
iPlane: An Information Plane for Distributed Services

Harsha V. Madhyastha∗ Tomas Isdal∗ Michael Piatek∗ Colin Dixon∗

Thomas Anderson∗ Arvind Krishnamurthy∗ Arun Venkataramani†

Abstract

In this paper, we present the design, implementation, and

evaluation of iPlane, a scalable service providing accu-

rate predictions of Internet path performance for emerg-

ing overlay services. Unlike the more common black box

latency prediction techniques in use today, iPlane adopts

a structural approach and predicts end-to-end path per-

formance by composing the performance of measured

segments of Internet paths. For the paths we observed,

this method allows us to accurately and efficiently pre-

dict latency, bandwidth, capacity and loss rates between

arbitrary Internet hosts. We demonstrate the feasibility

and utility of the iPlane service by applying it to several

representative overlay services in use today: content dis-

tribution, swarming peer-to-peer filesharing, and voice-

over-IP. In each case, using iPlane’s predictions leads to

improved overlay performance.

1 Introduction

The Internet by design is opaque to its applications,

providing best effort packet delivery with little or no

information about the likely performance or reliabil-

ity characteristics of different paths. While this is a

reasonable design for simple client-server applications,

many emerging large-scale distributed services depend

on richer information about the state of the network. For

example, content distribution networks like Akamai [1],

Coral [16], and CoDeeN [52] re-direct each client to the

replica providing the best performance for that client.

Likewise, voice-over-IP systems such as Skype [45] use

relay nodes to bridge hosts behind NAT/firewalls, the

selection of which can dramatically affect call qual-

ity [39]. Peer-to-peer file distribution, overlay multicast,

distributed hash tables, and many other overlay services

can benefit from peer selection based on different met-

rics of network performance such as latency, available

bandwidth, and loss rate. Finally, the Internet itself can

benefit from more information about itself, e.g., ISPs can

monitor the global state of the Internet for reachability

and root cause analysis, routing instability, and onset of

DDoS attacks.

∗Dept. of Computer Science and Engineering, Univ. of Washington
†Dept. of Computer Science, Univ. of Massachusetts Amherst

If Internet performance were easily predictable, its

opaqueness might be an acceptable state of affairs. How-

ever, Internet behavior is well-known to be fickle, with

local hot spots, transient (and partial) disconnectivity,

and triangle inequality violations all being quite com-

mon [41, 2]. Many large-scale services adapt to this

state of affairs by building their own proprietary and

application-specific information plane. Not only is this

redundant, but it prevents new applications from lever-

aging information already gathered by other applica-

tions. The result is often sub-optimal. For example,

most implementations of the file distribution tool Bit-

Torrent choose peers at random (or at best using round

trip latency estimates); since downloads are bandwidth-

dependent, this can yield suboptimal download times. By

some estimates, BitTorrent accounts for roughly a third

of backbone traffic [37], so inefficiency at this scale is

a serious concern. Moreover, implementing an informa-

tion plane is often quite subtle, e.g., large-scale probing

of end-hosts can raise intrusion alarms in edge networks

as the traffic can resemble a DDoS attack. This is the

most common source of complaints on PlanetLab [38].

To address this, several research efforts, such as

IDMaps [15], GNP [34], Vivaldi [11], Meridian [54],

and PlanetSeer [55] have investigated providing a com-

mon measurement infrastructure for distributed applica-

tions. These systems provide only a limited subset of

the metrics of interest, most commonly latency between

a pair of nodes, whereas most applications desire richer

information such as loss rate and bandwidth. Second,

by treating the Internet as a black box, most of these

services abstract away network characteristics and atyp-

ical behavior—exactly the information of value for trou-

bleshooting as well as improving performance. For ex-

ample, the most common latency prediction methods use

metric embeddings which are fundamentally incapable

of predicting detour paths as such paths violate the trian-

gle inequality [41, 56]. More importantly, being agnostic

to network structure, they cannot pinpoint failures, iden-

tify causes of poor performance, predict the effect of net-

work topology changes, or assist applications with new

functionality such as multipath routing.

In this paper, we move beyond mere latency predic-

tion and develop a service to automatically infer sophis-

In Proceedings of the 7th USENIX Symposium on Operating Systems Design and Implementation
pp. 367-380, Seattle, WA, November 2006

ticated network behavior. We develop an Information

Plane (iPlane) that continuously performs measurements

to generate and maintain an annotated map of the Internet

with a rich set of link and router attributes. iPlane uses

structural information such as the router-level topology

and autonomous system (AS) topology to predict paths

between arbitrary nodes in the Internet. The path predic-

tions are combined with measured characteristics of path

segments to predict end-to-end path properties for a num-

ber of metrics such as latency, available bandwidth, and

loss rate. iPlane can also analyze isolated anomalies or

obtain a global view of network behavior by correlating

observations from different parts of the Internet.

iPlane is designed as a service that distributed appli-

cations can query to obtain information about network

conditions. Deploying iPlane as a shared service (as op-

posed to providing a library) has several benefits. First,

a common iPlane can exploit temporal and spatial local-

ity of queries across applications to minimize redundant

measurement overhead. Second, iPlane can selectively

refresh its knowledge of the IP address space based on

real query workloads. More generally, iPlane can assim-

ilate measurements made on behalf of all of its clients as

well as incorporate information reported by clients to de-

velop a more comprehensive model of Internet behavior

over time. We note that all of these arguments have been

recognized before [48, 8, 53, 23], however a convincing

validation has remained starkly absent.

Our primary contribution is in demonstrating the fea-

sibility of a useful iPlane, e.g., we can infer with high ac-

curacy an annotated map of the Internet every six hours

with approximately 100Kbps of measurement traffic per

PlanetLab node. In addition, we develop:

• A common structural model to predict path properties.

• A measurement infrastructure that is deployed on ev-

ery active PlanetLab site and almost a thousand trace-

route and Looking Glass server vantage points (with a

lower intensity of probing).

• A toolkit for using BitTorrent swarms to measure

links.

• Case studies of popular systems such as CDNs, peer-

to-peer file swarming, and VoIP. We show measurable

benefits of using iPlane for each of these applications.

iPlane is a modest step towards the vision of a knowl-

edge plane pioneered by Clark et al. [8]. iPlane supplies

information about the network and leaves the task of

adapting or repairing to the client. Nevertheless, the col-

lection, analysis, and distribution of Internet-scale mea-

surement information is itself a challenging systems en-

gineering problem and the focus of this paper. The goal

of gathering a complete picture of the Internet has been

recognized earlier in [48]. Our goal is more modest—to

gather a coarse-grained map of the Internet sufficient to

be of utility in improving overlay performance.

2 Design

We start by discussing the requirements of an Informa-

tion Plane for distributed services before presenting our

design that meets these requirements.

• Accuracy: iPlane should accurately estimate a rich set

of performance metrics such as latency, loss-rate, ca-

pacity, and available bandwidth.

• Wide coverage: iPlane must predict the performance

of arbitrary Internet paths. Many currently deployed

prediction services, such as RON [2] and S3 [29], limit

their focus to intra-overlay paths.

• Scalability: iPlane should not impose an undue com-

munication load on its measurement infrastructure.

• Unobtrusiveness: Active probes of end-hosts must be

coordinated and performed in an unobtrusive manner

in order to minimize the possibility of raising intrusion

detection alarms.

2.1 Overview

iPlane is designed to be deployed as an application-level

overlay network with the overlay nodes collectively co-

ordinating the task of generating and maintaining an “at-

las” of the Internet. The atlas is both extensive and

detailed—it comprises the topology of the Internet core

and the core’s connectivity to representative targets in

the edge networks, complete with a rich set of static at-

tributes (such as link delay and link capacity), and recent

observations of dynamic properties (such as routes be-

tween network elements, path loss rates, and path con-

gestion). iPlane uses systematic active measurements

to determine the attributes of the core routers and the

links connecting them. In addition, the system performs

opportunistic measurements by monitoring actual data

transfers to/from end-hosts participating in BitTorrent

swarms, thereby exposing characteristics of the edge of

the network that typically cannot be obtained from one-

way probing, e.g., capacities of access links.

