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Abstract

Motivation: Isobaric labelling techniques such as iTRAQ and TMT are popular methods for relative

protein abundance estimation in proteomic studies. However, measurements are assessed at the

peptide spectrum level and exhibit substantial heterogeneity per protein. Hence, clever summariza-

tion strategies are required to infer protein ratios. So far, current methods rely exclusively on quan-

titative values, while additional information on peptides is available, yet it is not considered in

these methods.

Methods: We present iPQF (isobaric Protein Quantification based on Features) as a novel peptide-

to-protein summarization method, which integrates peptide spectra characteristics as well as quan-

titative values for protein ratio estimation. We investigate diverse features characterizing spectra

reliability and reveal significant correlations to ratio accuracy in spectra. As a result, we developed

a feature-based weighting of peptide spectra.

Results: A performance evaluation of iPQF in comparison to nine different protein ratio inference

methods is conducted on five published MS2 and MS3 datasets with predefined ground truth. We

demonstrate the benefit of using peptide feature information to improve protein ratio estimation.

Compared to purely quantitative approaches, our proposed strategy achieves increased accuracy

by addressing peptide spectra reliability.

Availability and implementation: The iPQF algorithm is available within the established R/Bioconductor

package MSnbase (version� 1.17.8).

Contact: renardB@rki.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Mass spectrometry based proteomics has evolved as the method of

choice for identification and quantification of proteins (Domon and

Aebersold, 2006), and major advances were achieved in the develop-

ment of new quantification techniques. Isobaric labelling techniques

such as iTRAQ and TMT have gained much popularity, allowing

for simultaneous absolute and relative protein quantification in dif-

ferent samples within a single run (Gygi et al., 1999; Ong et al.,

2002; Ross et al., 2004; Thompson et al., 2003). This enables the in-

vestigation of changes in protein abundance across various

conditions, which is crucial for the study of regulation processes,

diagnostics research and biomarker studies. Thereby, accuracy in

protein ratio estimates plays an essential role. However, accuracy

problems in iTRAQ and TMT data have been demonstrated by dif-

ferent studies (Gan et al., 2007; Hultin-Rosenberg et al., 2013; Karp

et al., 2010; Kirchner et al., 2010; Mahoney et al., 2011) and reli-

able protein ratio estimation remains a challenging task.

Several steps are involved in the quantification process. First,

peptides are identified and quantified by iTRAQ or TMT reporter

ions in the MS/MS spectra. Factors contributing directly to the vari-

ability of peptide quantitative estimates include: efficiency of protein
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digestion and labeling, co-eluting peptides, reporter ion peak detec-

tion, intensity assessment, label interference and a limited dynamic

range of the instrument (Burkhart et al., 2011; Vaudel et al., 2010).

A frequently reported bias is the underestimation of ratios and its

compression towards one, which is supposed to arise from co-elut-

ing peptides (Bantscheff et al., 2008; Ow et al., 2009; Sandberg

et al., 2014). Several approaches address these issues by proposing

specific sample preparations (Burkhart et al., 2011), intensity calcu-

lation methods and correction strategies (Boehm et al., 2007;

Shadforth et al., 2005; Vaudel et al., 2010). Further MS3 data acqui-

sition is considered as a new promising strategy to reduce and poten-

tially eliminate the peptide interference effect (Ting et al., 2011).

The next major step in this process is the inference from peptides

to proteins. Measurements of label intensities are assessed at the

spectra level and subsequently a summarization strategy is needed to

estimate the corresponding protein ratios. Generally, all peptide

spectra assigned to a protein are assumed to share the same expres-

sion profile. Indeed substantial variance heterogeneity is observed

due to random and systematic biases (Bauer et al., 2012; Karp et al.,

2010). The question arises how a peptide-to-protein summarization

method can appropriately address this existing variance heterogen-

eity. Different studies demonstrated that the coefficient of variance

is dependent on the absolute signal intensity, suffering from higher

variation in low-intensity than in high-intensity data (Hundertmark

et al., 2009; Hultin-Rosenberg et al., 2013; Karp et al., 2010;

Mahoney et al., 2011). Therefore different summarization methods

were developed to account for these intensity-dependent effects by

filtering for low intensity peptides (Hu et al., 2006), weighting pep-

tides according to their absolute intensities (Hultin-Rosenberg et al.,

2013, Lin et al., 2006) or by applying a variance stabilization

method (Huber et al., 2002; Karp et al., 2010). Other approaches

examine the error structure and the underlying ratio distributions

and develop noise models accordingly (Breitwieser et al., 2011;

Karp et al., 2010; Zhou et al., 2014). Further, standard statistical

concepts, such as averaging by mean or median, are still one of the

most commonly used methods to find protein ratio estimates from a

range of peptide quantities. Multiple tools and comprehensive

iTRAQ quantification pipelines either offer or are exclusively based

on simple median or weighted mean calculations for protein ratio in-

ference (Boehm et al., 2007; Lin et al., 2006; Onsongo et al., 2010).

