized MRF model (MRF-ℓ2). The noisy version
is corrupted by additive zero mean Gaussian noise with σ = 25.

the case of the MRF-ℓ1 model becomes

u = (I + α∂g)−1(û) ⇐⇒
up = max(0, |ûp − u0p| − αλ) · sgn(ûp − u0p) + u0p , p = 1, . . . , N.

Now, we can make use of our proposed algorithm to solve the nonconvex optimization prob-
lems. In order to evaluate the performance of iPiano, we compare it to L-BFGS. To use
L-BFGS, we merely need the gradient of the objective function with respect to u. For the
MRF-ℓ2 model, calculating the gradients is straightforward. However, in the case of the MRF-
ℓ1 model, due to the nonsmooth function g, we cannot directly use L-BFGS. Since L-BFGS
can easily handle box constraints, we can get rid of the nonsmooth function ℓ1 norm by
introducing two box constraints.

Lemma 5.1. The MRF-ℓ1 model can be equivalently written as the bound-constraint problem

min
w,v

Nf∑

i=1

ϑiΦ(Ki(w + v)) + λ 1⊤(v − w) s.t. w ≤ u0/2, v ≥ u0/2 .(32)

Proof. It is well known that the ℓ1 norm ‖u− u0‖1 can be equivalently expressed as

‖u− u0‖1 = min
t

1⊤t s.t. t ≥ u− u0 , t ≥ −u+ u0 ,

where t ∈ R
N and the inequalities are understood pointwise. Letting w = (u− t)/2 ∈ R

N and
v = (u + t)/2 ∈ R

N , we find u = w + v and t = v − w. Substituting u and t back into (30)
while using the above formulation of the ℓ1 norm yields the desired transformation.



iPIANO: INERTIAL PROXIMAL ALGORITHM FOR NONCONVEX OPTIMIZATION 1411

(a) Clean image (b) Noisy image (25% salt & pepper noise)

(c) Denoised image

Figure 5. Natural image denoising in the case of impulse noise by using the MRF-ℓ1 model. The noisy
version is corrupted by 25% salt and pepper noise.

Figures 4 and 5, respectively, show a denoising example using the MRF-ℓ2 model and the
MRF-ℓ1 model. In both experiments, we use the iPiano version with backtracking (Algorithm
4) with the following parameter settings:

L−1 = 1, η = 1.2, αn = 1.99(1 − β)/Ln ,

where β is a free parameter to be evaluated in the experiment. In order to make use of possible
larger step sizes in practice, we use the following trick: when the inequality (15) is fulfilled,
we decrease the evaluated Lipschitz constant Ln slightly by setting Ln = Ln/1.05.

For the MRF-ℓ2 denoising experiments, we initialized u using the noisy image itself; how-
ever, for the MRF-ℓ1 denoising model, we initialized u using a zero image. We found that this
initialization strategy usually gives good convergence behavior for both algorithms. For both
denoising examples, we run the algorithms until the error En decreases to a certain predefined
threshold tol. We then record the required number of iterations and the run time. We sum-
marize the results of the iPiano algorithm with different settings and L-BFGS in Tables 1 and



1412 P. OCHS, Y. CHEN, T. BROX, AND T. POCK

10
0

10
1

10
2

10
−5

10
0

10
5

N

µ
N

iPiano, β = 0.8
O(1/N )

(a) MRF-ℓ2 model

10
0

10
1

10
2

10
−5

10
0

10
5

N
µ
N

iPiano, β = 0.8
O(1/N )

(b) MRF-ℓ1 model

Figure 6. Convergence rates for the MRF-ℓ2 and -ℓ1 models. The figures plot the minimal residual norm
µN , which also bounds the proximal residual µ′

N . Note that the empirical convergence rate is much faster
compared to the worst case rate (see Theorem 4.14).