Since it is impractical to probe every Internet end-host

to generate the atlas, we cluster end-hosts on the basis of

BGP atoms [4]. We approximate a client’s performance

by a representative target in the same atom as the client.

If the client desires greater prediction accuracy, it can

voluntarily perform some probes and contribute the paths

that it discovers to iPlane; multi-homed clients can ben-

efit from such an operational model. iPlane uses its col-

lected repository of observed paths to predict end-to-end

paths between any pair of end-hosts. This prediction is

made by carefully composing partial segments of known

Internet paths so as to exploit the similarity of Internet

routes [31], i.e., routes from two nearby sources tend to

Technique Description Goal Section

generate probe

targets

Obtain prefixes from Routeview’s BGP snapshot and cluster

groups of prefixes with similar routes.

coverage,

scalability
Section 2.2.1

traceroutes from

vantage points

PlanetLab nodes probe all targets, while Traceroute/Looking

Glass servers issue probes to a small subset of the targets.

map topology,

capture path diversity
Section 2.2.1

cluster network

interfaces

Identify network interfaces that are in the same AS and geograph-

ically colocated.

build structured topology,

scalability
Section 2.2.2

frontier algorithm
Schedule measurements of link attributes to PlanetLab nodes such

that each link is probed by the vantage point closest to it.

accuracy,

balance load
Section 2.3.1

measure link

attributes

PlanetLab nodes measure the loss rate, capacity, and available

bandwidth over a subset of paths in the Internet core.
annotate topology Section 2.3.2

opportunistic

measurements

Leverage existing applications to discover the structure and per-

formance of edge networks.

minimize obtrusiveness,

access link properties
Section 2.4

route composition
Compose segments of observed or reported paths to predict end-

to-end paths between a pair of nodes.

path prediction,

performance prediction
Section 2.5

Table 1: A summary of techniques used in iPlane.

converge when heading to the same destination. iPlane

predicts a path by splicing a short path segment from the

source to an intersection point from which a path going to

the destination has been observed in the atlas. To deter-

mine intersections between paths, we cluster interfaces

that are owned by the same AS and reside in the same

PoP, and deem two paths to have intersected if they pass

through the same cluster.

Once a path is predicted, iPlane simply composes the

measured properties of the constituent path segments to

predict the performance of the composite path. For in-

stance, to make a latency prediction, iPlane simply adds

the latencies associated with the individual path seg-

ments. Or, to predict the end-to-end bandwidth, iPlane

computes the minimum of the bandwidth measured of

each of the inter-cluster links along the predicted path,

and the bandwidth of the client’s access link, if available.

The rest of this section describes the techniques used

to develop a functional iPlane that has wide coverage,

incurs modest measurement load without unduly sacri-

ficing coverage or detail, and uses topology structuring

techniques to enable efficient measurement and accurate

inference. The techniques are summarized in Table 1.

2.2 Mapping the Internet Topology

iPlane requires geographically distributed vantage points

to map the Internet topology and obtain a collection

of observed paths. PlanetLab servers, located at over

300 sites around the world, serve as the primary van-

tage points. We also enlist the use of public Looking

Glass/Traceroute servers for low-intensity probing. Fur-

ther, we are currently exploring the option of using data

from DIMES [43], a system for aggregating low inten-

sity measurements from normal PCs. Our primary tool

for determining the Internet topology is traceroute,

which allows us to identify the network interfaces on the

forward path from the probing entity to the destination.

(On PlanetLab, we use an optimized version of the tool

to reduce measurement load.) Determining what desti-

nations to probe and how to convert the raw output of

traceroute to a structured topology is nontrivial, an issue

we address next.

2.2.1 Probe Target Selection

BGP snapshots, such as those collected by Route-

Views [33], are a good source of probe targets. iPlane

achieves wide coverage for the topology mapping pro-

cess by obtaining the list of all globally routable pre-

fixes in BGP snapshots, and choosing within each prefix

a target .1 address that responds to either ICMP or UDP

probes. A .1 address is typically a router and is hence

more likely to respond to probes than arbitrary end-hosts.

To reduce measurement load, iPlane clusters IP pre-

fixes into BGP atoms [4] for generating the target list.

A BGP atom is a set of prefixes, each of which has the

same AS path to it from any given vantage point. BGP

atoms can be regarded as representing the knee of the

curve with respect to measurement efficiency—probing

within an atom might find new routes, but it is less likely

to do so [4]. This task of determining a representative

set of IP addresses is performed relatively infrequently,

typically once every two weeks.

iPlane uses the PlanetLab nodes to perform exhaus-

tive and periodic probing of the representative targets. In

addition, iPlane schedules probes from public traceroute

servers to a small random set of BGP atoms, typically

making a few tens of measurements during the course

of a day. The public traceroute servers serve as a valu-

able source of information regarding local routing poli-

cies. Note that in the long run, a functioning iPlane may

actually serve to decrease the load on the public trace-

route servers as iPlane, rather than the traceroute servers

themselves, can be consulted for information on the In-

ternet topology.

2.2.2 Clustering of Interfaces

Traceroute produces a list of network interfaces on the

path from source to destination. However, interfaces on

the same router, or in the same PoP, may have similar

behavior. Hence, we partition network interfaces into

“clusters” and use this more compact topology for more

in-depth measurements and predictions. We define the

clusters to include interfaces that are similar from a rout-

ing and performance perspective, i.e., interfaces belong-

ing to the same PoP and interfaces within geographically

nearby portions of the same AS [46]. Note that this clus-

tering is performed on network interfaces in the Internet

core, whereas the clustering of prefixes into BGP atoms

was performed for end-host IP addresses. In fact, clus-

tering addresses in the same prefix will be ineffective in

the core as geographically distant interfaces are often as-

signed addresses in the same prefix.

First, iPlane identifies interfaces that belong to the

same router. Interfaces that are potential alias candidates

are identified using two different techniques. Employ-

ing the Mercator [19] technique, UDP probes are sent

to a high-numbered port on every router interface ob-

served in traceroutes. Interfaces that return responses

with the same source address are considered as possi-

ble aliases. In addition, candidate alias pairs are also

identified using the fact that interfaces on either end of

a long-distance link are usually in the same /30 prefix.

Candidate pairs that respond with similar IP-ID values

to the UDP probes, and also respond with similar TTLs

to the ICMP probes are deemed to be aliases. In one

of our typical runs, of the 396,322 alias candidate pairs

yielded by the Mercator technique, 340,580 pairs were

determined to be aliases. The 918,619 additional alias

candidate pairs obtained using the /30 heuristic yielded

another 320,150 alias pairs.

Second, iPlane determines the DNS names assigned

to as many network interfaces as possible. It then uses

two sources of information – Rocketfuel’s undns util-

ity [47] and data from the Sarangworld project [40] – to

determine the locations of these interfaces based on their

DNS names. This step alone does not suffice for our pur-

pose of clustering geographically co-located interfaces

because: 1) several interfaces do not have a DNS name

assigned to them, 2) rules for inferring the locations of all

DNS names do not exist, and 3) incorrect locations are

inferred for interfaces that have been misnamed. For IPs

whose locations can be inferred from DNS names, the

locations are validated by determining if they are consis-

tent with the measured delays from traceroutes [28].

Third, to cluster interfaces for which a valid loca-

tion was not determined, we develop an automated algo-

rithm that clusters interfaces based on responses received

from them when probed from a large number of vantage

points. We probe all interfaces from all of iPlane’s Pla-

netLab vantage points using ICMP ECHO probes. We

use the TTL value in the response to estimate the num-

ber of hops on the reverse path back from every router

to each of our vantage points. Our hypothesis is that

routers in the same AS that are geographically nearby

will have almost identical routing table entries and hence,

take similar reverse paths back to each vantage point.

