
iPlasma:
An Integrated Platform for Quality Assessment

of Object-Oriented Design

C. Marinescu, R. Marinescu, P.F. Mihancea, D. Raţiu, and R. Wettel

LOOSE Research Group
”Politehnica” University of Timişoara

Romania
{lrg}@cs.utt.ro

Abstract

To make software maintenance easier, a superior quality of
its design and implementation process must be ensured. For
this reason, existing software must be supported by automated
systems for analysis, diagnose and design improvement, at a
high level as well as at a level close to source code. iPlasma
is an integrated environment for quality analysis of object-
oriented software systems that includes support for all the nec-
essary phases of analysis: from model extraction (including
scalable parsing for C++ and Java) up to high-level metrics-
based analysis, or detection of code duplication. iPlasma has
three major advantages: extensibility of supported analysis,
integration with further analysis tools and scalability, as it
was used in the past to analyze large-scale projects in the size
of millions of code lines (e.g. Eclipse and Mozilla).

1 Introduction

In order to increase the maintainability and the flexibility
of a software system, the quality of its design and implemen-
tation must be properly assessed. For this purpose a lot of
analyses are described in the state of the art literature. In
order to apply them on large software systems we need a set
of tools dedicated to this purpose.

During this tool demonstration we intend to present the
iPlasma quality assessment platform. Based on a “hands-
on” example, we are going to present how this suite of tools
can be used to perform advanced analyses that assess the
design quality of object-oriented software systems.

2 Overview

Figure 1 presents the layered structure of iPlasma1 quality
assessment platform. Notice that the tool platform, starts

Figure 1. The iPlasma analysis platform

directly from the source-code (C++ or Java) and provides
the complete support needed for all the phases involved in the
analysis process, from parsing the code and building a model
up to an easy definition of the desired analyses including even
the detection of code duplication, all integrated by a uniform
front-end, namely insider.

Through the next paragraphs we are going to briefly intro-
duce the main components of the iPlasma quality assessment
platform.

1iPlasma stays for integrated Platform for software modelling and
analysis.



3 Models and Model Extractors

The first step in analyzing the design of a software system
is obtaining a model of it. Therefore, at the bottom level, we
have tools for model extraction. Currently, we support two
mainstream object-oriented languages i.e., C++ and Java.

3.1 Model Extractors

An essential (and very painful) task in a process of software
analysis is the construction of the proper model of the system.
The purpose for constructing the model is to extract from the
source code the information which is relevant from the point
of view of a particular goal. Thus, for analyses focused on
object-oriented design it is important to know the types of the
analyzed system, the functions and variables and information
about their usages, the inheritance relations between classes,
the call-graph etc.

For Java systems we use the open-source parsing li-
brary called Recoder[2] to extract all these information in
form of an object-oriented meta-model i.e., memoria (see
Section3.2).

McC (Model Capture for C++) [6] is a tool which extracts
the aforementioned design information from C++ source code
(even incomplete code!), based on Telelogic’s FAST parsing
library. It receives as input a directory containing the source
code and it produces a set of related (fully normalized) ASCII
tables containing the extracted design information (including
even information about templates). This information could
be easily loaded in a RDBMS and interrogated in form of
SQL queries. But, in iPlasma we load this information in
the memoria object-oriented model, which is described next.

3.2 MEMORIA: A Unified Meta-Model

memoria [3] is a meta-model that can represent Java and
C++ systems in a uniform manner, by capturing design in-
formation (e.g., classes, method interactions). One of the key
roles of Memoria is to provide a consistent model even in the
presence of incomplete code or missing libraries, to allow the
analysis of large systems and to ease the navigation within a
system.

By analyzing only a single version of a system we miss im-
portant information related to the evolution of the system.
Therefore we extended memoria so that it can keep also in-
formation about multiple versions of a system. The result is
the HisMo[8] meta-model which allows us to define on top
of it various analyses related to the dynamics of the system
during its evolution (e.g., logical couplings between modules
can be detected).

4 Analyses

Based on the extracted information we can then define sev-
eral types of design analyses (e.g., metrics, metrics-based rules
for detecting design problems [5], quality models etc.). Next,
we are going to discuss how these analyses are supported in
iPlasma.

4.1 Metrics

Our platform contains a library of more than 80 state-
of-the-art and novel design metrics that can be applied at
different levels of abstraction ranging from system-level met-
rics used to obtain an overview of the system to primitive
metrics which describe the details within a single method.
The metrics can be divided into the following categories: size
metrics – measure the size of the analyzed entity (e.g., Lines
of Code), complexity metrics – measure the complexity of
the analyzed entity (e.g., Cyclomatic Complexity), coupling
metrics – measure the data coupling between entities (e.g.,
Coupling Between Objects) and cohesion metrics – measure
the cohesion of classes (e.g., Tight Class Cohesion).