Table 1

The number of iterations and the run time necessary for reaching the corresponding error for iPiano and
L-BFGS to solve the MRF-ℓ2 model. T1 is the run time of iPiano with β = 0.8, and T2 shows the run time of
L-BFGS.

iPiano with different β L-BFGS

tol 0.00 0.20 0.40 0.60 0.80 0.95 T1(s) iter. T2(s)

103 260 182 116 66 56 214 34.073 43 18.465
102 372 256 164 94 67 257 40.199 55 22.803
101 505 344 222 129 79 299 47.177 66 27.054
100 664 451 290 168 98 342 59.133 79 32.143
10−1 857 579 371 216 143 384 85.784 93 36.926
10−2 1086 730 468 271 173 427 103.436 107 41.939
10−3 1347 904 577 338 199 473 119.149 124 48.272
10−4 1639 1097 697 415 232 524 138.416 139 53.290
10−5 1949 1300 827 494 270 569 161.084 154 58.511

2. From these two tables, one can draw the common conclusion that iPiano with a proper
inertial term takes significantly fewer iterations compared to the case without inertial term,
and in practice β ≈ 0.8 is generally a good choice.

In Table 1, one can see that the iPiano algorithm with β = 0.8 takes slightly more iterations
and a longer run time to reach a solution of moderate accuracy (e.g., tol = 103) compared with
L-BFGS. However, for highly accurate solutions (e.g., tol = 10−5), this gap increases. For the
case of the nonsmooth MRF-ℓ1 model, the result is just the reverse. It is shown in Figure 2



iPIANO: INERTIAL PROXIMAL ALGORITHM FOR NONCONVEX OPTIMIZATION 1413

Table 2

The number of iterations and the run time necessary for reaching the corresponding error for iPiano and
L-BFGS to solve the MRF-ℓ1 model. T1 is the run time of iPiano with β = 0.8, and T2 shows the run time of
L-BFGS.

iPiano with different β L-BFGS

tol 0.00 0.20 0.40 0.60 0.80 0.95 T1(s) iter. T2(s)

103 390 272 174 96 64 215 43.709 223 102.383
102 621 403 256 145 77 260 53.143 246 112.408
101 847 538 341 195 96 304 65.679 265 121.303
100 1077 682 433 247 120 349 81.761 285 130.846
10−1 1311 835 530 303 143 395 97.060 298 136.326
10−2 1559 997 631 362 164 440 111.579 311 141.876
10−3 1818 1169 741 424 185 485 126.272 327 148.945
10−4 2086 1346 853 489 208 529 142.083 347 157.956
10−5 2364 1530 968 557 233 575 159.493 372 169.674

that for reaching a moderately accurate solution, iPiano with β = 0.8 consumes significantly
fewer iterations and a shorter run time, and for the solution of high accuracy, it still can save
much computation.

Figure 6 plots the error µN over the number of required iterations N for both the MRF-
ℓ2 and -ℓ1 models using β = 0.8. From the plots it becomes obvious that the empirical
performance of the iPiano algorithm is much better compared to the worst-case convergence
rate of O(1/N) as provided in Theorem 4.14.

The iPiano algorithm has an additional advantage of simplicity. The iPiano version with-
out backtracking basically relies on matrix vector products (filter operations in the denoising
examples) and simple pointwise operations. Therefore, the iPiano algorithm is well suited for
a parallel implementation on GPUs which can lead to speedup factors of 20–30.

5.2.2. Linear diffusion based image compression. In this example we apply the iPiano
algorithm to linear diffusion based image compression. Recent works [20, 42] have shown that
image compression based on linear and nonlinear diffusion can outperform the standard JPEG
standard and even the more advanced JPEG 2000 standard when the interpolation points are
carefully chosen. Therefore, finding optimal data for interpolation is a key problem in the
context of PDE-based image compression. There exist only a few prior works on this topic
(see, e.g., [33, 24]), and the very recent approach presented in [24] defines the state-of-the-art.

The problem of finding optimal data for homogeneous diffusion based interpolation is
formulated as the following constrained minimization problem:

min
u,c

1

2
‖u− u0‖22 + λ‖c‖1(33)

s.t. C(u− u0)− (I −C)Lu = 0 ,

where u0 ∈ R
N denotes the ground truth image, u ∈ R

N denotes the reconstructed image,
and c ∈ R

N denotes the inpainting mask, i.e., the characteristic function of the set of points
that are chosen for compressing the image. Furthermore, we denote by C = diag(c) ∈ R

N×N

the diagonal matrix with the vector c on its main diagonal, by I the identity matrix, and by



1414 P. OCHS, Y. CHEN, T. BROX, AND T. POCK

L ∈ R
N×N the Laplacian operator. Compared to the original formulation [24], we omit a very

small quadratic term ε
2
‖c‖22, because we find it unnecessary in experiments.