To translate this hypothesis into a clustering algorithm,

each interface is associated with a reverse path length

vector. This is a vector with as many components as the

number of vantage points, and the ith component is the

length of the reverse path from the interface back to the

ith vantage point. We define the cluster distance between

two vectors to be the L1 distance—the sum of the abso-

lute differences between corresponding components, di-

vided by the number of components. In our measure-

ments, we have observed that the cluster distance be-

tween reverse path length vectors of co-located routers

in an AS is normally less than 1.

Based on the metric discussed above, we can now

present a technique for assigning interfaces without

known locations to clusters. We start by initializing our

clusters to contain those interfaces for which a location

has been determined. Interfaces that have been deter-

mined to be co-located in an AS are in the same cluster.

For each cluster, we compute the median reverse path

length vector, whose ith component is the median of the

ith components of the vectors corresponding to all inter-

faces in the cluster. We then cluster all interfaces that do

not belong to any cluster as follows. For each interface,

we determine the cluster in the same AS as the interface,

with whose median vector the interface’s vector has the

least cluster distance. If this minimum cluster distance is

less than 1, the interface is added to the chosen cluster,

otherwise a new singleton cluster is created. This clus-

tering algorithm, when executed on a typical traceroute

output, clusters 762,701 interfaces into 54,530 clusters.

653,455 interfaces are in 10,713 clusters of size greater

than 10, while 21,217 interfaces are in singleton clusters.

2.3 Measuring the Internet Core

After clustering, iPlane can operate on a compact rout-

ing topology, where each node in the topology is a cluster

of interfaces and each link connects two clusters. iPlane

then seeks to determine a variety of link attributes that

can be used to predict path performance. To achieve this

goal, a centralized agent is used to distribute the mea-

surement tasks such that each vantage point is assigned

to repeatedly measure only a subset of the links. The cen-

tralized agent uses the compact routing topology to de-

termine the assignments of measurement tasks to vantage

points, communicates the assignment, and monitors the

execution of the tasks. Only iPlane infrastructure nodes

(namely, PlanetLab nodes) are used for these tasks.

2.3.1 Orchestrating the Measurement Tasks

There are three objectives to be satisfied in assigning

measurement tasks to vantage points. First, we want

to minimize the measurement load by measuring each

link attribute from only a few vantage points (we employ

more than one to correct for measurement noise). Sec-

ond, the measurement should be load-balanced across all

vantage points, i.e., each vantage point should perform a

similar number of measurements. Third, in order to mea-

sure the properties of each link as accurately as possible,

we measure every link in the topology from the vantage

point that is closest to it.

We have developed a novel “frontier” algorithm to per-

form the assignment of tasks to vantage points. The algo-

rithm works by growing a frontier rooted at each vantage

point and having each vantage point measure only those

links that are at its frontier. The centralized agent per-

forms a Breadth-First-Search (BFS) over the measured

topology in parallel from each of the vantage points.

Whenever a vantage point is taken up for consideration,

the algorithm performs a single step of the BFS by fol-

lowing one of the traceroute paths originating at the van-

tage point. If it encounters a link whose measurement

task has been assigned already to another vantage point,

it continues the BFS exploration until it finds a new link

that has not been seen before. This process continues un-

til all the link measurements have been assigned to some

vantage point in the system.

The centralized agent uses the above algorithm to

determine the assignment of tasks and then ships the

tasklist to the respective vantage points. Each target link

is identified by the traceroute path that the vantage point

can use to reach the link and by its position within the

traceroute path. If a vantage point is no longer capable

of routing to the link due to route changes, the vantage

point reports this to the centralized agent, which in turn

reassigns the task to a different vantage point.

Most link attributes, however, cannot be directly de-

termined by the vantage points. For instance, when mea-

suring loss rates, a vantage point can only measure the

loss rate associated with the entire path from the vantage

point to the target link; the loss rates of individual links

have to be inferred as a post-processing operation. Once

all vantage points report their measurements back to the

centralized agent, the agent can perform the BFS style

exploration of the topology to infer link properties in the

correct order. For instance, assume that a vantage point

v had probed the path v, . . . , x, y and obtained a (one-

way) loss rate measurement of lv,y for the entire path.

The centralized agent can then infer the loss rate along

the link (x, y) after inferring the loss rates for each of the

links in v, . . . , x, composing these individual loss rates to

compute the loss rate lv,x along the segment v . . . x, and

then calculating the loss rate for (x, y) using the equation

(1− lv,y) = (1− lv,x) ·(1− lx,y). Since the link property

inference is performed as a BFS traversal, we are guar-

anteed that loss rates for all the links along v, . . . , x have

been inferred before we consider the link (x, y).

In our current system, the centralized agent schedules

and monitors roughly 2700K measurements per day, a

management load that a single centralized agent can eas-

ily bear. Fault tolerance is an issue, but is addressed by a

simple failover mechanism to a standby controller. Note

that the processed data is served to applications from a

replicated database to ensure high availability.

2.3.2 Measurement of Link Attributes

We next outline the details of the loss rate, bottleneck ca-

pacity and available bandwidth measurements performed

from each vantage point. Previous research efforts have

proposed specific ways to measure each of these proper-

ties; our goal is to integrate these techniques into a use-

ful prediction system. Latencies of path segments can be

derived directly from the traceroute data gathered while

mapping the topology, and therefore do not need to be

measured explicitly.

Loss Rate Measurements: We perform loss rate mea-

surements along path segments from vantage points to

routers in the core by sending out probes and determin-

ing the fraction of probes for which we get responses.

We currently use the simple method of sending TTL-

limited singleton ICMP probes with a 1000-byte pay-

load. When the probe’s TTL value expires at the target

router, it responds with a ICMP error message, typically

with a small payload. When a response is not received,

one cannot determine whether the probe or the response

was lost, but there is some evidence from previous stud-

ies that small packets are more likely to be preserved

even when routers are congested [32]. We therefore cur-

rently attribute all of the packet loss to the forward path;

the development of more accurate techniques is part of

ongoing work.

Capacity Measurements: We perform capacity

measurements using algorithms initially proposed by

Bellovin [3] and Jacobson [24] that vary the packet size

and determine the delay induced by increased packet

sizes. For each packet size, a number of probes (typically

30–40) of that size are sent to an intermediate router and

the minimum round-trip time is noted. The minimum

round-trip time observed over many probes can be re-

garded as a baseline path latency measurement with min-

imal queueing delays. By performing this experiment for

different packet sizes, one can determine the increased

transmission cost per byte. When this experiment is per-

formed for a sequence of network links in succession,

the capacity of each link can be determined. Note that

our capacity measurements may underestimate a cluster

link if it consists of multiple parallel physical links.

Available Bandwidth Measurements: Once we have

link capacities, we can probe for available bandwidth

along path segments using packet dispersion techniques

such as Spruce [50], IGI [21], Pathload [25]. A sim-

ple measurement is performed by sending a few, equally

spaced, short probes at the believed bottleneck capacity

of the path segment, and then measuring how much de-

lay they induce. The slope of the delay increase will in-

dicate how much background traffic arrived during the

same time period as the probe. For instance, if the probes

are generated with a gap of ∆in through a path segment

of capacity C and if the measured gap between between

the probe replies is ∆out, one can estimate the available

bandwidth as C · (1− ∆out−∆in

∆in

). An important detail is

that the packets have to be scheduled at the desired spac-

ing, or else the measurement is not valid. Fortunately,

even on heavily loaded PlanetLab nodes, it is possible to

realize the desired scheduling most of the time.

2.4 Opportunistic Edge Measurements

To provide a comprehensive data set on which to infer

current properties of paths to end-hosts, it is necessary

for iPlane to maintain an up-to-date map of the network

that extends to the very edge. However, the measurement

techniques outlined above are unlikely to work as they, as

most other active measurements, require end-hosts to re-

spond to unsolicited ICMP, UDP or TCP packet probes.