4.2 SAIL: An Easy Way to Implement Struc-
tural Analyses

Design-related analyses can be implemented using almost
any programming languages (e.g., Java). Unfortunately, al-
most all these implementations will be hard to reuse and un-
derstand and thus they hinder the correlation between the
results of the implemented analyses. This happens because
a single normal programming language does not provide all
the proper mechanisms to ensure the easy implementations of
many different analyses. Therefore we defined SAIL (Static
Analysis Interrogative Language) [4] as a dedicated language
for structural analyses, built on top of the MEMORIA meta-
model. The language provides a set of powerful mechanisms
which facilitate a concise and natural expression of the im-
plemented analyses. For example, if we want to obtain the
package named my.package, we would write the following
code sequence:

Package myPack;
myPack = select (*) from sysPackages

wherename = "my.package";

On the one hand, the efficient querying mechanism introduced
in SAIL (i.e., the select statement) contributes decisively to
reducing the complexity overhead found in structure based
approaches when complex navigation must be combined with
filtering. On the other hand, because query results can be
stored in SAIL variables, it becomes possible to break down
the excessively complex monolithic queries often encountered



in the repository based approach. In this manner, the under-
standability and the changeability of the analyses implemen-
tation have been increased. SAIL also provides modularity
mechanisms that allow us to reuse analyses and to compound
them into more complex types of code inspections.

4.3 Detection Strategies

A detection strategy [5] is a quantifiable expression of a rule
by which design fragments that are conforming to that rule
can be detected in the source code. Using this quantification
mean we can automatically detect design flaws in a software
system, design entities which present some deviations from
good object-oriented design criteria, thus hindering the easy
evolution of the system and affecting its design quality.

The major problem with any metrics-based approach, in-
cluding detection strategies, is that a couple of threshold val-
ues must be used in order to detect those design entities which
present some “abnormal” characteristics. The DSTM (De-
tection Strategy Tuning Machine) [7] implements a method
metaphorically named tuning machine which can be used to
establish the proper threshold values for a detection strategy.
An important advantage of this method is that a detection
strategy can be calibrated for a particular development en-
vironment. The drawback is that the method needs human
feedback for a period of time in order to produce good results.

4.4 Dude: Detection of Code Duplication

An important design heuristic states that the source code
of a software system must “say everything once and only
once”. Copying code, sometimes followed by slight adap-
tations is a wrong way of code reuse. The maintainability
of such a system becomes a nightmare, since every further
change has to be propagated in all the places where the code
has been copied. Moreover, along with the code, bugs are
copied as well.

Dude (Duplication Detector) [9] is a tool that uses tex-
tual comparison at the level of line of code in order to detect
fragments of duplicated code. Its powerful detection engine
can also cover various ”adaptations” of the duplicated code
(such as variables renaming or statement insertion/removal).
These modifications can scatter a monolithic copied block
into many smaller, thus hardly noticeable, duplicated frag-
ments. The duplication chain concept enables DuDe to re-
cover larger blocks that were subject to such modifications,
usually overlooked by traditional line-based approach clone
detectors. Moreover, it provides flexibility by means of dif-
ferent thresholds, which are responsible for filtering out non-
significant duplication chains.

5 Insider: the Integrating Front-End

As we have seen, assessing the design quality of an object-
oriented system requires the collaboration of many tools. Us-
ing them independently can easily transform the analysis
process into a nightmare, making it completely unscalable
for usage on large-scale systems.

One of the key aspects of iPlasma is that all these analyses
are integrated and can be used in a uniform manner through a
flexible front-end, called insider [1]. In other words Insider is

Figure 2. A snapshot of insider

a front-end (see Figure 2) which offers the possibility to inte-
grate independent analyses (in form of plugins) in a common
framework. This approach makes insider open implemented
and thus easily extendable with any further needed analyses.

6 Conclusion

Although iPlasma was developed as a research tool, it
is not a ”toy”. It was successfully applied for analyzing the
design of an important number of ”real-world” systems in-
cluding very large-scale systems (>1 MLOC), like mozilla
(C++, 2.56 million LOC) and eclipse, (Java, 1.36 million
LOC).

iPlasma is available for free download at:
http://loose.utt.ro/iplasma/iplasma.zip. We would
appreciate very much if you could let us know about using
iPlasma. In return we would do our best to provide you
with support and updates.

References

[1] C. Caloghera; Evolutionary Integrated Analysis Environ-
ment for Software Systems, Diploma thesis, “Politehnica”
University of Timişoara, 2004.



[2] COMPOST Team; Recoder Project,
http://recoder.sourceforge.net/, University of Karl-
sruhe.

[3] D. Raţiu; Memoria: A Unified Meta-Model for Java
and C++, Master thesis, “Politehnica” University of
Timişoara, 2004.

[4] C. Marinescu, R. Marinescu, T. Gı̂rba; Towards a Simpli-
fied Implementation of Object-Oriented Design Metrics, In
Proceedings of Metrics 2005, Como, 2005 (to appear).

[5] R. Marinescu; Detection Strategies: Metrics-Based Rules
for Detecting Design Flaws, In Proceedings of The 20th
IEEE International Conference on Software Maintenance
(ICSM), Chicago, 2004.

[6] P.F. Mihancea; The Extraction of Detailed Design Infor-
mation from C++ Software Systems, Master thesis, “Po-
litehnica” University of Timişoara, 2004.

[7] P.F. Mihancea, R. Marinescu; Towards the Optimiza-
tion of Automatic Detection of Design Flaws in Object-
Oriented Software Systems, In Proceedings of CSMR,
Manchester, 2005.

[8] S. Ducasse, T. Gı̂rba, J.M. Favre; Modeling Software Evo-
lution by Treating History as a First Class Entity, Work-
shop on Software Evolution Through Transformation (SE-
Tra 2004), 2004.

[9] R. Wettel; Automated Detection of Code Duplication
Clusters, Diploma thesis, “Politehnica” University of
Timişoara, 2004.