Observe that if c ∈ [0, 1)N , we can multiply the constraint equation in (33) from the left
by (I −C)−1 such that it becomes

E(c)(u − u0)− Lu = 0 ,

where E(c) = diag(c1/(1 − c1), . . . , cN/(1 − cN )). This shows that problem (33) is in fact a
reduced formulation of the bilevel optimization problem

min
c

1

2
‖u(c)− u0‖22 + λ‖c‖1(34)

s.t. u(c) = arg min
u

‖Du‖22 + ‖E(c)
1

2 (u− u0)‖22 ,

where D is the nabla operator and hence −L = D⊤D.
Problem (33) is nonconvex due to the nonconvexity of the equality constraint. In [24],

the above problem is solved by a successive primal-dual (SPD) algorithm, which successively
linearizes the nonconvex constraint and solves the resulting convex problem with the first-order
primal-dual algorithm [12]. The main drawback of SPD is that it requires tens of thousands
of inner iterations and thousands of outer iterations to reach a reasonable solution. However,
as we now demonstrate, iPiano can solve this problem with higher accuracy in 1000 iterations.

Observe that we can rewrite problem (33) by solving u from the constraints equation,
which gives

u = A−1Cu0 ,

where A = C + (C − I)L. In [32], it is shown that the A is invertible as long as at least one
element of c is nonzero, which is the case for nondegenerate problems. Substituting the above
equation back into (33), we arrive at the following optimization problem, which now depends
only on the inpainting mask c:

(35) min
c

1

2
‖A−1Cu0 − u0‖22 + λ‖c‖1 .

Casting (35) in the form of (9), we have f(c) = 1

2
‖A−1Cu0 − u0‖22, and g(c) = λ‖c‖1. In

order to minimize the above problem using iPiano, we need to calculate the gradient of f with
respect to c. This is shown by the following lemma.

Lemma 5.2. Let

f(c) =
1

2
‖A−1Cu0 − u0‖22 ;

then

(36) ∇f(c) = diag(−(I + L)u+ u0)(A⊤)−1(u− u0) .

Proof. Differentiating both sides of

f =
1

2
‖u− u0‖22 =

1

2

〈
u− u0, u− u0

〉
,



iPIANO: INERTIAL PROXIMAL ALGORITHM FOR NONCONVEX OPTIMIZATION 1415

we obtain

(37) df =
〈
du, u− u0

〉
.

In view of u = A−1Cu0 and dA−1 = −A−1dAA−1, we further have

du = dA−1Cu0 +A−1dCu0

= −A−1dAA−1Cu0 +A−1dCu0

= −A−1dAu+A−1dCu0

= −A−1dC(I + L)u+A−1dCu0

= A−1dC(−
(
I + L)u+ u0

)
.

Let t = −(I + L)u+ u0 ∈ R
N , and since C is a diagonal matrix, we have

dCt = diag(dc)t = diag(t)dc ,

and hence

(38) du = A−1 diag(t)dc .

By substituting (38) into (37), we obtain

df =
〈
(A−1 diag(t))dc, u − u0

〉

=
〈
dc, (A−1 diag(t))⊤(u− u0)

〉
.

Finally, the gradient is given by

∇f = (A−1 diag(t))⊤(u− u0)(39)

= diag(−(I + L)u+ u0)(A⊤)−1(u− u0) .

Finally, we need to compute the proximal map with respect to g(c), which is again given
by a pointwise application of the shrinkage operator (28).

Now, we can make use of the iPiano algorithm to solve problem (35). We set β = 0.8,
which generally performs very well in practice. We additionally accelerate the SPD algorithm
used in the previous work [24] by applying the diagonal preconditioning technique [37], which
significantly reduces the required iterations for the primal-dual algorithm in the inner loop.

Figure 7 shows examples of finding optimal interpolation data for the three test images.
Table 3 summarizes the results of two different algorithms. Regarding the reconstruction qual-
ity, we make use of the mean squared error (MSE) as an error measurement to be consistent
with previous work; the MSE is computed by

MSE(u, u0) =
1

N

N∑

i=1

(ui − u0i )
2 .