Additionally, strategies for filtering outlying peptide ratios are fre-

quently proposed, including methods like Grubb’s and Dixon’s test

(Choe et al., 2005; Li et al., 2003). A different category of

approaches requires the integration of replicate samples or spike-in

proteins to enable an assessment of the internal experimental vari-

ation (Hultin-Rosenberg et al., 2013).

All these summarization methods have in common that they

only focus on quantitative peptide information in order to infer pro-

tein quantities. So far, the main feature, which is extensively studied

and related to the reliability of peptide quantities, is the absolute in-

tensity signal. However, there are several additional characteristics

of peptides available, which are known to have an impact on the

overall reliability of a specific peptide and its measurements.

In this work, we identify and investigate the impact of diverse

peptide spectra features such as charge state, sequence length, identi-

fication score, mass and a distance metric within uniquely and re-

dundantly measured spectra. We examine how these features

correlate with the variance heterogeneity and to which extent they

are related to quantification accuracy in spectra. Our aim is to find a

combination of feature criteria that allows inferring ratio reliability

by using the complementary strength of the features. As a result, we

developed iPQF which integrates the information of peptide spectra

characteristics with given quantitative values. We show the added

value of peptide spectra feature information to improve protein ratio

estimation.

The proposed algorithm can be combined with any purely quan-

titative approach. In addition, a fundamental intention was not to

disregard any information, but rather to keep peptide spectrum

matches and down weight unreliable spectra according to the fea-

tures instead of losing information by filtering. Further, no internal

replicates or specific sample setup in the design of iTRAQ and TMT

experiments is required which may restrict applicability.

Finally, we evaluate the performance of our approach on five dif-

ferent published iTRAQ and TMT datasets providing a ground truth

of known peptide and protein quantities. Thereby, we consider three

MS2 datasets with minimal amount of biases, one MS2 dataset

showing a high peptide interference effect as well as one MS3 data-

set. A comparison study with nine commonly used peptide-to-pro-

tein summarization methods is conducted. To our knowledge, this is

also the most comprehensive comparison study of summarization

methods.

2 Methods

2.1 Peptide spectra features
Considering the relative quantification values of peptide spectra

being assigned to the same protein, a substantial heterogeneity is

observed (shown in Supplementary Fig. S1). The objective of this

work is to investigate whether the observed peptide variation can be

explained by underlying peptide spectra characteristics. Thereby, we

aim to relate diverse features of spectra to the quality of their quanti-

tative information. As a result, the reliability of given peptide spec-

tra can be inferred and protein quantification can be improved by

accounting for it.

In order to study the impact of features on the quantification ac-

curacy, we assess the deviance of ratios from the spectra to a given

ground truth by calculating the Euclidian distance across all

iTRAQ/TMT labels, subsequently referred to as quantification error.

Next, a correlation study is conducted by calculating Spearman’s

correlation coefficient between feature values and the peptide spec-

tra quantification error.

We examine the impact of the following peptide features: identi-

fication score, sequence length, charge state, mass, absolute ion in-

tensity, modification state and a distance metric within uniquely and

redundantly measured spectra as explained below. The shared status

of a peptide is not considered and corresponding spectra are dis-

carded, as the negative impact of an incorrectly assigned peptide

may be larger than the potential gain of an additional peptide for

protein ratio estimation.

Here, we define a group of redundant spectra as several MS/MS

events for one peptide, while unique spectra are referred to peptides

quantified exactly by one MS/MS event. For redundant peptide spec-

tra of a protein, which are subject to the same conditions in the MS

experiment, an even higher ratio similarity across labels is expected

than among different sequence fragments of a protein. Hence, a pep-

tide spectrum exhibiting ratios diverging from all other ratios in the

redundant spectra group is suspected to be less reliable. For each pro-

tein we form different groups according to its different redundant

spectra and one group pooling all uniquely measured spectra. The

idea is that not only the number of spectra per protein matters, but

also the degree of ratio similarity within these groups. For each pep-

tide spectrum we compute the mean Euclidian distance of its ratios to

the ratios of all other spectra belonging to the same group.
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The identification score indicates the correctness of the peptide

spectrum match. A low score implies less reliable peptide identifica-

tion and consequently an uncertainty in the peptide to protein as-

signment, potentially resulting in an incorrect peptide ratio for the

protein ratio calculation.

