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Abstract
IPS is a performance measurement system for parallel and distributed programs. IPS’s model of

parallel programs uses knowledge about the semantics of a program’s structure to provide two important

features. First, IPS provides a large amount of performance data about the execution of a parallel program,

and this information is organized so that access to it is easy and intuitive. Second, IPS provides perfor-

mance analysis techniques that help to automatically guide the programmer to the location of program

bottlenecks.

IPS is currently running on its second implementation. The first implementation was a testbed for

the basic design concepts, providing experience with a hierarchical program and measurement model,

interactive program analysis, and automatic guidance techniques. This implementation was built on the

Charlotte Distributed Operating System. The second implementation, IPS-2, extends the basic system with

new instrumentation techniques, an interactive and graphical user interface, and new automatic guidance

analysis techniques. This implementation runs on 4.3BSD UNIX systems, on the VAX, DECStation, Sun

4, and Sequent Symmetry multiprocessor.
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1. INTRODUCTION

IPS is a performance measurement system for parallel and distributed programs. IPS’s model of

parallel programs uses knowledge about the semantics of a program’s structure to provide two important

features. First, IPS provides a large amount of performance data about the execution of a parallel program,

and this information is organized so that access to it is easy and intuitive. Second, IPS provides perfor-

mance analysis techniques that help to automatically guide the programmer to the location of program

bottlenecks.

IPS is currently running on its second implementation. The first implementation [1-3], was a testbed

for the basic design concepts, providing experience with a hierarchical program and measurement model,

interactive program analysis, and automatic guidance techniques. This implementation was built on the

Charlotte Distributed Operating System [4]. The second implementation, IPS-2, extends the basic system

with new instrumentation techniques, a powerful interactive and graphical user interface, and new

automatic guidance analysis techniques. This implementation runs on 4.3BSD UNIX systems.

The next section presents an overview of the IPS concepts and model. In this section we describe the

hierarchical program and measurement model of the IPS system. New techniques for instrumenting paral-

lel programs are described in Section 3, including of the overhead caused by using IPS-2. Section 4

describes the graphical user interface. This interface is used to specify the program to be measured and to

interactively inspect the performance results from the execution of the program. Section 5 discusses two

automatic guidance techniques. Critical Path Analysis [2] is reviewed and new features are described. A

new guidance technique, called Phase Behavior Analysis, in presented. Section 6 presents our conclusions

and mentions ongoing research to develop new analysis techniques.

2. IPS OVERVIEW

IPS is based on a hierarchical model of parallel and distributed programs. A hierarchical model

presents multiple levels of abstraction, provides multiple views of performance data, and has a regular

structure. The objects in a hierarchical model are organized in well-defined layers separated by interfaces

that insulate them from the internal details of other layers. Therefore, we can view a complex problem at

various levels of abstraction. We can move vertically in the hierarchy, increasing or decreasing the amount
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of detail that we see. We can also move horizontally, viewing different components at the same level of

abstraction.

In this section we review the sample hierarchy of IPS that is based on our initial target systems — the

Charlotte Distributed Operating System and 4.3BSD UNIX. Charlotte is a distributed operating system

written at the University of Wisconsin, running on VAX 11/750’s connected via an 80 megabit/second

token ring. Both Charlotte and 4.3BSD systems consist of processes communicating via messages. These

processes execute on machines connected via high-speed local networks. The hierarchy presented here

served as a test example of our hierarchy model and reflects our current implementation. It is easy to

extend these ideas to incorporate new features and other programming abstractions. For example, in our

Sequent multiprocessor implementation, we include light-weight processes (processes in the same address

space) to our hierarchy with little effort. Our hierarchical structure can be also applied to systems such as

HPC[5], which has a different notion of program structuring, or MIDAS[6], which has a 3-level program-

ming hierarchy. The IPS paradigm would work with most systems that have regular, hierarchical decom-

position of components.

2.1. The Program Hierarchy

An overview of our computation hierarchy is illustrated in Figure 2.1.

(A) Program Level

This level is the top level of the hierarchy, and is the level in which the distributed system accounts

for all the activities of the program on behalf of the user. At this level, we can view a distributed program

as a black box running on a certain system to which a user feeds inputs and gets back outputs. The general

behavior of the whole program, such as the total execution time, is visible at this level; the underlying

details of the program are hidden.

(B) Machine Level

At the machine level, the program consists of multiple threads that run simultaneously on the indivi-

dual machines of the system. We can record summary information for each machine, and the interactions

(communications) between the different machines. The machine level provides no details about the struc-

ture of activities within each machine.
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(C) Process Level

The process level represents a distributed program as a collection of communicating processes. At

this level, we can view groups of processes that reside on the same machine, or we can ignore machine

boundaries and view the computation as a single group of communicating processes.