From Table 3, one can see that the Successive PD algorithm requires 200 × 4000 iterations
to converge. iPiano needs only 1000 iterations to reach a lower energy. Note that in each



1416 P. OCHS, Y. CHEN, T. BROX, AND T. POCK

iteration of the iPiano algorithm, two linear systems have to be solved. In our implementation
we use the MATLAB “backslash” operator, which effectively exploits the strong sparseness of
the systems. A lower energy basically implies that iPiano can solve the minimization problem
(33) better. Regarding the final compression result, usually the result of iPiano has slightly
less density but slightly worse MSE. Following the work [33], we also consider the so-called
gray value optimization (GVO) as a postprocessing step to further improve the MSE of the
reconstructed images.

Table 3

Summary of two algorithms for three test images.

Test im-
age

Algorithm Iterations Energy Density MSE with GVO

trui
iPiano 1000 21.574011 4.98% 17.31 16.89

SPD 200/4000 21.630280 5.08% 17.06 16.54

peppers
iPiano 1000 20.631985 4.84% 19.50 18.99

SPD 200/4000 20.758777 4.93% 19.48 18.71

walter
iPiano 1000 10.246041 4.82% 8.29 8.03

SPD 200/4000 10.278874 4.93% 8.01 7.72

6. Conclusions. In this paper, we have proposed a new optimization algorithm, which
we call iPiano. It is applicable to a broad class of nonconvex problems. More specifically,
it addresses objective functions, which are composed as a sum of a differentiable (possibly
nonconvex) and a convex (possibly nondifferentiable) function. The basic methodologies have
been derived from the forward-backward splitting algorithm and the Heavy-ball method.

Our theoretical convergence analysis is divided into two steps. First, we have proved an
abstract convergence result about inexact descent methods. Then, we analyzed the conver-
gence of iPiano. For iPiano, we have proved that the sequence of function values converges,
that the subsequence of arguments generated by the algorithm is bounded, and that every
limit point is a critical point of the problem. Requiring the Kurdyka–�Lojasiewicz property
for the objective function establishes deeper insights into the convergence behavior of the
algorithm. Using the abstract convergence result, we have shown that the whole sequence
converges and the unique limit point is a stationary point.

The analysis includes an examination of the convergence rate. A rough upper bound of
O(1/n) has been found for the squared proximal residual. Experimentally, iPiano has been
shown to have a much faster convergence rate.

Finally, the applicability of the algorithm has been demonstrated, and iPiano achieved
state-of-the-art performance. The experiments comprised denoising and image compression.
In the first two experiments, iPiano helped in learning a good prior for the problem. In the
case of image compression, iPiano has demonstrated its use in a huge optimization problem
for computing an optimal mask for a Laplacian PDE based image compression method.

In summary, iPiano has many favorable theoretical properties, is simple, and is efficient.
Hence, we recommend it as a standard solver for the considered class of problems.



iPIANO: INERTIAL PROXIMAL ALGORITHM FOR NONCONVEX OPTIMIZATION 1417

(a) Test image (256× 256) (b) Optimized mask (c) Reconstruction

Figure 7. Examples of finding optimal inpainting mask for Laplace interpolation based image compression
by using iPiano. First row: Test image trui of size 256× 256. Parameter λ = 0.0036, the optimized mask has
a density of 4.98% and the MSE of the reconstructed image is 16.89. Second row: Test image peppers of size
256×256. Parameter λ = 0.0034, the optimized mask has a density of 4.84%, and the MSE of the reconstructed
image is 18.99. Third row: Test image walter of size 256 × 256. Parameter λ = 0.0018, the optimized mask
has a density of 4.82%, and the MSE of the reconstructed image is 8.03.

Acknowledgment. We are grateful to Joachim Weickert for discussions about the image
compression by diffusion problem.



1418 P. OCHS, Y. CHEN, T. BROX, AND T. POCK

REFERENCES

[1] F. Alvarez, Weak convergence of a relaxed and inertial hybrid projection-proximal point algorithm for
maximal monotone operators in Hilbert space, SIAM J. Optim., 14 (2004), pp. 773–782.

[2] F. Alvarez and H. Attouch, An inertial proximal method for maximal monotone operators via dis-
cretization of a nonlinear oscillator with damping, Set-Valued Anal., 9 (2001), pp. 3–11.

[3] H. Attouch and J. Bolte, On the convergence of the proximal algorithm for nonsmooth functions
involving analytic features, Math. Program., 116 (2008), pp. 5–16.

