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Abstract

Background: Untargeted metabolomics generates a huge amount of data. Software packages for automated data

processing are crucial to successfully process these data. A variety of such software packages exist, but the outcome

of data processing strongly depends on algorithm parameter settings. If they are not carefully chosen, suboptimal

parameter settings can easily lead to biased results. Therefore, parameter settings also require optimization. Several

parameter optimization approaches have already been proposed, but a software package for parameter

optimization which is free of intricate experimental labeling steps, fast and widely applicable is still missing.

Results: We implemented the software package IPO (‘Isotopologue Parameter Optimization’) which is fast and free

of labeling steps, and applicable to data from different kinds of samples and data from different methods of liquid

chromatography - high resolution mass spectrometry and data from different instruments.

IPO optimizes XCMS peak picking parameters by using natural, stable 13C isotopic peaks to calculate a peak picking

score. Retention time correction is optimized by minimizing relative retention time differences within peak groups.

Grouping parameters are optimized by maximizing the number of peak groups that show one peak from each

injection of a pooled sample. The different parameter settings are achieved by design of experiments, and the

resulting scores are evaluated using response surface models. IPO was tested on three different data sets, each

consisting of a training set and test set. IPO resulted in an increase of reliable groups (146% - 361%), a decrease of

non-reliable groups (3% - 8%) and a decrease of the retention time deviation to one third.

Conclusions: IPO was successfully applied to data derived from liquid chromatography coupled to high resolution mass

spectrometry from three studies with different sample types and different chromatographic methods and devices. We

were also able to show the potential of IPO to increase the reliability of metabolomics data.

The source code is implemented in R, tested on Linux and Windows and it is freely available for download at https://

github.com/glibiseller/IPO. The training sets and test sets can be downloaded from https://health.joanneum.at/IPO.
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Background
Untargeted metabolomics screens biological samples with

the aim to reveal new compounds and to understand bio-

logical mechanisms. Untargeted metabolomics by using li-

quid chromatography (LC) generates a huge amount of

data when coupled to mass spectrometry (MS). Software

packages for automated data processing are needed to suc-

cessfully process large data sets. Recently, a tool MetExtract

has been presented which uses carbon labeling with stable

isotopes to find reliable peaks [1,2]. This tool increases the

selectivity of compounds with biological origin, performs

feature reduction and assesses molecular structures of mea-

sured substances. Disadvantages of MetExtract are the time

and the cost intensive labeling step and its feasibility which

is limited to samples that can be labeled.

A number of software packages for processing LC-MS

data have already been developed for data sets of sam-

ples that do not rely on labeling [3-12]. They provide

methods for peak detection, peak picking, retention time

correction and grouping and offer a variety of adjustable

parameters to provide reasonable results. But even

though these parameters are intended to optimize the
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results, wrong parameter selection can lead to distorted

outcomes. Parameter optimization is necessary to coun-

ter wrong selection. Up to now, several parameter

optimization approaches have been proposed to increase

the reliability of the results [13-15].

One parameter optimization approach uses design of ex-

periments (DoE) [13]. A designed experiment is a series of

tests in which specific modifications are made to the input

variables of a process. DoE aims to optimize the response

to modifications or to either explain changes of the re-

sponse variable. . For metabolomics data a dilution series of

a pooled sample is measured and a reliability index for each

experiment of the DoE is calculated. This reliability index is

based on the assumption that peaks which correlate with

the dilution series are reliable ones, and those which do

not correlate are unreliable peaks. The DoE optimization

approach provides quality evaluation of the resulting

optimization, but is very time intensive. To accelerate the

DoE optimization approach, Zheng, H et al. [14] refined

the workflow by first applying a screening step prior to

the optimization. Screening steps are usually performed in

the first stage of an optimization process with the purpose

of identifying the parameters that have large effects on the

target variable. For the screening step Zhen et al. used a

Plackett-Burman design. Such a fractional factorial design

defines only two levels for each parameter and thus re-

quires relatively few experiments. Two levels stand for

two different tested values for each parameter. Second,

only parameters with a significant positive influence on

the target value are optimized and thus the overall

optimization time is considerably decreases. However, po-

tential important parameters may be lost because they

may fall into a range where they do not significantly influ-

ence the target value and hence they may not be further

optimized. A software package for parameter optimization

which is even faster, widely applicable and free of intricate

labeling steps is still missing.