If we view a group of processes that reside on the same machine, we can study the effects of the

processes competing for shared local resources (such as CPUs and communication channels). We can

compare intra- and intermachine communication levels. We can also view the entire process population

and abstract the process’s behavior away from a particular machine assignment.

(D) Procedure Level

At the procedure level, a distributed program is represented as a sequentially executed procedure-call

chain for each process. Since the procedure is the basic unit supported by most high-level programming

languages, this level can give us detailed information about the execution of the program. The step from

the process to the procedure level represents a large increase in the rate of component interactions, and a

corresponding increase in the amount of information needed to record these interactions. Procedure calls

typically occur at a higher frequency than message transmissions.

(E) Primitive Activity Level

The lowest level of the hierarchy is the collection of primitive activities that are detected to support

our measurements. Our primitive activities include process blocking and unblocking by the scheduler,

message send and receive, process creation and destruction, procedure entry and exit. Each event is associ-

ated with a probe in the operating system or programming language runtime that records the type of the

event, machine, process, and procedure in which it occurred, a local time stamp, and event type dependent

parameters.

2.2. The Measurement Hierarchy

The program hierarchy provides a uniform framework for viewing the various levels of abstraction

in a distributed program. If we wish to understand the performance of a distributed computation, we can

observe its behavior at different levels of detail. We chose a measurement hierarchy whose levels

correspond to the levels in our hierarchy of distributed programs. At each level of the hierarchy, we define
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performance metrics to describe the program’s execution. For example, we may be interested in parallel-

ism at the program level, or in message frequencies at the process level. We can look at message frequen-

cies between processes or between groups of processes on the same machine. This selective observation

permits a user to focus on areas of interest without being overwhelmed by all the details of other unrelated

activities. The hierarchical structure matches the organization of a distributed computation and its associ-

ated performance data.

2.3. The Structure of IPS

There are four basic components of IPS: instrumentation probes, data pool, analyst, and user inter-

face. The instrumentation probes generate trace data when interesting events happen during the program

execution. These probes are contained in the language runtime library and the operating system kernel.

The data pool stores the trace data and caches intermediate results from the analysts. The data pool is

resident in the memory of each machine. The analyst is a set of processes that summarizes and evaluates

the measurement data. The user interface interacts with the user and presents the results.

Each machine contains a slave analyst that analyzes the trace data generated by the processes on that

machine. The master analyst performs the program level analysis and coordinates with the slave analysts to

synthesize the measurement and analysis data. In addition, it provides an interface with the user for the

display of performance results. Figure 2.2 shows the basic structure of IPS.

3. INSTRUMENTATION TECHNIQUES

The overriding consideration in collecting performance data is efficiency. To efficiently gather data

we must minimize the overhead, both in time and space. Collecting the trace information should not

require much extra time, and the trace records should not take up much extra space, when compared to run-

ning the same programs without tracing them. The current version of IPS is based on software instrumen-

tation. Hardware instrumentation would allow less intrusive monitoring of parallel programs. Currently,

no monitoring tools are generally available, and we are investigating building our own hardware monitor-

ing facility. The problem of how to efficiently correlate hardware-level monitoring with program-level

analyses must also be investigated.
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Programmers do not have to modify their programs to use IPS-2. Data is automatically collected

from two sources: (1) modified† procedure call hooks used by gprof [7], and (2) a modified runtime library.

Instrumentation is selected by a compiler option.

In this section, we first discuss the implementation of our new software instrumentation techniques,

then present measurements on the performance overhead incurred when using IPS-2.

3.1. Implementation Issues

The initial version of IPS was limited in the type of performance data that it collected. Data for pro-

cess, machine, and program level events was collected by tracing; that is, every important event was col-

lected and recorded. Data for procedure level events was collected by periodic sampling. Events at the

procedure level (specifically, procedure entry and exit events) occurred much more frequently than events

at the other levels and sampling was used to keep the instrumentation space and time overhead manage-

able. The result of using sampling is that information at the procedure level was only approximate.

IPS-2 has improved the efficiency of event tracing so that we now use traces at all levels. This has

two benefits. First, we get exact performance results at all levels of the hierarchy. Performance results at

the procedure level have the same precision as results at the other levels. Second, IPS-2 has been extended

to shared-memory, multiprocessor machines. The process interactions on such systems occur at a higher

frequency than on loosely-coupled systems. The techniques used to trace procedure level events are used

in the shared-memory environment to trace process interaction events.