Also, measurements to end-hosts are frequently misinter-

preted by intrusion detection systems as attacks. Hence,

we pursue an opportunistic approach to data collection—

measuring paths to end-hosts while interacting with them

over normal connections. We participate in the popu-

lar file-distribution application BitTorrent [9] and gather

measurements from our exchanges with the peers in this

swarming system. Note that BitTorrent has the further

desirable property that anyone can connect to anyone, al-

lowing us to arrange measurements of multiple paths to

participating edge hosts.

BitTorrent is used daily by thousands of end users to

distribute large files. BitTorrent is one example of a large

class of swarming data distribution tools. By participat-

ing in several BitTorrent swarms, we have the opportu-

nity to interact with a large pool of end-hosts. We mea-

sure properties of the paths to peers while exchanging

data with them as part of the swarming system.

We currently gather two kinds of measurements using

our opportunistic measurement infrastructure.

• Packet traces of TCP flows to end-hosts. These traces

provide information about packet inter-arrival times,

loss rates, TCP retransmissions and round trip times.

We use the inter-arrival times between data packets

to measure bottleneck bandwidth capacities of paths

from clients to vantage points, as described further in

Section 3.

S

V
1

Actual route

I'

I

Predicted route

Route from distant vantage point

merges close to destination

Choose closer

intersection point I Route from nearby vantage point

merges nearer to the source

(dotted line)

V
2

BGP
1

BGP
2

D

Figure 1: The path from S to D is obtained by composing a

path from S with a path going into D from a vantage point close

to S (V1). BGP1 and BGP2 are destinations in two random

prefixes to which S performs traceroutes.

• Traceroutes to end-hosts. When a peer connects to

our measurement node, we conduct a traceroute to that

host. We record this data and add it to our atlas.

2.5 Performance Prediction

Next, we describe how to predict path properties between

an arbitrary pair of nodes based on the above measure-

ments. The prediction proceeds in two steps. First, we

predict the forward and reverse paths connecting the two

nodes. Second, we aggregate measured link-level prop-

erties to predict end-to-end path properties.

Path Prediction We use a technique we earlier devel-

oped [31] based on composing observed path segments

to predict unknown paths. Consider a source S and des-

tination D. If S is a vantage point, then we simply re-

turn the measured path from S to D. Else, we determine

an appropriate intersection point I in the measured sub-

graph of the Internet such that—(a) the AS hop count of

the path S.I.D is minimum, and (b) the latency from S
to the point where the path S.I.D exits the first-hop AS

is minimum, in that order (Figure 1). The underlying

principle is similarity of routes, i.e., with a sufficiently

large number of vantage points, the path to a destination

(D) from any node (S) will be similar to the path from a

vantage point or router (I) located nearby. Condition (a)

encodes the default path selection criterion used by BGP

in the absence of conflicting local preference policies.

Condition (b) encodes the default early exit intradomain

routing policy. Note that the above technique is guaran-

teed to return a path (albeit an inflated one), since every

path of the form S.V.D, for each vantage point V , be-

longs to the measured subgraph.

As we noted earlier, we make measurements to BGP

atoms rather than to all destinations. In [31], we note

that adding a small number of measured paths originat-

ing from the client S significantly improves the predic-

tion accuracy for paths sourced at S. Using these mea-

surements, the path from S to D is S to I to D’s atom

to D. If there is a measurement of the last hop from D’s

atom to D, we use it; otherwise, we estimate it using

a representative node in the atom (e.g., from BitTorrent

measurements). Briefly summarizing the main results

from [31], we can predict the AS path exactly right for

around 70% of the paths evaluated, and the latency esti-

mates obtained using this model were significantly better

than those yielded by Vivaldi [11], a popular network co-

ordinate system.

Path Properties Given predicted paths as above, we

can estimate end-to-end properties by aggregating link-

level properties. For example, we predict TCP transfer

time using widely accepted models [35, 5]. For this, we

separately predict the forward and reverse paths between

the source and the destination. The latency on the for-

ward path S.I.D-atom.D is estimated as the sum of the

latency estimates for each segment. We similarly esti-

mate the latency along the reverse path, and then com-

pute the RTT between the two end-hosts to be the sum

of our latency estimates along the forward and reverse

paths. The loss rate on the predicted forward path is

estimated from the probability of a loss on any of its

constituent links while bandwidth is the minimum value

across the links. The access link capacities of these end-

hosts, if available based on BitTorrent measurements to

hosts in the same /24 prefixes, are also used to estimate

the end-to-end bottleneck bandwidth.

Recently, He et al. [20] argued that the best way to

accurately predict TCP throughput is to send TCP flows

and use history-based predictors. Although we have not

implemented these, our use of passive BitTorrent logs is

amenable to incorporating such predictors.

2.6 Securing iPlane

iPlane allows untrusted users to contribute measure-

ments, so it is vulnerable to attacks aimed at polluting its

information. For instance, a client can claim to have bet-

ter connectivity than actuality in order to improve its po-

sition within an overlay service that uses iPlane. iPlane

reduces this risk by using client data only for those

queries issued by the same client; falsified measurements

will not affect the queries issued by other clients.

We do however trust traceroute servers to provide un-

biased data, though the traceroute servers are not un-

der our control. An ISP hosting a traceroute server

might bias its replies from the server to better position

its clients, for example, to attract more BitTorrent traffic

and thereby generate more revenue. We have the ability

to use verification to address this – compare the results

from multiple vantage points for consistency – but have

not implemented it yet.

2.7 Query Interface

The query interface exported by iPlane must be care-

fully designed to enable a diverse range of applications.

Our current implementation of the query interface ex-

poses a database-like view of path properties between

every pair of end-hosts in the Internet. For every source-

destination pair, there exists a row in the view with

iPlane’s predicted path between these hosts and the pre-

dicted latency, loss rate, and available bandwidth along

this path. Any query to iPlane involves an SQL-like

query on this view – selecting some rows and columns,

joining the view with itself, sorting rows based on val-

ues in certain columns, and so on. The database view is

merely an abstraction. iPlane does not compute a priori

the entire table comprising predictions for every source-

destination pair; instead it derives necessary table entries

on-demand.

For example, a CDN can determine the closest replica

to a given client by selecting those rows that predict the

performance between the client and any of the CDN’s

replicas. A suitable replica can then be determined by

sorting these rows based on a desired performance met-

ric. To choose a good detour node for two end-hosts to

conduct VoIP, the rows predicting performance from the

given source can be joined with the set of rows predict-

ing performance for the given destination. A good detour

is one that occurs as the destination in the first view and

as the source in the second view, such that the composed

performance metrics from these rows is the best. These

queries can be invoked in any one of the following ways.

Download the Internet Map: We have implemented

a library that provides an interface to download the cur-

rent snapshot of the entire annotated Internet map or a

geographic region, to process the annotated map, and to

export the above SQL-like view. An application simply

links against and invokes the library locally.

On-the-fly Queries: Applications that do not wish to

incur the costs of downloading the annotated map and

keeping it up-to-date, can query a remote iPlane service

node using non-local RPCs. Note that clients of CDNs,

such as Akamai and Coral, typically tolerate some indi-

rection overhead in determining the nearest replica. To

support such applications, iPlane downloads the anno-

tated map of the Internet to every PlanetLab site, and

then provides an RPC interface to the data. Further, as

some applications might need to make multiple back-to-

back queries to process iPlane’s measurements, we assist

the application in lowering its overheads by allowing it to

upload a script that can make multiple local invocations

of iPlane’s library. The current implementation requires

that this script be written in Ruby, as Ruby scripts can be

executed in a sandboxed environment and with bounded

resources [49]. The output of the script’s execution is

returned as the response to the RPC.