To close this gap we implemented the R-package IPO

(‘Isotopologue Parameter Optimization’) that exploits nat-

ural, stable 13C isotope peaks which are ubiquitously

present in biological samples. The use of these 13C isotope

peaks makes all labeling steps expendable and leads to the

calculation of a target value to assess the optimization qual-

ity. IPO increases the reliability of peak picking, retention

time correction and grouping results and starts the

optimization process for the parameters to be optimized at

the respective default settings of the XCMS methods and is

thus also well suited for inexperienced XCMS users.

Implementation
We developed the R-package IPO to optimize parame-

ters of the open-source package XCMS [3,4]. The

process for the parameter optimization by IPO is de-

scribed in the following subsections (Figure 1).

XCMS parameters

Metabolomics data processing requires peak picking

followed by retention time correction and grouping.

Multiple methods for each of these steps are provided

by XCMS. IPO supports two peak picking, one retention

time correction and one grouping method, and can be

extended to cover other methods in the future. Various

parameters of these methods are optimized by default

(Table 1); all other quantitative parameters are optimized

only if defined by the user.

The first ‘xcmsSet’-method ‘centWave’ [16] deals with

peak picking. This is the method of choice for processing

centroided data acquired with liquid chromatography (LC)

coupled to high resolution mass spectrometry (HRMS).

First, ‘centWave’ identifies regions of interest (ROIs). ROIs

are created by combining consecutive centroids within a

tolerated m/z deviation, defined by the parameter ‘ppm’.

Chromatographic peaks are identified within the ROIs

using wavelets. The peak width parameters (‘min peak-

width‘ and ‘max peakwidth‘) describe the range of the ex-

pected peak widths and determine the scales of the

wavelets. The minimum difference of m/z for peaks with

overlapping retention times is given by ‘mzdiff ’.

The second ‘xcmsSet’-method ‘matchedFilter’ [3] also

deals with peak picking, but it has particularly been de-

veloped for low resolution data. In our study, we only

optimized high resolution data and therefore we present

no example for a parameter optimization with ‘match-

edFilter’. Nevertheless, IPO also supports this method.

The LC-MS data is cut into m/z slices. The widths of

these slices are defined by the parameter ‘step’ and mul-

tiple slices can be combined to avoid issues at the

boundaries. The parameter ‘steps’ defines the number of

adjacent slices to be combined. Matched filtration is

used to filter these slices with a second-derivative

Gaussian model peak shape. This Gaussian model peak

shape is defined by the parameter ‘fwhm’. A signal to

noise ratio to filter noisy peaks is determined by the

‘snthresh’ parameter.

The ‘obiwarp’ method (Table 1) is responsible for the

retention time correction [17]. The ‘center’ parameter

indicates the sample which serves as reference sample

for retention time correction. If not otherwise specified

by the user, XCMS uses the sample with the highest

number of peaks as ‘center’ sample whereas IPO chooses

the one with the highest average intensity. First, profiles

are generated from the raw data. The parameter ‘prof-

Step’ defines the widths of these profiles in the m/z di-

mension. Then, the profiles are compared to each other

and a similarity matrix is calculated. Similarity scores are

added to recursively generate an optimal path. Off-

diagonal transitions are penalized. The parameters ‘gapI-

nit’ and ‘gapExtend’ define penalties for gap openings

and gap enlargements, respectively.
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The XCMS method ‘density’ is a method for the

grouping step. Grouping is the process of combining

peaks from different samples with similar masses and

retention times to peak groups. The parameter ‘bw’ is

used to define a certain retention time range to find

peak groups. ‘mzwid’ describes the allowed variation in

the m/z dimension. The default value for ‘mzwid’ is 0.25

which is too high for high resolution data and this value

was therefore set to 0.025. A valid feature must have a

minimum fraction of samples within at least one sample

group. This fraction is defined by the parameter

‘minfrac’.