We use several techniques to reduce both time and space requirements of event tracing. The most

significant problem with the cost of tracing is the time needed to collect timestamps for each trace record.

Each event that is traced by IPS requires the elapsed time (real time) and CPU time to be recorded. These

times are typically accessed by using a operating system kernel call. Kernel calls are several orders of

magnitude slower than procedure calls and add intolerable overhead if used for tracing procedure call

events. All UNIX versions that we have examined require a kernel call to access at least one of these two

types of time.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
† Gprof collects data only on procedure entry. We make an extra pass over a program’s assembly code to also monitor pro-

cedure exit.
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The solution to this problem is to access clock values with simple memory references. The clock on

most machines is stored either in the kernel’s address space as one or more integer values or is accessible

via memory-mapped clock device registers. In our VAX implementation, we modify UNIX to provide a

kernel facility to map the clocks (both the process’s CPU time and real time) into a process’s address space

(read-only). Processes read the clock at memory access speed. In our implementation for the Sequent

Symmetry multiprocessor we use an auxiliary clock provided by the Sequent architecture. This is a

hardware 1 MHz clock that can be mapped into a process’s address space and read directly. A similar

solution us used for CPU time, by directly (mapping and) reading the process’s process table entry. The

performance benefit of using memory-mapped clocks is quantified in Section 3.2, where we compare the

overhead of reading a clock from memory to the overhead of reading it with a kernel call.

We use three methods to reduce the size of the traces. The first method addresses procedure calls

and returns, which are usually the most frequently occurring traces. Process level traces (corresponding to

kernel calls) generally need auxiliary information, such as return codes or message sizes, but procedure

calls and returns need no information other than the timestamps and an identifier of the procedure that was

called. Therefore procedure call traces are smaller than other types of traces. The second method is to

shorten every trace record by encoding some of the information. To generate timestamps we read a two-

word (64 bit) clock. We then compress the two words into a one-word timestamp for the trace records, and

recreate the original timestamp at analysis time. No significant information is lost by this method, since the

time between any two traces will not exceed the time represented in a single word. The third method is to

encode multiple events in a single trace. For example, a ‘‘lock’’ synchronization operation on the Sequent

has two events, one to try to acquire the lock (and possibly block), and another event to actually acquire it.

For most cases, we can generate a single trace for these two events that includes the time difference

between the two events.

Directly reading clocks can cause anomalies. One problem involves reading a multi-word clock.

The clock might be updated between reads of the separate words. Detection and correction of this problem

is straightforward, because the interval between a correct timestamp and a following incorrect timestamp

appears to be negative. The incorrect value can be easily corrected. A second problem arises when dif-

ferent clocks have different resolutions. For example, in our Sequent implementation, the real time has a 1
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microsecond resolution, while the process time has only a 10 millisecond resolution. This can cause a

discrepancy when the process time is rounded to a value greater than was actually used. This problem is

easy to detect, but hard to correct as the precise value of the process time is not known. Typically, compu-

tations must be based on the resolution of the least precise clock.

Tracing shared-memory inter-process communication is difficult. In the most general case, we

would need to trace every memory reference in any shared areas in the processes’ address spaces. This

would be difficult and would require extensive hardware support. Instead we opted to trace only kernel

calls relating to shared-memory synchronization mechanisms. For example, the Sequent supports sema-

phore operations. We trace semaphore blocking and restarting of blocked processes, but we do not trace

memory references inside shared regions protected by semaphores.

Operations that directly involve the operating system can cause problems when creating traces. For

example, to trace the times when a process is blocked awaiting a free processor, the scheduler inside the

operating system kernel will generate trace records. A potential race condition arises, as both the operating

system and the process may be trying to write a trace record. This issue will be addressed in an upcoming

version of IPS that includes scheduler blocking time measurements.

3.2. Performance

This section presents measurements of the overhead on application programs caused by using IPS-2.

The results presented were taken from Microvax-II workstations and from the Sequent Symmetry multipro-

cessor.

Two programs were measured, a parallel sort program and a parallel solution to the Traveling Sales-

man Problem [8]. The sort program was based on a divide-sort-merge algorithm. It was run on randomly

generated lists, from 1000 to 8000 records. Each run of the sort program was repeated 10 times (with a dif-

ferent randomly generated list of records), so actual sort times are 1/10 those reported. The Traveling

Salesman program used a branch-and-bound algorithm. This program was run for a problem size (number

of cities) of 16, over several input data sets. The sort program was run on the Microvax and the Traveling

Salesman program was run on both the Microvax and Sequent. For each input/problem size, all programs

were run three times: (1) without any tracing, (2) with IPS tracing, and (3) with UNIX ‘‘gprof’’ [7] pro-
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cedure call profiler tracing. For each run of a program, elapsed time and CPU time were recorded. Pro-

cedure call rates and trace log sizes were also calculated from the IPS runs. These results are summarized

in Figures 3.1 and 3.2.