Network Newspaper: Apart from downloading the

Internet graph and issuing on-the-fly queries, a third

model that we plan to support is a publish-subscribe in-

terface that allows users to register for information up-

Measurement storage

Other measurement sources

1. Traceroutes from Looking

 Glass servers / DIMES

2. RouteViews

PlanetLab

1. Traceroutes

2. Loss rate / bottleneck capacity /

 available bandwidth

3. Probe all interfaces

4. BitTorrent measurements

Server

1. Measurement scheduler for:

 i). Topology

 ii). Link metreics

2. IP to AS mapping

3. Interface clustering

4. Solver for loss rate / capacity /

 available bandwidth of links

5. Archival of measurements

Measurement

processing and

storage

Distributed query interface

Query

interface

node

Query

interface

node

Query

interface

node

1. Add measurements

 from clients

2. Feedback to trigger

 measurements

Ship processed

measurements Client

1. Init (a
dd traceroutes)

2. Make queries

Response

Client
Clients

Query interface node

Query interface

Inference

1. Path prediction

2. Prediction of metrics

 i). Latency

 ii). Loss rate

 iii). Bottleneck capacity

 iv). Available bandwidth

Gathering dataTriggering measurements

Figure 2: Overall architecture of iPlane.

dates about specific portions of the Internet graph. This

interface allows users to subscribe to their “view” of the

Internet, i.e., all paths originating from a user to all BGP

atoms, or insert triggers to be notified of specific events,

e.g., when a critical link fails. Implementing such an in-

terface is part of our future work.

The various components in our current implementa-

tion of iPlane, and the interaction between these compo-

nents is depicted in Figure 2.

3 System Setup and Evaluation

In this section, we present details of our deployment of

iPlane. We provide an overview of the measurements we

conducted as part of our deployment. We also outline the

tests we conducted to validate our measurements. All of

our validation is performed on paths between PlanetLab

nodes; our goal in the future is to use client measure-

ments (e.g., DIMES [43]) to broaden the validation set.

The number of PlanetLab nodes used varies with each

experiment because of the variable availability of some

nodes.

3.1 Measuring the Core

We first consider results from a typical run of our map-

ping process. We performed traceroutes from PlanetLab

nodes in 163 distinct sites. The targets for our trace-

routes were .1 addresses in each of 91,498 prefixes deter-

mined from the RouteViews BGP snapshot, though mea-

(a)

(b)

Figure 3: Distribution of errors in (a) latency, and (b) loss rate

estimation.

suring paths to one address in each BGP atom should suf-

fice. We probed all interfaces observed in our measured

topology with UDP and ICMP probes, and clustered the

interfaces based on their responses.

Once a map of the Internet’s core was gathered, we

employed our “frontier” BFS algorithm to determine

paths to be probed from each of the 385 PlanetLab nodes

present at the 163 sites used; for link metrics, we use

multiple nodes per site. To determine the properties of

270,314 inter-cluster links seen in our measured topol-

ogy, each vantage point was assigned to measure only

around 700 paths. Loss rate, capacity, and available

bandwidth were measured for each of the assigned paths.

These measurements were then processed to determine

properties for every cluster-level link in our measured

topology.

To validate the predictive accuracy of iPlane, we com-

pared properties of paths between PlanetLab nodes with

the corresponding values predicted by iPlane. We mea-

sured the latency and loss rate along every path between

any two PlanetLab nodes. To predict the performance,

we assume that we have the probe information collected

by the other 161 sites, excluding the source and desti-

nation under consideration. We then added 10 tracer-

outes from the source and destination to random nodes

to simulate the behavior of participating clients. Each

experiment was performed independently to ensure no

mixing of the measurement and validation set. Figure 3

compares the latency and loss rate estimates made by

Figure 4: Rank correlation coefficient between actual and pre-

dicted TCP throughput.

iPlane with the true values. For 77% of paths, iPlane’s

latency estimates have error less than 20ms, and for 82%
of paths, loss rate estimates have error less than 10%.

Further, we evaluated how predictive of path perfor-

mance are iPlane’s estimates of latency and loss rate in

combination. The desired property of these estimates is

that they help distinguish between paths with good and

bad performance. We compared the order of paths from

each PlanetLab node in terms of actual and predicted per-

formance. For each node, we ranked all other nodes in

terms of TCP throughput, considering throughput to be

inversely proportional to latency and the square root of

loss rate [35]. These rankings were computed indepen-

dently using measured path properties and using iPlane’s

predictions for these properties. Figure 4 plots the cor-

relation coefficient between the actual and iPlane pre-

dicted rankings across all PlanetLab nodes. For 80% of

the nodes, the correlation coefficient is greater than 0.7.

3.2 Scalability

We now discuss the measurement load required to gen-

erate and maintain a frequently refreshed map of the

Internet. The measurement tasks performed by iPlane

have two primary objectives—mapping of the Internet’s

cluster-level topology and determination of the proper-

ties of each link in the measured topology. Measurement

of link properties incurs higher measurement overhead

when compared to the probe traffic needed to perform a

traceroute, but scales better. With more vantage points,

the topology discovery traffic per node remains the same,

but the overhead per node for measuring link metrics

scales down, allowing the same fidelity for less over-

head per node. The measurement load associated with

each technique in our measurement apparatus is summa-

rized in Table 2. These numbers assume the availability

of 400 PlanetLab nodes at 200 sites. Our main result

is that iPlane can produce an updated map of the Inter-

net’s routing topology every day with as little as 10Kbps

of probe traffic per vantage point, and update the map

of link-level attributes once every 6 hours with around

100Kbps of probe traffic per vantage point, suggesting

that iPlane can refresh the Internet map frequently.

(a)

(b)

Figure 5: Stationarity of measurements over different intervals

over the course of a day.

3.3 Stationarity of Measurements

iPlane’s measurements change over time with changes

in the routes in the Internet and the traffic they carry. We

again use PlanetLab data to estimate whether it suffices

for iPlane to update its map every 6 hours. We are cur-

rently in the process of evaluating the stationarity of path

properties for non-PlanetLab destinations as well.

Over a period of 2 days, we measured the latency and

loss rate between PlanetLab nodes once every 30 min-

utes. For this study, we used a dataset of 174 Planet-

Lab sites spanning 29 countries. In every interval, we

computed for each node the ranking of all other nodes

in terms of TCP throughput. To evaluate the flux in

path properties over a 30 minute timescale, we compared

these rankings between adjacent 30 minute intervals. For

each PlanetLab node, we computed the correlation coef-

ficient between the ranking vectors from adjacent inter-

vals as well as computed the intersection between the top

10 nodes in these ranking vectors. To compare this with

the flux in measurements over longer timescales, we also

performed these computations across intervals 1 hour, 2

hours, 4 hours, 8 hours, 16 hours and 24 hours apart.

Figure 5(a) shows that the median correlation coeffi-

cient between the rankings is greater than 0.8 across all

intervals from 30 minutes to a day. Similarly, Figure 5(b)

shows that in the median case, 7 of the top 10 nodes in

this ranking are identical on timescales from 30 minutes

to a day. Though these results are only for paths between

Measurement Task Tool / Technique Frequency Probing rate / node

Topology Mapping traceroute Once a day 200 vantage points× 50K

atoms — 2.5Kbps

Clustering UDP probes for source-address-based alias resolution,

ICMP-ECHO probes for RTTs and reverse TTLs

One day

every week

100 vantage points ×

800K interfaces — 6Kbps

Capacity measurements “frontier” algorithm applied to cluster-level topology

for path assignment, pathchar for bandwidth capacity

Once a day 400 vantage points × 700

links — 13Kbps

Loss rate and available

bandwidth measurements

“frontier” algorithm for path assignment, TTL-limited

probes for loss rate, spruce for available bandwidth

Continuous

(every 6 hours)

400 vantage points × 700

links — 80Kbps

Table 2: Complexity of measurements techniques used in iPlane based on the following assumptions. A UDP/ICMP probe is 40

bytes. A traceroute incurs a total of 500B on average. The per-link loss rate, available bandwidth, and capacity measurements

require 200KB, 100KB, and 200KB of probe traffic respectively.