The impact of absolute ion intensity was already intensively

studied and is well known as a key indicator for the reliability of

ratio estimates. It has been shown that the accuracy of peptide

ratio estimates depends strongly on the involved absolute inten-

sities (Carrillo et al., 2010; Hundertmark et al., 2009; Karp et al.,

2010; Mahoney et al., 2011). Low intensities are expected to be

subject to noise and ratios exhibit large variations, while ratio esti-

mates converge to the true value as intensity increases. Here, we

calculate the mean absolute intensity across all labels for each

spectrum.

Peptide modifications in iTRAQ experiments occur mainly due

to enzymatic or sample preparation related reactions. A slightly

increased false-positive protein identification rate was reported by

allowing more modifications to be present (Tenga and Lazar, 2011).

Further, varying peptide expression behavior in a protein and shifted

ratios were observed due to modifications. In our investigation, we

distinguish between modified and unmodified peptide spectra with-

out further distinguishing specific types of modification.

The features charge state, mass and sequence length are inter-

related and have direct or indirect impact on peptide identification.

Higher charge states give rise to a variety of possible fragments car-

rying diverse amounts of charges. The peptide search space needs to

be expanded accordingly and the risk of false-positive identifications

is increased as a consequence. Further, long sequence peptides tend

to show a bias to higher identification scores compared to short se-

quences dependent on the identification tool. The importance of

these features and their crucial role has also been shown in other

work (Keller et al., 2002; Käll et al., 2007; Fusaro et al., 2009).

2.2 iPQF algorithm
The proposed algorithm iPQF (isobaric Protein Quantification

based on Features) is a peptide-to-protein summarization method.

For each peptide spectrum, it requires peptide identification, re-

porter ion intensities and assignment to the respective protein. Next,

a summarization strategy is required to combine given peptide spec-

tra quantities to estimate protein quantities.

iPQF presents a novel approach by using information of spectra

features to evaluate peptide spectra ratios. Spectra receive weights

and contribute to the protein quantification according to their

reliability.

The algorithm is conducted protein-wise, which means individ-

ual protein quantifications are not influenced by other protein quan-

tifications in the dataset. However, the number of identified peptide

spectra per protein is important; we recommend a minimum of three

spectra for protein quantification.

The algorithm consists of six steps, which are calculated for each

protein (Fig. 1) (see also example process in the Supplementary

Material): (i) Feature assessment: Feature values are computed for

each of the seven different features for all peptide spectra belonging

to the specific protein. (ii) Spectra ranking per feature: Peptide val-

ues obtained for each feature are ranked from most to least reliable

feature value based on knowledge of associated low and high quan-

tification errors which was acquired in our correlation study.

Hence, if a peptide spectrum receives a high rank for a specific fea-

ture, this means its reported quantification is considered more reli-

able by this feature compared to a spectrum showing a lower rank.

(iii) Feature weighting: For each peptide spectrum we obtain several

ranks, one for each presented feature, and each rank individually

states the quantification reliability of the spectrum. Yet the explan-

ation power of the features is different, and the impact of the diverse

features is weighted according to strong and weak correlations

observed with quantification errors (see results in Section 4.1). We

propose a default weighting order of features based on consensus

observations in the different datasets and prove its robustness (for a

more detailed explanation and the robustness analysis refer to

Supplementary Material) (iv) Normalization of ranks: We normalize

the ranks of each feature by the overall number of spectra to ensure

the ranks to be within the range of zero and one. (v) Inference of

overall peptide spectra reliability: The feature ranks obtained for

each spectrum are combined to receive an overall reliability measure

called peptide spectrum weight. We do so by calculating a classic

average rank per spectrum and normalize it by the weighted sum of

all features. As a result, peptide spectra receiving weights close to

one represent reliable ratios to enable the inference of true protein

ratios, while peptide spectra weights decreasing to zero refer to a

reduced confidence in its given quantification values. (vi) Protein

ratio calculation: A weighted mean approach using squared peptide

spectrum weights is conducted to estimate the underlying protein

ratio.