Optimization procedure

In general, peak picking is done for each individual data

file but for retention time correction and grouping mul-

tiple data files are necessary. The optimization proced-

ure splits the parameters by applying a semi sequential

approach. Peak picking parameters are optimized first

and the retention time correction and grouping parame-

ters are simultaneously optimized afterwards. Grouping

results in peak groups by combining peaks with similar

masses and retention times from different LC-MS runs.

Simultaneous optimization of retention time correction

and grouping is necessary because grouping is required

Figure 1 Workflow for the optimization of XCMS parameter. A pooled sample is measured sequentially within the studies. The LC-MS data of the pooled

sample are then used for optimization. The DoEs are created by using Box-Behnken designs. The individual experiments of the design are calculated in

parallel. Peaks are classified as reliable peaks (RP) when they are part of an isotopologue. These RPs serve as basis for the calculation of the Peak Picking

Score (PPS). Two additional scores are introduced for retention time correction and grouping. To improve the quality of retention time correction, the

relative retention time deviations within the peak groups are minimized which leads to the Retention time Correction Score (RCS). So called ‘reliable groups’

and ‘non-reliable groups’ are defined to assess grouping. The ratio of the squared number of ‘reliable groups’ to ‘non-reliable groups’, the Grouping Score

(GS), is maximized within the optimization process. The resulting scores are evaluated by using response-surface-models. The combination of parameters that

yields the best score is used as new center for the next DoE. The optimization process continues as long as the respective scores are increasing.

Table 1 XCMS methods and their respective parameters optimized by IPO

XCMS method Parameters

xcmsSet(method = ‘centWave’) min peakwidth, max peakwidth, ppm, mzdiff

xcmsSet(method = ‘matchedFilter’) fwhm, step, steps, snthresh, mzdiff

retcor(method = ‘obiwarp’) profStep, gapInit, gapExtend

group(method = ‘density’) bw, mzwid, minfrac
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for the assessment of the retention time correction step,

which in turn can improve the grouping. This semi-

sequential approach additionally decreases the overall

computing time. The different levels for the XCMS pa-

rameters are determined by a design of experiments ap-

proach [18]. Box-Behnken designs (BBD) serve as basis to

generate the DoEs. BBD is a three level incomplete factor-

ial design for fitting a second order response surface

model. Three levels denote that for each parameter three

different evenly spaced values are tested. The two outer

values define a range, the middle value a center point. In

contrast to a full factorial design, BBD does not test all

factorial combinations, making it highly efficient [19]. For

the default levels used by IPO in the first DoE see

Additional file 1. To evaluate the result of the DoE, one

score for peak picking and one score for retention time

correction and grouping is used.

Peak picking

IPO supports the peak picking methods ‘centWave’ and

‘matchedFilter’. By using isotopic peaks it is possible to as-

sess the reliability of peak picking by calculating a peak pick-

ing score (PPS):

PPS ¼
RP2

‘all peaks’ − LIP
ð1Þ

The PPS is defined as the ratio of reliable peaks (RPs) to

the number of all peaks (all peaks), diminished by the

number of ‘low intensity peaks’ (LIP). RP is weighted by

the exponential factor 2. Therefore, if the RP value and

the number of all peaks increase by the same amount,

the PPS increases. This creates an optimization force to-

wards an increased recall of reliable peaks. The expo-

nent value of 2 is an empirical one. The sensitivity for

RPs could be enhanced by further increasing this expo-

nent, but then noise would also rise. RPs are defined as

peaks that belong to an isotopologue. IPO identifies iso-

topologues consisting of 13C isotope peaks, which are

defined by three criteria. Only peaks that meet all these

three criteria are considered isotopic peaks. The toler-

able ranges of these criteria are calculated relative to the

respective 12C peak. The first criterion states that the

mass of the isotope peak has to be within a certain mass

range. Second, the isotopic peak must elute at the same

time as the parent peak. To restrict peaks on the time

axis, a relative retention time window is specified. As a

third criterion, the intensities of isotopic peak candi-

dates have to be within a certain intensity window.