[4] H. Attouch, J. Bolte, P. Redont, and A. Soubeyran, Proximal alternating minimization and
projection methods for nonconvex problems: An approach based on the Kurdyka-�Lojasiewicz inequality,
Math. Oper. Res., 35 (2010), pp. 438–457.

[5] H. Attouch, J. Bolte, and B. Svaiter, Convergence of descent methods for semi-algebraic and tame
problems: Proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods,
Math. Program., 137 (2013), pp. 91–129.

[6] H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert
Spaces, CMS Books Math., Springer, New York, 2011.

[7] A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems,
SIAM J. Imaging Sci., 2 (2009), pp. 183–202.

[8] D. P. Bertsekas, Nonlinear Programming, 2nd ed., Athena Scientific, Cambridge, MA, 1999.
[9] M. J. Black and A. Rangarajan, On the unification of line processes, outlier rejection, and robust

statistics with applications in early vision, Internat. J. Comput. Vis., 19 (1996), pp. 57–91.
[10] J. Bolte, A. Daniilidis, A. Ley, and L. Mazet, Characterizations of �Lojasiewicz inequalities: Sub-

gradient flows, talweg, convexity, Trans. Amer. Math. Soc., 362 (2010), pp. 3319–3363.
[11] K. Bredies and D. A. Lorenz, Minimization of Non-smooth, Non-convex Functionals by Iterative

Thresholding, preprint, available online at http://www.uni-graz.at/∼bredies/publications.html, 2009.
[12] A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications

to imaging, J. Math. Imaging Vis., 40 (2011), pp. 120–145.
[13] Y.J. Chen, T. Pock, R. Ranftl, and H. Bischof, Revisiting loss-specific training of filter-based

MRFs for image restoration, in German Conference on Pattern Recognition (GCPR), Lecture Notes
in Comput. Sci. 8142, Springer-Verlag, Berlin, 2013, pp. 271–281.

[14] E. Chouzenoux, J.-C. Pesquet, and A. Repetti, Variable metric forward-backward algorithm for
minimizing the sum of a differentiable function and a convex function, J. Optim. Theory Appl., 2013,
available online at http://link.springer.com/article/10.1007/s10957-013-0465-7.

[15] P. L. Combettes and J.-C. Pesquet, Proximal splitting methods in signal processing, in Fixed-Point
Algorithms for Inverse Problems in Science and Engineering, H.H. Bauschke, R.S. Burachik, P.L.
Combettes, V. Elser, D.R. Luke, and H. Wolkowicz, eds., Springer, New York, 2011, pp. 185–212.

[16] P. L. Combettes and V. R. Wajs, Signal recovery by proximal forward-backward splitting, Multiscale
Model. Simul., 4 (2005), pp. 1168–1200.

[17] Y. Drori and M. Teboulle, Performance of first-order methods for smooth convex minimization: A
novel approach, Math. Program., 145 (2014), pp. 451–482.

[18] J. Eckstein and D. P. Bertsekas, On the Douglas-Rachford splitting method and the proximal point
algorithm for maximal monotone operators, Math. Program., 55 (1992), pp. 293–318.

[19] M. Fukushima and H. Mine, A generalized proximal point algorithm for certain non-convex minimiza-
tion problems, Internat. J. Systems Sci., 12 (1981), pp. 989–1000.

[20] I. Galic, J. Weickert, M. Welk, A. Bruhn, A. G. Belyaev, and H.-P. Seidel, Image compression
with anisotropic diffusion, J. Math. Imaging Vis., 31 (2008), pp. 255–269.

[21] S. Geman and D. Geman, Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of
images, IEEE Trans. Pattern Anal. Machine Intell., 6 (1984), pp. 721–741.