Further, iPQF protein estimates can be additionally coupled to

pure quantitative strategies using a mean approach, referred to as

combined iPQF approach here. Generally, we recommend applying

the algorithm based on relative spectra intensities in order to esti-

mate protein ratios instead of using absolute intensities. The vari-

ance in absolute intensities can be large, while relative intensities are

more robust.

2.3 Implementation
The introduced iPQF algorithm is implemented in R (ver-

sion�3.1.3), and was integrated into the existing R/Bioconductor

package MSnbase (version�1.17.8) (Gatto and Lilley, 2012), which

offers a variety of processing functions for iTRAQ data (see

MSnbase vignette). Further, the algorithm is designed for optional

combination with any summarization method, which focuses exclu-

sively on quantitative values, to combine strengths of both

approaches.

3 Experimental setup

3.1 Dataset description
We evaluate peptide quantification data from five different pub-

lished MS2 and MS3 datasets based on iTRAQ and TMT experi-

ments, which have predefined protein fold-changes. Thereby we

Fig. 1. Outline of the iPQF summarization method for protein ratio inference

using a feature-based weighting of peptide spectra. Six steps are conducted

for each protein to estimate the reliability of its underlying spectra ratios
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consider three MS2 datasets with smaller fold changes and minimal

interference effect as well as one MS2 dataset affected by high pep-

tide interference events. Overall, the datasets hold diverse data char-

acteristics concerning the dataset size, the number of identified

spectra per protein, the expected ratios and the range of peptide fea-

ture values, thus covering different possible protein-peptide

scenarios.

1. Dataset (MS2) from Hultin-Rosenberg et al.: Peptides from a

lung cancer cell line A549 were labeled with iTRAQ 8-plex tags

according to a 2:2:1:1:2:2:1:1 fold change. Here, the dataset

showing most identifications in the publication was chosen,

which is based on a 400 lg loaded peptide amount, prefractio-

nated by IPG-IEF and analyzed on a LTQ Orbitrap Velos

(Thermo Scientific). Peptide spectra identification and protein in-

ference was performed using Proteome Discoverer 1.1 with

Mascot 2.2 (Matrix Science), and identified peptides below a

1% protein FDR level were quantified. Further, peptide inten-

sities were isotope impurity corrected.

2. Dataset (MS2) from Breitwieser et al.: A 4-plex iTRAQ experi-

ment was designed with human plasma proteins holding con-

stant ratios of 1:1:1:1 and two spiked-in proteins, a rat

ceruplasmin being mixed in 1:2:5:10 ratio concentrations and a

mouse ceruplasmin with 10:5:2:1 ratios. MS analysis was con-

ducted on a hybrid LTQ Orbitrap XL (Thermo Scientific)

coupled to a HPLC nanoflow system (Agilent 1200). Peptide

spectra were searched and quantified using Mascot 2.3 and

Phenyx 2.6.1 and only concordant peptide identifications were

kept. Protein inference was set to hold an FDR level of 1%.

3. Dataset (MS2) from Zhou et al.: Replicate samples from mouse

cell lysates were created with equal concentrations, labeled with

iTRAQ 8-plex reagents (expected ratios 1:1:1:1:1:1:1:1) and

measured by a TripleTOF 5600 (Absciex). The ProteinPilot soft-

ware was used for peptide spectra identification and quantifica-

tion, holding the protein FDR below 1%.

4.-5. Datasets with MS3 and MS2 spectra from Ting et al.: A

6-plex TMT experiment was designed with a two-proteome

mixture model containing human cell lines and yeast Lys-C di-

gests to study the peptide interference effect. Yeast peptides were

mixed according to 10:4:2.5:10:4:2.5 ratios and human peptides

with equal amounts (1:1:1) were added to the first three labels.

The MS2 dataset presents compressed yeast ratios in the first

three labels due to human peptide interference, while in the MS3

dataset the interference effect is almost eliminated. Samples were

measured on a LTQ Orbitrap Velos. The focus here is on the

yeast peptide and protein identification and quantification which

was performed by Sequest with a protein FDR of 1.5%.