PlanetLab nodes, they seem to indicate that there is lit-

tle value in updating the map more frequently than once

every few hours, compared to once every 30 minutes.

3.4 Measurements to End-Hosts

To measure the edges of the Internet, we deployed a mod-

ified BitTorrent client on 367 PlanetLab nodes. As de-

scribed in Section 2.4, our infrastructure for measuring

the edge involves the millions of users who frequently

participate in the BitTorrent filesharing application. Ev-

ery hour, we crawl well-known public websites that pro-

vide links to several thousand .torrent files to put

together a list of 120 popular swarms. The number of

swarms for consideration was chosen so as to ensure

the participation of several of our measurement vantage

points in each swarm. The number of PlanetLab nodes

designated to a swarm is proportional to the number of

peers participating in it.

Each PlanetLab node runs a BitTorrent client that we

have modified in several ways to aid in our measure-

ments. First, the modified client does not upload any data

nor does it write any data that it downloads onto disk.

Second, our client severs connections once we have ex-

changed 1MB of data, which suffices for purposes of our

measurements. Finally, we introduce a shadow tracker—

a database that coordinates measurements among all Pla-

netLab nodes participating in a single swarm. Instead of

operating only on the set of peers returned by the origi-

nal tracker for the swarm, our modified client also makes

use of the set of peers returned to any measurement node.

Clients preferentially attempt to connect and download

data from peers that have not yet been measured by a

sufficient number of vantage points. These modifica-

tions are crucial for measurement efficiency and diver-

sity since typical BitTorrent trackers permit requesting

only a restricted set (50–100) of participating peers once

every 30 minutes or more. Such short lists are quickly

exhausted by our modified client.

During a 48 hour period, our measurement nodes con-

nected to 301,595 distinct IP addresses, and downloaded

sufficient data to measure the upload bandwidth capac-

S3

Kbps

Figure 6: CDFs of estimated bandwidth capacity on paths be-

tween PlanetLab nodes as measured by iPlane and S3.

ity from 70,428. These hosts span 3591 distinct ASes,

19,639 distinct BGP prefixes, and 160 different coun-

tries.

3.5 Validation of BitTorrent capacity measurements

Our edge bandwidth capacity measurement relies on

inter-arrival times observed between data packets in the

connections we maintain with BitTorrent peers. We im-

plemented the multiQ [27] technique to infer end-to-end

bottleneck bandwidth capacity from these inter-arrival

times. Although the accuracy of multiQ presented in

previous studies is encouraging, the unique properties of

PlanetLab motivated us to provide further validation. To

verify that multiQ yields reasonable data with short TCP

traces in the presence of cross traffic on machines under

heavy load, we compared our measurements with those

made by S3 [13].

We setup a test torrent and had our measurement

clients running on 357 PlanetLab nodes participate in this

torrent. From this setup, we opportunistically measured

the bottleneck bandwidth capacities between these Pla-

netLab nodes. The dataset we gathered from this exper-

iment had 10,879 paths in common with measurements

made by S3 on the same day. Figure 6 compares the

bandwidth capacities measured by the two methods. The

measurements made by iPlane closely match those of S3

for capacities less than 10 Mbps. At higher bandwidth

Figure 7: CDF of the ratio of maximum to minimum measured

bandwidth capacity for /24 address prefixes with multiple mea-

surements from the same vantage point across time.

capacities, they are only roughly correlated. We attribute

this difference to the use of user-level timestamps by S3.

As inter-packet spacing can be rather small for high ca-

pacity paths, user-level timestamps are likely to be inac-

curate in the highly loaded PlanetLab environment. Our

measurement setup makes use of kernel-level timestamps

and is therefore less sensitive to high CPU load. For typ-

ical access link bandwidths, the two tools produce sim-

ilar data; the value of using BitTorrent is that it works

with unmodified clients that sit behind firewalls or NATs

that would drop active measurement probes. The more

discernible steps in the iPlane line in Figure 6 are at

10Mbps, 45Mbps (T3), and 100Mbps, which correspond

to typical ISP bandwidth classes.

3.6 Clustering of end-hosts

Although the data produced by our opportunistic strat-

egy is extensive, it is by no means complete. Not every

client participates in popular torrents. In Figure 7, we

explore the validity of using BitTorrent measurements to

predict the performance of other clients in the same pre-

fix. For every /24 prefix in which we have measurements

to multiple end-hosts from the same vantage point, we

compute the ratio of the maximum to the minimum mea-

sured bandwidth capacity. For 70% of /24 prefixes, the

capacities measured differ by less than 20%.

4 Application Case Studies

In this section, we show how applications can benefit

from using iPlane. We evaluate three distributed services

for potential performance benefits from using iPlane.

4.1 Content Distribution Network

Content distribution networks (CDNs) such as Akamai,

CoDeeN and Coral [1, 52, 16] redirect clients to a nearby

replica. The underlying assumption is that distance de-

termines network performance. However, there is more

to network performance than just distance, or round trip

time. TCP throughput, for example, depends on both dis-

tance and loss rate [35, 5]. Even for small web docu-

ments, loss of a SYN or a packet during slow start can

markedly inflate transfer time. A CDN using iPlane can

Figure 8: CDF of download times from replicas in the CDN

chosen by the iPlane and from replicas closest in terms of la-

tency. Each download time is the median of 5 measurements.

Figure 9: CDFs of BitTorrent download completion times

with and without informed peer selection at the tracker.

track the RTT, loss rate, and bottleneck capacity from

each replica to the rest of the Internet. The CDN can

then arrange for its name servers to redirect the client to

optimize using the model of its choice.

We emulate a small CDN comprising 30 randomly

chosen PlanetLab nodes. Each node serves 3 files of

sizes 10KB, 100KB and 1MB. We use 141 other Planet-

Lab nodes to emulate clients. Each client downloads all 3

files from the replica that provides the best TCP through-

put as predicted by the PFTK model [35] using iPlane’s

estimates of RTT and loss rate, and from the replica clos-

est in terms of actual measured RTT. Note that this com-

parison is against an optimum that cannot be achieved

without extensive probing. A real CDN will only have

estimated RTTs available. Figure 8 compares the down-

load times experienced by the clients in either case, ex-

cluding the latency of redirecting to the replica. Choos-

ing the replica for optimized TCP throughput based on

iPlane’s predictions provides slightly better performance

than choosing the closest replica. Though these results

are only indicative, they suggest that iPlane with its abil-

ity to provide multi-attribute network performance data

will be more effective than systems such as OASIS [17]

that simply optimize for RTT.

4.2 BitTorrent

We next show how iPlane can enable informed peer se-

lection in popular swarming systems like BitTorrent. In

current implementations, a centralized BitTorrent tracker

serves each client a random list of peers. Each client en-

forces a tit-for-tat bandwidth reciprocity mechanism that

incents users to contribute more upload bandwidth to ob-

tain faster downloads. However, the same mechanism

also serves to optimize path selection at a local level—

peers simply try uploading to many random peers and

eventually settle on a set that maximizes their download

rate. Because reasoning about peer quality occurs lo-

cally at each client, each client needs to keep a large pool

of directly connected peers (60–100 for typical swarms)

even though at any time only a few of these (10–20) are

actively engaged in data transfer with the client. This

overhead and consequent delayed convergence is funda-

mental: with only local information, peers cannot reason

about the value of neighbors without actively exchang-

ing data with them. iPlane’s predictions can overcome

the lack of prior information regarding peer performance

and can thus enable a clean separation of the path selec-

tion policy from the incentive mechanism.

We built a modified tracker that uses iPlane for in-

formed peer selection. Instead of returning random

peers, the tracker uses the iPlane’s loss rate and latency

estimates to infer TCP throughput. It then returns a set

of peers, half of which have high predicted throughput

and the rest randomly selected. The random subset is

included to prevent the overlay from becoming discon-

nected (e.g., no US node preferring a peer in Asia).