Therefore, the maximum number of possible carbon

atoms (maxC) for a specific mass-to-charge ratio pre-

suming a hydrocarbon chain is estimated as follows:

maxC ¼ floor
m=z−2 � CH3

CH2

� �

þ 2 ð2Þ

m/z is the mass-to-charge ratio of a peak. CH2 is the

mass of a molecule consisting of one carbon atom and

two hydrogen atoms and CH3 depicts the exact mass of

a molecule consisting of one carbon and three hydrogen

atoms respectively. First m/z is reduced by 2*CH3 which

represent the ends of a hydrocarbon chain. Then, the

difference is divided by CH2 which is exemplary for the

hydrocarbon bonds within the chain. The function floor

is used on the result to cut of fractional digits. The pre-

viously subtracted 2*CH3 from the ends of the hydrocar-

bon chain is compensated by + 2 to calculate maxC.

Then, intensities of the isotope peaks with one carbon

atom and with maxC carbon atoms are estimated by

multiplying one and maxC with the natural abundance

of 13C isotopes and the 12C peak’s intensity. Conse-

quently an intensity window is defined. ‘all peaks’ in-

cludes reliable as well as unreliable peaks. We consider

the fact that reliable peaks may exist whose isotope peak

concentrations are too low to measure, and would falsely

be classified as unreliable ones. To counter this, all peak

intensities are arranged in descending order and the

average of the lower three percent of the peak intensities

is calculated as cut-off value. This cut-off value is used

to estimate the sensitivity of the LC-MS system.

For each peak, except for the RPs, the maximum

amount of possible carbon atoms is estimated and this

amount is then multiplied with the natural 13C isotopic

abundance, IA. If the intensity of the peak lies below the

cut-off value when multiplied with IA, the peak is nei-

ther reliable nor unreliable and is defined as LIP.

Retention time correction and grouping

Run-to-run retention time changes have to be corrected.

To assess the quality of the retention time correction for

one peak group, a group retention time shift (GRTS) is

calculated as follows:

GRTS xð Þ ¼

Xk

n¼1
median xð Þ−xnð Þj j

k
ð3Þ

x are the retention times of all peaks within one group, k

is the number of these retention times and n is an index

pointing at the retention time of one individual peak in

the peak group. median(x) calculates the median value

of the retention times for all peaks in one group. For

every x the difference to the median retention time is

calculated. The average of all these differences is defined

as GRTS. The average of all GRTS values yields the aver-

age retention time shifts (ARTS):
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ARTS ¼
1

k
� sum GRTSð Þ ð4Þ

The number of all GRTSs is defined by k and the func-

tion sum calculates the sum of these GRTSs. Decreasing

the ARTS improves the result. To create a usable

optimization value for maximization, the inverse of

ARTS is used to define a retention time correction score

(RCS):

RCS ¼
1

ARTS
ð5Þ

The grouping score (GS) is based on the classification

of peak groups into ‘reliable’ and ‘non-reliable’ ones. ‘Re-

liable groups’ are assumed to show exactly one peak

from each injection of a pooled sample. All groups that

do not obey this assumption are classified as ‘non-reli-

able groups’. The absence of a peak within a group can

occur due to retention time shifts or due to too low con-

centrations. GS is calculated as follows:

GS ¼
‘reliable groups’2

‘non−reliable groups’
ð6Þ

The squared number of ‘reliable groups’ divided by

the number of ‘non-reliable groups’ is defined as GS.

Calculation of the retention time correction and group-

ing target value (RGTV) is done by the following

formula:

RGTV ¼ norm RCSð Þ þ norm GSð Þ ð7Þ

To balance the impact of RCS and GS on RGTV, the

function ‘norm’ is used on RCS as well as on GS. Here,

norm is a unity-based normalization used on all RCS

values of the experiments of one DoE to scale these

values between 0 and 1. The same is done for GS. The

normalized values of the same experiments are added

giving one RGTV for each experiment of a DoE.