All datasets were filtered for shared peptides, contaminants, and for

spectra showing missing or zero intensities in one of the iTRAQ/

TMT labels. An additional filtering was applied in case of MS3

dataset (4) due to extreme outliers in the dataset (see also filtering

by Ting et al.), using a less restrictive approach than in the original

publication and discarding only spectra deviating more than ten-

fold from the expected ratios which are biologically not reasonable

(Supplementary Fig. S2d). Peptide spectra intensities were normal-

ized according to the median intensity present in each label for data-

set (2) and (3). No normalization was applied in the case of dataset

(1) and (4)–(5), as this would contrast with the fold-change setting

defined for all peptides. Further, protein identifications based on the

support of only one or two peptide spectra are not considered for

quantification and evaluation here. As a result of the preprocessing,

624 proteins based on 5885 peptide spectra are considered in

dataset (1), 145 proteins with 13 758 spectra in dataset (2), 2811

proteins with 217 822 spectra in dataset (3) and 781 proteins with

8934 spectra in MS3 dataset (4) (processing and analysis of the cor-

responding dataset (5) with MS2 spectra representing the impact of

peptide interference can be found in the Supplementary Material).

The aim of this work is the computation of accurate protein

ratios based on relative peptide intensities; here, we focus mainly

on the relative intensity level of proteins and peptide spectra and

not on the absolute intensities. Hence, ratios are calculated for all

datasets. For datasets (2) and (3), a ratio of a spectrum is defined

by dividing its absolute intensity of one iTRAQ label by its

summed intensities of all labels. This is a robust approach, as it

satisfies greater label independence in the ratio calculation and

peptide ratios are not exclusively based on one specific label. In

case of dataset (1), we followed the ratio computation in the cor-

responding publication, in which intensities were divided by the

mean intensity of iTRAQ label 113 and 114. For datasets (4)–(5)

we relied on the provided ratios.

3.2 Method comparison
All introduced datasets come with predefined ratios for spectra

and proteins, thus allowing the performance evaluation of diverse

peptide-to-protein summarization methods. In order to compare the

different summarization methods and to assess their accuracy in

estimating protein ratios, we consider the protein estimation

error. The error is defined as the squared differences of the protein

ratio estimates to the ground truth with subsequent summation across

labels.

We investigate and compare up to nine commonly used peptide-

to-protein summarization methods with our proposed iPQF ap-

proach. Protein ratios are estimated based on given peptide spectra

ratios for each label individually in all presented methods:

• Median: The estimated protein ratio corresponds to the median

of peptide ratios being assigned to the protein.
• Mean: The mean is used instead of the median.
• Mean (Top5, Top3): A group of five or three spectra showing the

highest absolute intensities are selected respectively and the mean

is applied (Searle, 2010; Silva et al., 2006).
• Tukey’s Median Polish: An additive model is iteratively fitted to

the ratios until the sum of absolute residuals falls below a signifi-

cantly small threshold. The sum of the resulting overall median

and label effect, given by the model, is used to estimate the pro-

tein ratio. (Gatto et al., 2012; Tukey et al., 1977)
• Sum of intensities: The absolute peptide spectra intensities of one

protein are summed for each label. Protein ratios are calculated

on the basis of the intensity sums. (Carrillo et al., 2010)
• Total Least Squares: The objective to find the protein ratio is to

fit a straight line between peptide spectra ratios of two different

labels. Different from linear regression, here orthogonal dis-

tances are minimized between ratios and an optimal line.

(Carrillo et al., 2010; Huffel and Vandewalle, 1991)
• isobar: A noise model is built which estimates the underlying

noise variance dependent on absolute spectra intensities. The in-

verse of the noise variance serves as a weighting factor for indi-

vidual peptide spectra. Protein ratios are subsequently computed

by a weighted average approach. (Breitwieser et al., 2011)

Additionally, a comparison to protein quantification results of

Mascot and ProteinPilot, which were provided in the supplements of

the corresponding publications, is included for datasets (1) and (3),

respectively.
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4 Results

First, we demonstrate the correlation between peptide spectra fea-

tures and quantification accuracy. Second, we evaluate the perform-

ance of the iPQF algorithm in comparison to nine summarization

methods. Results are provided for the different MS2 datasets as well

as for the additional MS3 dataset.

4.1 Peptide feature correlation study
The distributions of peptide ratios measured by the different labels

are shown in Supplementary Figure S2a–e. Ratio values are spread

around the ground truth values of the corresponding dataset.

Considering the quantification error per spectrum, defined by the

Euclidian distance of the measured ratios to the expected ratios, a

right skewed distribution is observed in all datasets. The two spike-

in proteins of dataset (2) (Breitwieser et.al) each exhibit a group of

strongly diverging peptide spectra ratios from the ground truth,

which causes a second peak in the quantification error distribution

(Supplementary Fig. S2b).