We used our modified tracker to coordinate the distri-

bution of a 50 megabyte file over 150 PlanetLab nodes.

We measured the time taken by each of the peers to

download the file after the seed was started. Figure 9

compares the download times observed with iPlane pre-

dictions against those of peerings induced by Vivaldi co-

ordinates [11] and an unmodified tracker. Informed peer

selection causes roughly 50% of peers to have signifi-

cantly lower download times.

Although preliminary, these performance numbers are

encouraging. We believe that better use of information

from the iPlane can lead to even further improvements

in performance. Our selection of 50% as the fraction of

random peers was arbitrary, and we are currently investi-

gating the tradeoff between robustness and performance,

as well as the degree to which these results extend to

swarms with a more typical distribution of bandwidths.

4.3 Voice Over IP

Voice over IP (VoIP) is a rapidly growing application

that requires paths with low latency, loss and jitter for

good performance. Several VoIP implementations such

as Skype [45] require relay nodes to connect end-hosts

behind NATs/firewalls. Choosing the right relay node

is crucial to providing acceptable user-perceived perfor-

mance [39]. Reducing end-to-end latency is important

(a)

(b)

Figure 10: Comparison of (a) loss rate and (b) jitter with and

without use of iPlane for end-to-end VoIP paths.

since humans are sensitive to delays above a thresh-

old. Low loss rates improve sound quality and reduce

throughput consumed by compensating codecs. Mea-

sures of user-perceived sound quality such as mean opin-

ion score [51] have been shown to be highly correlated

with loss rate and end-to-end delay. Thus, VoIP applica-

tions can benefit from iPlane’s predictions of latency and

loss rate in choosing the best possible relay node.

To evaluate iPlane’s ability to successfully pick good

relay nodes, we emulated VoIP traffic patterns on Pla-

netLab. We considered 384 pairs of PlanetLab nodes,

chosen at random, as being representative of end-hosts

participating in a VoIP call. Between each pair, we emu-

lated a call by sending a 10KBps UDP packet stream via

another PlanetLab node chosen as the relay node. We

tried 4 different relay options for each pair chosen based

on (i) the iPlane’s estimates of latency and loss rate, (ii)

latency to the source, (iii) latency to the destination, and

(iv) random choice. The iPlane-informed choice was

obtained by first querying for the 10 relay options that

minimize end-to-end loss and then, choosing the one that

minimized end-to-end delay among these options.

Each emulated call lasted for 60 seconds, and the end-

to-end loss rate and latency were measured. Figure 10(a)

shows that significantly lower loss rates were observed

along relay paths chosen based on iPlane’s predictions.

Additionally, Figure 10(b) shows that iPlane also helps

to reduce jitter, which we computed as the standard de-

viation of end-to-end latency. These results demonstrate

the potential for the use of iPlane in VoIP applications.

5 Related Work

iPlane bridges and builds upon ideas from network mea-

surement, performance modeling, Internet tomography,

and recent efforts towards building a knowledge plane

for the Internet. We believe that an Internet-scale instan-

tiation of iPlane is greater than the sum of its parts, and

relate individual contributions to prior work.

Information Plane Clark et al. [8] pioneered the

broad vision of a knowledge plane to build large-scale,

self-managing and self-diagnosing networks based on

tools from AI and cognitive science. Several research

efforts have since addressed pieces of this problem.

Several efforts have looked at monitoring end-host

performance and in optimizing the query processing

engine of the information plane. Examples include

Sophia [53], PIER [23], and IrisNet [18]. The above

systems have a different focus than ours. They manage

information about nodes (e.g., PlanetLab nodes, routers

in an ISP, or sensors) under control of the information

plane. We target predictions of path performance at

Internet-scale.

Link Metrics IDMaps [15] is an early example of a

network information service that estimates the latency

between an arbitrary pair of nodes using a small set

of vantage points as landmarks. Subsequently, Ng and

Zhang [34] discovered that Internet distances can be em-

bedded on to a low-dimensional Euclidean space. Such

embeddings can be used to predict latencies between

a large number of nodes by measuring latencies from

a small number of vantage points to these nodes—a

methodology refined by several others [54, 10, 11, 44]. A

key limitation of these techniques is that they treat the In-

ternet as a black box and are only predictive, i.e., they do

not explain why, if at all, their predictions are correct. As

a result, they have serious systematic deficiencies, e.g., a

significant fraction of Internet paths are known to have

detours [41], however, metric embeddings obey the tri-

angle inequality and will predict no detours.

Our previous work on a structural technique [31] to

predict Internet paths and latencies, and experiences

reported by independent research groups with respect

to latency prediction [17], available bandwidth estima-

tion [22], and the practical utility of embedding tech-

niques [30] echo the need for structural approaches to

predict sophisticated path metrics.

Inference Techniques Chen et al. [7] proposed an al-

gebraic approach to infer loss rates on paths between all

pairs of nodes based on measured loss rates on a subset of

the paths. Duffield et al. [14] proposed a multicast-based

approach to infer link loss rates by observing loss corre-

lations between receivers. Rocketfuel [47] estimates ISP

topologies by performing traceroutes from a set of van-

tage points, while the Doubletree [12] system efficiently

prunes redundant traceroutes. Our frontier (Section 2.3)

algorithm to efficiently target specific links for measure-

ment is similar in spirit.

Passive Measurements Padmanabhan et al. [36] and

Seshan et al.[42] propose passive measurements at Web

servers and end-hosts respectively to predict path met-

rics. PlanetSeer by Zhang et al. [55] is a failure mon-

itoring system that uses passive measurements at CDN

caches under their control to diagnose path failures post-

mortem. Jaiswal et al. [26] propose a “measurements-in-

the-middle” technique to infer end-to-end path properties

using passive measurements conducted at a router. In

contrast to these systems that perform passive measure-

ments of existing connections, we participate in BitTor-

rent swarms and opportunistically create connections to

existing peers for the explicit purpose of observing net-

work behavior. Previously, opportunistic measurements

have relied on spurious traffic in the Internet [6]. iPlane

could also validate and incorporate measurement data

from passive measurement sources, such as widely de-

ployed CDNs, and such integration is part of future work.

6 Conclusion

The performance and robustness of overlay services crit-

ically depends on the choice of end-to-end paths used

as overlay links. Today, overlay services face a tension

between minimizing redundant probe overhead and se-

lecting good overlay links. More importantly, they lack

an accurate methods to infer path properties between an

arbitrary pair of end-hosts. In this paper, we showed

that it is possible to accurately infer sophisticated path

properties between an arbitrary pair of nodes using a

small number of vantage points and existing infrastruc-

ture. The key insight is to systematically exploit the In-

ternet’s structural properties. Based on this observation,

we built the iPlane service and showed that it is feasible

to infer a richly annotated link-level map of the Inter-

net’s routing topology once every few hours. Our case

studies suggest that iPlane can serve as a common in-

formation plane for a wide range of distributed services

such as content distribution, file swarming, and VoIP.

Acknowledgments

We would like to thank Jay Lepreau, Ratul Mahajan, Ky-

oungSoo Park, Rob Ricci, Neil Spring and the anony-

mous OSDI reviewers for their valuable feedback on

earlier versions of this paper. We also thank Peter Dr-

uschel for serving as our shepherd. This research was

partially supported by the National Science Foundation

under Grants CNS-0435065 and CNS-0519696.

References

[1] Akamai, Inc. home page. http://www.akamai.com.
[2] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and

R. Morris. Resilient Overlay Networks. In SOSP, 2001.
[3] S. Bellovin. A best-case network performance model.

Technical report, ATT Research, 1992.

[4] A. Broido and kc claffy. Analysis of RouteViews BGP
data: policy atoms. In Network Resource Data Manage-
ment Workshop, 2001.