DoE evaluation and adjustment

After the respective scores for each experiment of the

DoE have been calculated, response surface models are

estimated and applied to evaluate the quality of peak pick-

ing, retention time correction and grouping. In a ‘max-

imum focusing step’ the combination of parameters which

leads to the best respective score is found and used as the

new center point for the next DoE. Additionally, in this

step, parameter ranges are adjusted according to the fol-

lowing procedure: If the maximum of a parameter shows

the same value on the upper and on the lower bound of

the parameter range, the range is increased by 20% (zoom-

ing out). If the maximum of a parameter has already been

located in the middle of the parameter range, with a devi-

ation of less than 25% from the center point, the tool

‘zooms in’ by narrowing the parameter range by 10% at

each bound. The adjusted DoE is recalculated. As long as

the respective scores are increasing, this process is

continued.

Results and discussion
IPO was applied to untargeted metabolomics data from

three different studies that were using different chroma-

tographic devices and methods [20-22]. The sample data

originated from human serum, animal tissue (mouse

muscle, lung, heart) and yeast samples. All data were

high resolution data deriving from LC-HRMS instru-

ments. The three studies used different chromatographic

methods that provide data differing in number, shape

and quality of the resulting peaks. See Additional file 2

for the characteristics of the data sets. The parameter

settings were optimized on training sets and these opti-

mized settings were used on the training and an inde-

pendent test set. The test set gives an unbiased view of

the improvement that can be expected from the ap-

proach. The results of the test sets with regard to the

parameter optimization steps are presented in Table 2.

All response surface models generated during the

optimization process of the three data sets are presented

in Additional file 3.

Metabolite fingerprinting in human serum (HILIC method)

The metabolite fingerprinting data set used hydrophilic

interaction chromatography (HILIC) [20] which typically

creates broad peaks. Twelve injections of a pooled sample

were used as training set for the parameter optimization and

eleven different injections were used as test set. All parame-

ters which were not chosen for optimization were kept at

their default values. The PPS of the training set increased by

29% from 1,214 to 1,565 and the PPS of the test set

increased by 40% from 1,053 to 1,475. Optimization of the

peak picking parameters finished after four DoEs and took

about four hours. The number of peaks increased from

55,845 to 57,075 in the training set and decreased from

65,851 to 53,205 in the test set. The number of reliable

peaks increased from 6,999 to 8,434 in the training set and

from 7,587 to 7,903 in the test set. The optimized peak

width parameter lay between 32.2 and 95 seconds. Selected

chromatograms, showing the different peak types at distinct

masses obtained from the different example data sets are

shown in Figure 2. The chromatograms in Figure 2a reveal

that the default settings for the peak width parameter can be

too small. This results in an only partial integration of the

peak, whereas the optimized peak width parameter inte-

grates the peak accurately. The optimization of the retention

time correction and grouping parameter finished after five

DoEs and 0.8 hours. RCS of the training set increased ten-

fold by using the optimized settings compared to the RCS of

the training set calculated with the default parameters. In

the test set the increase of RCS was fifteenfold. The number
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of ‘reliable groups’ increased from 536 to 990, the number

of ‘non-reliable groups’ decreased from 2,636 to 82 in the

training set. In the test set the number of ‘reliable groups’

increased from 314 to 759 and the number of ‘non-reliable

groups’ decreased from 2,740 to 70.

Lipidomics (RP-HPLC method)

For the lipidomics data set reversed phase high perform-

ance liquid chromatography (RP-HPLC) [21] was coupled

to a HRMS device. Eight pooled sample injections were

analysed. Four of them were used as training set for the

optimization process and the four remaining measurements

were used as test set. The peak picking parameter ‘noise’