The correlation of quantification errors to peptide spectra fea-

tures is analyzed to study the feature impact on ratio accuracy. The

corresponding Spearman’s correlation coefficients are reported in

Table 1. All correlation coefficients are assessed to be statistically

significant by using Spearman’s rho statistic to estimate a rank-

based measure of association. Overall, correlations observed are

strikingly consistent across the three MS2 datasets, despite different

sample complexity, experimental setups, different instrumentation

and different analysis software used. Further, even with an add-

itional isolation and fragmentation step resulting in an MS3 scan,

the same correlation trend with slightly decreased correlation coeffi-

cients is observed.

The most meaningful feature reflecting ratio accuracy is the

proposed similarity metric within redundantly and uniquely meas-

ured spectra groups, holding positive correlations between 0.52

and 0.72. Hence, a small mean Euclidian distance of a specific

peptide spectrum to spectra belonging to the same redundant or

unique group, respectively, implies a small quantification error.

However, the error increases with the peptide spectrum diverging

from its group (Fig. 2A, Supplementary Fig. S3–4). Further, ratio

accuracy is decreasing with increasing charge of a peptide spec-

trum, especially apparent in the most common range between a

charge state of two and four (Fig. 2B, Supplementary Fig. S5).

The increase of noise and ratio variation in low absolute ion in-

tensity data has been shown before and is also confirmed in this

study (Supplementary Fig. S6). A consistently increasing ratio

error is observed with increasing sequence length from mainly 5

to 30 amino acids, illustrated by a positive correlation between

0.17 and 0.39 (Fig. 2C, Supplementary Fig. S7). The high inter-

relation between length and mass of a peptide is also clearly re-

flected by similar correlation coefficients to the quantification

error, further supporting both features as indicators of ratio reli-

ability (Supplementary Fig. S8). Correlation of the identification

score varies between the datasets due to the different scoring

systems, datasets (1) and (2) are based on Mascot, while dataset

(3) relies on ProteinPilot and datasets (4)–(5) on Sequest.

Generally higher scores correspond to smaller ratio errors; how-

ever, it is interesting to observe that error variation increases at

the same time (see further details in Supplementary Fig. S9). For

the group of modified spectra the ratio error appears to be

increased in all datasets compared to non-modified spectra

(Supplementary Fig. S10).

The visualization of peptide feature-error-correlations displays a

homogenous trend for all datasets, notably for MS2 as well as MS3

data (refer to Supplementary Fig S11). The impact of peptide inter-

ference events on feature-error-correlations is shown by means of

the dataset (5) with MS2 spectra (see Supplementary Table 1 and

Fig. S12). Additionally, the two spike-in rat and mouse proteins of

dataset (2) are shown separately in Supplementary Fig. S13. In par-

ticular, short peptide sequences are assigned to the rat protein and

the observed outlier peptide group consists exclusively of redun-

dantly measured spectra showing low absolute intensities. Further,

a study of inter-correlations between features reveals a strong and

expected relation structure among features such as length, mass,

charge state and score (Supplementary Fig. S14). However, despite

significant correlations of individual features, the combination of

features is crucial to eliminate pitfalls of single features and make

use of opposed strength. The proposed iPQF approach combines the

information from all different features to obtain overall ratio reli-

ability for each spectrum.

4.2 Evaluation of protein summarization methods
For evaluation of peptide-to-protein summarization methods, we

rely on diverse datasets, in particular concerning the number of pep-

tide spectra per protein (Supplementary Fig. S15). Dataset (1) and

(4) consist of a large number of proteins being supported by pre-

dominantly three to ten or respectively twenty peptide spectra, while

dataset (2) comprises only 145 proteins based on a range of three to

over hundred spectra. Dataset (3) is an overall large dataset holding

a median of 26 spectra per protein and diverse cases of several hun-

dred spectra.

We present a performance evaluation of iPQF and nine add-

itional protein ratio inference methods, which are primarily based

on quantitative peptide information only. The accuracy of each

method is described by the protein estimation error, which is as-

sessed for each protein of a dataset, and a statistical summary is dis-

played in form of boxplots. Method comparisons are shown for

three MS2 datasets in Figure 3. We present two forms of iPQF re-

sults, the pure form of iPQF using spectra feature information only

and a combined form in which iPQF is coupled to one of the quanti-

tative approaches, here shown for iPQF combined with the

MedianPolish approach. The combined form illustrates the added

value of feature information to quantitative approaches.

Table 1. Correlation study of peptide spectra features to relative

quantification error

Peptide features Spearman’s correlation coefficient

Dataset 1

(MS2)

(Hultin-

Rosenberg

et al.)