[22] A. A. Goldstein, Convex programming in Hilbert space, Bull. Amer. Math. Soc., 70 (1964), pp. 709–710.
[23] B. He and X. Yuan, Convergence analysis of primal-dual algorithms for a saddle-point problem: From

contraction perspective, SIAM J. Imaging Sci., 5 (2012), pp. 119–149.
[24] L. Hoeltgen, S. Setzer, and J. Weickert, An optimal control approach to find sparse data for Laplace

interpolation, in International Conference on Energy Minimization Methods in Computer Vision and
Pattern Recognition (EMMCVPR), Lund, Sweden, 2013, pp. 151–164.

http://www.uni-graz.at/~bredies/publications.html
http://link.springer.com/article/10.1007/s10957-013-0465-7


iPIANO: INERTIAL PROXIMAL ALGORITHM FOR NONCONVEX OPTIMIZATION 1419

[25] J. Huang and D. Mumford, Statistics of natural images and models, in International Conference on
Computer Vision and Pattern Recognition (CVPR), Fort Collins, CO, 1999, pp. 541–547.

[26] K. Kurdyka, On gradients of functions definable in o-minimal structures, Ann. Inst. Fourier, 48 (1998),
pp. 769–783.

[27] E. S. Levitin and B.T. Polyak, Constrained minimization methods, USSR Comput. Math. Math.
Phys., 6 (1966), pp. 1–50.

[28] P. L. Lions and B. Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM J.
Numer. Anal., 16 (1979), pp. 964–979.

[29] D. C. Liu and J. Nocedal, On the limited memory BFGS method for large scale optimization, Math.
Program., 45 (1989), pp. 503–528.

[30] S. �Lojasiewicz, Une propriété topologique des sous-ensembles analytiques réels, in Les Équations aux
Dérivées Partielles (Paris, 1962), Éditions du centre National de la Recherche Scientifique, Paris,
1963, pp. 87–89.

[31] S. �Lojasiewicz, Sur la géométrie semi- et sous- analytique, Ann. Inst. Fourier, 43 (1993), pp. 1575–1595.
[32] M. Mainberger, A. Bruhn, J. Weickert, and S. Forchhammer, Edge-based compression of cartoon-

like images with homogeneous diffusion, Pattern Recognition, 44 (2011), pp. 1859–1873.
[33] M. Mainberger, S. Hoffmann, J. Weickert, C. H. Tang, D. Johannsen, F. Neumann, and

B. Doerr, Optimising spatial and tonal data for homogeneous diffusion inpainting, in International
Conference on Scale Space and Variational Methods in Computer Vision (SSVM), Ein-Gedi, The
Dead Sea, Israel, 2011, pp. 26–37.

[34] A. Moudafi and M. Oliny, Convergence of a splitting inertial proximal method for monotone operators,
J. Comput. Appl. Math., 155 (2003), pp. 447–454.

[35] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course, Appl. Optim. 87, Kluwer
Academic Publishers, Boston, MA, 2004.

[36] Y. Nesterov, Gradient methods for minimizing composite functions, Math. Program., 140 (2013),
pp. 125–161.

[37] T. Pock and A. Chambolle, Diagonal preconditioning for first order primal-dual algorithms in convex
optimization, in Proceedings of the IEEE International Conference on Computer Vision (ICCV),
Barcelona, Spain, 2011, pp. 1762–1769.

[38] B. T. Polyak, Some methods of speeding up the convergence of iteration methods, USSR Comput. Math.
Math. Phys., 4 (1964), pp. 1–17.

[39] R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim.,
14 (1976), pp. 877–898.

[40] R. T. Rockafellar, Variational Analysis, Grundlehren Math. Wiss. 317, Springer, Berlin, Heidelberg,
1998.

[41] S. Roth and M. J. Black, Fields of experts, Internat. J. Comput. Vis., 82 (2009), pp. 205–229.
[42] C. Schmaltz, J. Weickert, and A. Bruhn, Beating the quality of JPEG 2000 with anisotropic diffusion,

in Proceedings of the DAGM Symposium, Jena, Germany, 2009, pp. 452–461.
[43] M. V. Solodov, Convergence analysis of perturbed feasible descent methods, J. Optim. Theory Appl., 93

(1997), pp. 337–353.
[44] S. Sra, Scalable nonconvex inexact proximal splitting, in Proceedings of the 25th Conference on Ad-

vances in Neural Information Processing Systems (NIPS), P. Bartlett, F.C.N. Pereira, C.J.C. Burges,
L. Bottou, and K.Q. Weinberger, eds., Lake Tahoe, NV, 2012, pp. 539–547.

[45] S. K. Zavriev and F. V. Kostyuk, Heavy-ball method in nonconvex optimization problems, Comput.
Math. Model., 4 (1993), pp. 336–341.