was set to 20,000. All other parameters were kept at their

default values. Optimization of peak picking parameters

was finished after three DoEs, which took 1.5 hours. Com-

paring default to optimized settings the amount of peaks

decreased from 33,298 to about 31,710 in the training set

and from 34,415 to 32,397 in the test set. The number of

RPs increased from 12,606 to 14,367 in the training and

from 12,999 to 14,594 in the test set. PPS of the test set in-

creased by 61%, from 9,001 to 14,472. The increase of PPS

Table 2 Results of the example data sets

Metabolite fingerprinting Lipidomics Central carbon metabolism

pooled sample injections

training set: 12 4 6

test set: 11 4 6

DoEs peakpicking 4 3 2

DoEs retcor + grouping 5 5 4

time for peakpicking optimization 3.8 h 1.5 h 0.9 h

time for retcor + grouping optimization 0.8 h 0.7 h 0.6 h

overall time 4.6 h 2.2 h 1.5 h

default optimized default optimized default optimized

#peaks

training set: 55,845 57,075 33,298 31,710 24,247 24,230

test set: 65,851 53,205 34,415 32,397 27,539 25,609

#RPa

training set: 6,999 8,433 12,606 14,367 2,710 3,351

test set: 7,587 7,903 12,999 14,594 1,582 1,869

#LIPb

training set: 15,497 11,645 15,245 17,284 11,327 11,490

test set: 11,163 10,855 15,643 17,680 12,646 10,962

PPSc

training set: 1,214 1,565 8,802 14,308 568 881

test set: 1,053 1,475 9,001 14,472 168 238

RCSd

training set: 12.3 144.8 67.8 575.4 92.8 311.8

test set: 9.4 142.4 37.6 580.4 48.1 206.7

#reliable groups

training set: 536 990 3,669 5,343 1,504 2,424

test set: 314 759 1,564 5,639 793 1,855

#non-reliable groups

training set: 2,636 82 3,605 151 1,217 101

test set: 2,740 70 3,248 110 1,150 69

GSe

training set: 109 11,952 3,734 189,057 1,859 58,176

test set: 36 8,230 753 289,076 547 49,870

areliable peaks; blow intensity peaks; cpeak picking score; dretention time correction; score; egrouping score
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Figure 2 (See legend on next page.)
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achieved in the training set was 63% from 8,802 to 14,308.

The chromatograms in Figure 2b suggest that the default

setting for the ‘ppm’ parameter is too large for peaks gener-

ated by HRMS. The optimized parameter results in an m/z

range of only 1 ppm for the optimized peak, whereas the

default peak spans a range of 9.7 ppm. Parameters for re-

tention time correction and grouping needed 0.7 hours and

five DoEs to finish. RCS increased more than eightfold in

the training set and fifteenfold in the test set. The amount

of ‘non-reliable groups’ decreased from 3,605 to 151 in the

training set and from 3,248 to 110 in the test set. The num-

ber of ‘reliable groups’ increased from 3,669 to 5,343 in the

training set and from 1,564 to 5,639 in the test set.

Central carbon metabolism (IP-RP-HPLC method)

The central carbon metabolism data set utilized a modi-

fied ion pair-reversed phase-high performance liquid

chromatography IP-RP-HPLC [22] method which ex-

hibits an outstanding separation performance, thereby

producing very sharp peaks. All parameters that had not

been optimized were kept at their default values. Six

injections of a pooled sample were used as training set

for parameter optimization and six different injections

were used as test set. Optimization of peak picking fin-

ished after two DoEs and took 0.9 hours. Within the

optimization process, the PPS was increased from 568

achieved with the default parameter settings to 881 in

the training set and from 168 to 238 in the test set. The

chromatograms in Figure 2c show that default settings

for the ‘peakwidth’ parameter are too high for the very

sharp peaks generated by this method. The optimization

of the retention time correction and grouping parame-

ters for the central carbon metabolism data set finished

after four DoEs in 0.6 hours. RCS was more than tripled

from 92.8 to 311.8 in the training set and increased four-

fold from 48.1 to 206.7 in the test set. ‘Non-reliable

groups’ decreased from 1,217 to only 101 and ‘reliable

groups’ increased from 1,504 to 2,424 which led to a

highly increased GS in the training set. In the test set

the ‘non-reliable groups’ decreased from 1,150 to 69 and

the ‘reliable groups’ increased from 793 to 1,855.

The total optimization for the metabolite fingerprint-

ing data set took 3.8 hours, the optimization time for

the lipidomics data set took 1.5 hours and the

optimization of the central carbon metabolism data set

needed 0.9 hours. IPO is also intended to be used by in-

experienced users. Therefore, all parameters optimized

by IPO start at their respective default values and in a

fixed range. Experienced users can further reduce the

optimization time by starting with settings closer to their

expected parameter values. In general, the results

showed that IPO successfully optimized peak picking pa-

rameters for data from different LC-methods and differ-

ent kinds of samples. Peaks coming from the IP-RP-

HPLC should be the sharpest of all three studies which

is confirmed by the peak width statistics (Table 3). Also,

observed peak widths for the metabolite fingerprinting

and the lipidomics data sets were in good agreement

with the expected peak widths for the respective LC-

methods. Especially for broader peaks, the optimized pa-

rameters showed a much better peak picking perform-

ance than the default settings.