Dataset 2

(MS2)

(Breitwieser

et al.)

Dataset 3

(MS2)

(Zhou

et al.)

Dataset 4

(MS3)

(Ting et al.)

Redundancy metric 0.65 0.71 0.72 0.52

Uniquely

measured metric

0.61 0.67 0.68 0.55

Charge state 0.54 0.38 0.18 0.14

Ion intensity �0.49 �0.59 �0.64 �0.23

Sequence length 0.39 0.29 0.25 0.17

Mass 0.38 0.30 0.20 0.16

Identification score �0.13 �0.34 0.09 0.08

Modification 0.14 0.11 0.22 0.13
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Overall, the pure iPQF approach shows better performance in

dataset (1) and comparable performance to the other summarization

methods in dataset (2) and (3), proving the importance of feature in-

formation. The combined iPQF approach exhibits the best protein

ratio accuracy of all methods in each of the three different datasets.

Further, iPQF approaches prove robustness, while other methods

vary in performance dependent on the dataset applied.

In particular, feature information is of high value in dataset (1),

which is dominated by small peptide spectra numbers per protein

corresponding to sparsely available quantitative information. Thus,

iPQF approaches perform best using all additional knowledge to

weight spectra, while the diverse mean-based approaches struggle

most due to high variation within protein profiles based on few spec-

tra. The more robust and sophisticated approaches show an inter-

mediate performance. As spectra numbers vary more in dataset (2),

the pure iPQF approach becomes comparable to the other methods;

however, the combined iPQF improves over all methods by through-

out lower quantiles including a significantly reduced upperquartile

of the estimation error. The large spectra numbers in dataset (3) re-

sult in similar quantiles of estimation errors of most methods, even

the mean approach performs equivalent to the more robust median

and all other sophisticated approaches. In contrast, mean (top5/

top3) methods restrict themselves to few peptide spectra with high

absolute intensity and have a significant performance loss. Also in

this dataset, the combined iPQF achieves improved ratio accuracy,

shown by consistently lower quantiles. Generally, the commercial

and commonly used tools Mascot and ProteinPilot do not show

competitive performance, here.

Evaluation of iPQF in MS3 data is presented in Figure 4 and also

confirms superior performance of the combined iPQF approach,

while pure iPQF shows comparable results to other approaches.

Generally high protein estimation errors are observed due to many

Fig. 2. Correlation of spectra features to quantification error, shown for three selected features of dataset (1) (Hultin-Rosenberg et al.). The impact of the features

(A) redundancy metric, (B) charge state and (C) sequence length on spectra ratio accuracy is displayed. A significant trend is observed in all cases

Fig. 3. Performance evaluation of iPQF approaches and nine summarization strategies shown for three different MS2 datasets (dataset (1): 624 proteins with 5885

spectra; dataset (2): 145 proteins with 13758 spectra; dataset (3): 2811 protein with 217822 spectra). Boxplots display the protein estimation error of each method

applied (note that methods are ordered according to error size). Improved and robust protein ratio accuracy is observed for the iPQF approaches in all three

datasets
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outlying ratios in the dataset which significantly impact the perform-

ance of the mean based approaches. A performance comparison of

the methods on dataset (5) being affected by peptide interference

also supports the integration of feature information (Supplementary

Fig. S16).

Further, we evaluate accuracy details of the methods by con-

sidering specific deviation ranges from the ground truth ratios and

assess the amount of protein ratios which could be estimated within

this deviation range. A superior sensitivity can be observed for the

iPQF approaches (Supplementary Fig. S17). Additionally, the AUC

measure (area under the curve) is provided for all methods, showing

the highest AUC for the combined iPQF (Supplementary Table 2).

5 Discussion

Inference of protein ratios based on heterogeneous peptide spectra

measurements remains a crucial issue, which receives little consider-

ation in most quantification pipelines. In this work, we present a

new summarization strategy iPQF, which integrates spectra charac-

teristics with quantitative values for protein ratio estimation. We in-

vestigate different peptide spectra features and reveal significant

correlations between features and quantification accuracy. As a re-

sult, we are able to show the added value of feature information to

achieve improved protein ratio accuracy.

Peptide spectra features contain valuable information in addition

to pure quantitative information. Since no individual feature shows

near-perfect correlation to quantification error, the combination of

features can be crucial to compensate for failures of individual fea-

tures and to make use of their diverse strengths. Overall, it is un-

likely that a peptide spectrum is mischaracterized by a large set of

features at the same time.