[5] N. Cardwell, S. Savage, and T. Anderson. Modeling TCP
latency. In INFOCOM, 2000.

[6] M. Casado, T. Garfinkel, W. Cui, V. Paxson, and S. Sav-
age. Opportunistic measurement: Extracting insight from
spurious traffic. In HotNets, 2005.

[7] Y. Chen, D. Bindel, H. Song, and R. H. Katz. An alge-
braic approach to practical and scalable overlay network
monitoring. In SIGCOMM, 2004.

[8] D. D. Clark, C. Partridge, J. C. Ramming, and J. T. Wro-
clawski. A knowledge plane for the Internet. In SIG-
COMM, 2003.

[9] B. Cohen. Incentives build robustness in BitTorrent. In
P2PEcon, 2003.

[10] M. Costa, M. Castro, A. Rowstron, and P. Key. PIC:
Practical Internet coordinates for distance estimation. In
ICDCS, 2004.

[11] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: A
decentralized network coordinate system. In SIGCOMM,
2004.

[12] B. Donnet, P. Raoult, T. Friedman, and M. Crovella. Ef-
ficient algorithms for large-scale topology discovery. In
SIGMETRICS, 2005.

[13] C. Dovrolis, P. Ramanathan, and D. Moore. Packet dis-
persion techniques and a capacity estimation methodol-
ogy. IEEE/ACM Transactions on Networking, 2004.

[14] N. G. Duffield, F. L. Presti, V. Paxson, and D. F. Towsley.
Inferring link loss using striped unicast probes. In INFO-
COM, 2001.

[15] P. Francis, S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, and
L. Zhang. IDMaps: A global Internet host distance esti-
mation service. IEEE/ACM Transactions on Networking,
2001.

[16] M. J. Freedman, E. Freudenthal, and D. Mazières. De-
mocratizing content publication with Coral. In NSDI,
2004.

[17] M. J. Freedman, K. Lakshminarayanan, and D. Mazieres.
OASIS: Anycast for any service. In NSDI, 2006.

[18] P. Gibbons, B. Karp, Y. Ke, S. Nath, and S. Seshan. Iris-
Net: An architecture for a world-wide sensor web. IEEE
Pervasive Computing, 2(4), 2003.

[19] R. Govindan and H. Tangmunarunkit. Heuristics for In-
ternet map discovery. In INFOCOM, 2000.

[20] Q. He, C. Dovrolis, and M. Ammar. On the predictability
of large transfer TCP throughput. In SIGCOMM, 2005.

[21] N. Hu and P. Steenkiste. Evaluation and characterization
of available bandwidth probing techniques. IEEE JSAC,
21(6), 2003.

[22] N. Hu and P. Steenkiste. Exploiting Internet route sharing
for large scale available bandwidth estimation. In IMC,
2005.

[23] R. Huebsch, J. M. Hellerstein, N. L. Boon, T. Loo,
S. Shenker, and I. Stoica. Querying the Internet with
PIER. In VLDB, 2003.

[24] V. Jacobson. Pathchar. ftp://ftp.ee.lbl.gov/pathchar.
[25] M. Jain and C. Dovrolis. End-to-end available bandwidth:

measurement methodology, dynamics, and relation with
TCP throughput. In SIGCOMM, 2002.

[26] S. Jaiswal, G. Iannaccone, C. Diot, J. Kurose, and
D. Towsley. Formal analysis of passive measurement in-
ference techniques. In INFOCOM, 2006.

[27] S. Katti, D. Katabi, C. Blake, E. Kohler, and J. Strauss.
MultiQ: Automated detection of multiple bottleneck ca-
pacities along a path. In IMC, 2004.

[28] E. Katz-Bassett, J. P. John, A. Krishnamurthy, D. Wether-
all, T. Anderson, and Y. Chawathe. Towards IP geolo-
cation using delay and topology measurements. In IMC,
2006.

[29] S. Lee, P. Sharma, S. Banerjee, S. Basu, and R. Fonseca.
Measuring bandwidth between planetlab nodes. In PAM,
2005.

[30] E. K. Lua, T. Griffin, M. Pias, H. Zheng, and J. Crowcroft.
On the accuracy of embeddings for Internet coordinate
systems. In IMC, 2005.

[31] H. V. Madhyastha, T. E. Anderson, A. Krishnamurthy,
N. Spring, and A. Venkataramani. A structural approach
to latency prediction. In IMC, 2006.

[32] R. Mahajan, N. Spring, D. Wetherall, and T. Anderson.
User-level Internet path diagnosis. In SOSP, 2003.

[33] D. Meyer. RouteViews. http://www.routeviews.org.
[34] T. S. E. Ng and H. Zhang. Predicting Internet network dis-

tance with coordinates-based approaches. In INFOCOM,
2002.

[35] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Mod-
eling TCP throughput: A simple model and its empirical
validation. CCR, 28(4), 1998.

[36] V. N. Padmanabhan, L. Qiu, and H. J. Wang. Passive
network tomography using bayesian inference. In IMW,
2002.

[37] A. Parker. CacheLogic. http://www.cachelogic.com/
research/slide1.php.

[38] L. Peterson. Personal communication.
[39] S. Ren, L. Guo, and X. Zhang. ASAP: an AS-aware peer-

relay protocol for high quality VoIP. In ICDCS, 2006.
[40] Sarangworld project. http://www.sarangworld.com/

TRACEROUTE/.
[41] S. Savage, T. Anderson, A. Aggarwal, D. Becker,

N. Cardwell, A. Collins, E. Hoffman, J. Snell, A. Vahdat,
G. Voelker, and J. Zahorjan. Detour: a case for informed
Internet routing and transport. IEEE Micro, 19(1), 1999.

[42] S. Seshan, M. Stemm, and R. Katz. SPAND: Shared pas-
sive network performance discovery. In USITS, 1997.

[43] Y. Shavitt and E. Shir. DIMES: Let the Internet measure
itself. CCR, 35(5), 2005.

[44] Y. Shavitt and T. Tankel. On the curvature of the Internet
and its usage for overlay construction and distance esti-
mation. In INFOCOM, 2004.

[45] Skype home page. http://www.skype.com.
[46] N. Spring, R. Mahajan, and T. Anderson. Quantifying the

causes of path inflation. In SIGCOMM, 2003.
[47] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson.

Measuring ISP topologies with Rocketfuel. IEEE/ACM
Transactions on Networking, 2004.

[48] N. Spring, D. Wetherall, and T. Anderson. Reverse-
engineering the Internet. In HotNets, 2003.

[49] N. Spring, D. Wetherall, and T. Anderson. Scriptroute: A
public Internet measurement facility. In USITS, 2003.

[50] J. Strauss, D. Katabi, and F. Kaashoek. A measurement
study of available bandwidth estimation tools. In IMC,
2003.

[51] S. Tao, K. Xu, A. Estepa, T. Fei, L. Gao, R. Guerin,
J. Kurose, D. Towsley, and Z.-L. Zhang. Improving VoIP
quality through path switching. In INFOCOM, 2005.

[52] L. Wang, K. Park, R. Pang, V. S. Pai, and L. L. Peterson.
Reliability and security in the CoDeeN content distribu-
tion network. In USENIX, 2004.

[53] M. Wawrzoniak, L. Peterson, and T. Roscoe. Sophia: An
information plane for networked systems. In HotNets-II,
2003.

[54] B. Wong, A. Slivkins, and E. G. Sirer. Meridian: A
lightweight network location service without virtual co-
ordinates. In SIGCOMM, 2005.

[55] M. Zhang, C. Zhang, V. Pai, L. Peterson, and R. Wang.
PlanetSeer: Internet path failure monitoring and charac-
terization in wide-area services. In OSDI, 2004.

[56] H. Zheng, E. K. Lua, M. Pias, and T. Griffin. Internet
routing policies and round-trip-times. In PAM, 2005.