Conclusions
We introduced the software package IPO, ‘Isotopologue Par-

ameter Optimization’, performing parameter optimization

for the open source R-package XCMS. IPO exploits the

existence of natural, stable 13C isotopes that are ubiquitous

in all biological samples. IPO was applied to LC-HRMS data

from tissue, serum and yeast samples and the results

showed that it is applicable to data from different types of

samples as well as from different LC-MS devices and

(See figure on previous page.)

Figure 2 Selected chromatograms showing the different peak types at well-defined masses obtained from the different data sets. Chromatograms derive

from a) metabolite fingerprinting data set; b) lipidomics data set; c) central carbon metabolism data set. Peaks derived from default parameters are

presented in the left chromatograms and peaks coming from optimized parameters are shown in the chromatograms on the right side, respectively. The

peak area integrated by XCMS is colored red. The m/z range for the chromatogram was chosen from the respective minimum and maximum m/z values

of the particular peak. Comparison of chromatograms a) clearly demonstrate that default peak width parameters were too small for the broad peaks, b)

shows an example where the mass range used in the default settings was too wide and c) illustrate peaks where the default peak width parameters were

too wide.

Table 3 Peak width parameter settings and resulting peak width statistics of the training sets

Metabolite fingerprinting Lipidomics Central carbon metabolism

Default Optimized Default Optimized Default Optimized

‘peakwidth’ parameter [sec] 20-50 32.2-95 20-50 29.6-80 20-50 10-35

mean peak width [sec] 44.2 57.9 44.6 58.4 27.3 15.6

median peak width [sec] 40.6 52.2 41.8 54.5 24.4 12.6

modal peak width [sec] 38.9 51.3 41.4 56.8 10.3 5.8
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methods. The optimization time has been remarkable re-

duced by separating optimization for peak picking parame-

ters from optimization for retention time correction and

grouping parameters. IPO is also suitable for XCMS begin-

ners, because the default settings are the start values of the

optimization process.

We recommend a powerful workstation with multiple

processors and cores, which costs only a fraction of the

enormous costs of a modern LC-MS instrument and will

enable the user to exploit the full potential of the LC-MS.

IPO is continuously improved, optimization of add-

itional XCMS methods will be implemented, other DoE

evaluation techniques will be tested and additional identi-

fication of isotopic peaks with the R-package CAMERA

[23] will be made available to further increase the power

of IPO.

Availability and requirements
Project name: IPO

Project home page: https://github.com/glibiseller/IPO

Operating system(s): Platform independent

Programming language: R

Other requirements: xcms, rsm

License: GNU GPL

Any restrictions to use by non-academics: none

Additional files

Additional file 1: Default levels used in first DoE. The file shows the

default levels used by IPO in the first DoE for the different XCMS

methods (Table S1).

Additional file 2: Materials. This file contains a detailed description of

the three data sets and information on the computation platform used

for optimization.

Additional file 3: Response surface models. This file contains the

response surface models of all optimization steps of the three data sets.

Abbreviations

ARTS: Average retention time shift; BBD: Box-Behnken design; DoE:

Design of experiments; GRTS: Group retention time shift; GS: Grouping score;

HILIC: Hydrophilic interaction chromatography; HRMS: High resolution mass

spectrometry; IA: Isotopic abundance; IP-RP-HPLC: Ion pair-reversed

phase-high performance liquid chromatography; LC: Liquid chromatography;

LC-MS: Liquid chromatography coupled to mass spectrometry; LIP: Low

intensity peaks; PPS: Peak picking score; RCS: Retention time correction score;

RGTV: Retention time correction and grouping target value; ROI: Region of

interest; RP: Reliable peaks; RP-HPLC: Reversed phase high performance

liquid chromatography.
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