In particular, proteins with a high diversity of underlying feature

values profit from the approach, while feature uniformity naturally

reduces the impact by giving similar weights to spectra. This is pri-

marily relevant for proteins holding a small to medium number of

peptide spectrum matches exhibiting ratio variation. Here

particularly, benefit of the iPQF approach is shown. In cases of large

numbers of peptide spectra the feature impact is decreased and

approaches using the mean already perform considerably well.

Another prerequisite for successful protein ratio estimation is that

peptide ratio measurements are spread around the true protein ratio

value. The best protein quantification method still remains dependent

on given peptide quantities, and cannot work if peptide values coher-

ently and systematically diverge from the ground truth. Feature and

quantification error correlation will also not necessarily be sufficiently

strong in these divergent cases as the error is strongly biased.

A major issue in iTRAQ and TMT datasets is the peptide inter-

ference effect which causes the underestimation of ratios and its

compression towards one. MS3 data acquisition has proven to sig-

nificantly reduce the interference effect. Evaluation of iPQF

approaches also confirms the applicability in MS3 data settings and

still shows a robust performance under interference impact com-

pared to other methods.

The flexible design of the algorithm enables further extensions.

One option is to join results of a purely quantitative method with es-

timations obtained by iPQF to benefit from both strategies. Here,

we provide a combination of iPQF with MedianPolish and show sig-

nificant improvements over both individual methods in our results.

The advantage of a joined approach is that in case of few peptide

spectra per protein additional feature knowledge can compensate

for the sparse information in the quantitative setup, while more

sophisticated summarization strategies can be applied with rich

quantitative information available. Further, a different option is to

exclusively employ the spectra feature-based reliability measure pro-

vided by iPQF and integrate it in existing summarization

approaches. Beyond this, new and relevant features of interest can

be easily added to the implemented feature framework.

Generally, the idea of a feature-based spectra weighting is trans-

ferable beyond iTRAQ data. While our studies only focus on fea-

ture-error-correlations in iTRAQ and TMT data, similar findings

are expected for SILAC as well as label-free data. Algorithmic steps

of iPQF are technically applicable to quantitative proteomic meth-

ods requiring peptide summarization, but careful evaluation in the

context of the specific experiment is necessary.

Moreover our proposed approach is independent of using repli-

cate samples or spike-in proteins, independent of the instrument,

and the selected multiplex. Further, in contrast to modelling

approaches mostly requiring larger numbers of peptide spectra,

iPQF is also applicable in small settings. Also no assumption con-

cerning underlying ratio distributions or specific data criteria is

required. Hence, we also chose replicate independent summarization

methods and use corresponding settings in tools, such as isobar

(Breitwieser et al., 2011), for evaluation comparison.

In addition, a fundamental intention was to keep peptide spectra

by applying a feature based weighting instead of losing information

by filtering. Filtering of low-intensity spectra or outlier ratios is

commonly performed; however this significantly reduces the protein

coverage as few peptide readings per protein typically dominate the

datasets (Karp et al., 2010). Further, defining a cutoff for outlier fil-

tering is a critical issue as important information is potentially

discarded.

Overall, we provide a broad performance comparison of nine

different protein ratio inference methods on five published datasets

with predefined ground truth. To the best of our knowledge, an

overall benchmark study of current methods assessing diverse biases

and impact on protein ratio accuracy in iTRAQ/TMT data is miss-

ing. Here, we also provide a basis for future comparison of summar-

ization methods.

Fig. 4. Performance of iPQF approaches and seven other summarization strat-

egies in a MS3 data setting (Note that isobar could not be run on dataset 4). A

reduced protein estimation error is attained for the combined iPQF strategy,

confirming the benefit of features also in MS3 data (781 proteins with 8934

spectra)

1046 M.Fischer and B.Y.Renard

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/32/7/1040/1743612 by guest on 21 August 2022

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv675/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv675/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv675/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv675/-/DC1


6 Conclusion

The goal of the protein quantification process is the inference of pro-

tein quantities based on peptide quantities. However, peptide ratios

assigned to a protein exhibit substantial heterogeneity and require

clever summarization strategies. We present iPQF, which integrates

peptide spectra characteristics as well as quantitative values for pro-

tein ratio estimation. The novelty of the algorithm is to weight spec-

tra according to their feature reliability. Comprehensive evaluation

of iPQF in comparison to other summarization methods yields a su-

perior and robust performance. As a result, the benefit of feature in-

formation to achieve improved protein ratio accuracy is shown.
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