The first result to examine is the percent overhead (as calculated from the elapsed times). The over-

head for programs run under IPS-2 ranges from 10-45%. This compares favorably with the overhead from

the standard UNIX profiler, gprof. The percent overhead under IPS-2 increased, predictably, with the fre-

quency of procedure calls. The two test programs that we measured consisted of relatively small pro-

cedures (average size, 25 lines, including white space and comments), so we should expect overhead

results for other programs to be as good or better than those in the figures.

Note the two sets of IPS-2 performance times in Figure 3.2. Each program on the Sequent was run

twice, once with instrumentation code using a memory-mapped clock to sample CPU time and once using a

kernel call (‘‘getrusage()’’) to obtain CPU time information. We can see the substantial penalty in having

to enter the operating system for timing information.

Figures 3.1 and 3.2 also shows the size of the trace generated by the various program runs. Exam-

ples range from 206K bytes, to a relatively large trace of 1.4 Mbytes in 25 seconds. The maximum rate at

which traces were generated in these runs was about 56K bytes/second. At these rates, memory can hold a

substantial part of the trace and the disk write operations needed to flush the trace buffer are infrequent.

4. USER INTERFACE

The first version of IPS had a simple textual user interface. This interface provided access to the IPS

facilities, but was limited in two ways. First, the interface did not allow the programmer to visualize the

program model. The hierarchical model has an intuitive visual representation and the textual interface

could not use this. Second, the textual interface did not allow for graphical display of performance results.

The ability to graph performance metrics over time and to graphically compare performance results gives

the programmer valuable information.

The IPS-2 interface allows the programmer to specify both the structure of the program to be meas-

ured and the performance results to be displayed. The programmer starts in a graphic editor mode. The

editor allows the programmer to modify the structure of the program, save and re-edit it, or execute the
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program. After the program has executed, the programmer interacts with a flexible user interface to

display any combination of performance metrics for nodes in the program tree. The programmer can

display performance metrics in tabular or graphical form, or use the automatic guidance techniques, Criti-

cal Path Analysis and Phase Behavior Analysis. In addition, standard gprof-style profiling data is available

at each level of the hierarchy. Figures 4.1 and 4.2 show an example of a session with IPS-2.

The programmer starts with a single window showing a program level node (the triangle node in the

window with the tree in Figure 4.1). To this program node, the programmer can add machine nodes. Each

machine node represents a host machine on which the processes of the program will run. In the example,

these machines are called ‘‘grilled’’ and ‘‘havarti’’. The programmer can also specify parameters (using

pop-up property sheets), such as account names and home directories, for these machines. Next, the pro-

grammer specifies the initial processes to run on each machine (‘‘test2a.swb’’ and ‘‘test2b.swb’’). For

each process, the programmer can specify the executable file to be run in the process, parameters to the

process, and input and output files. Figure 4.1 shows the program tree with the property sheet for machine

‘‘havarti’’. After the program specification is completed, it can be saved for later use.

IPS-2 can now be used to run the program. IPS-2 will transfer (if necessary) each executable file to

the correct host machine, start the processes, monitor them, and report back when they have completed. A

new program tree will be displayed with additional information from the program execution. New process

nodes may appear as a result of dynamic process creation and procedure level nodes will appear for each

procedure executed in the program (nodes such as ‘‘getData’’ and ‘‘calc1’’ in Figure 4.2).

Large programs can spawn many processes and call many procedures. IPS-2 provides functionality

to mananage the display complexity in the tree window. Single mouse-button and keyboard commands can

be used to: (1) hide all descendants of a node, (2) hide a single node, or (3) show the immediate children of

a node. There are also commands to show only those nodes that contribute more than a certain percentage

to the total CPU time or critical path. In addition, a horizontal scroll bar is provided at the bottom of the

window.

The table at the bottom, left corner of Figure 4.2 shows a metric table for process ‘‘test2a.swb’’.

Various performance metrics have been displayed for this process. Added to this table was a list of all

child nodes, i.e., the procedures that ran in this process. Any combination of nodes and metrics can be
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displayed in a table.

In the center of the screen is a graph of the ‘‘CPU Time’’ metric for the whole program (out of

200%, because there are 2 machines), and superimposed on this display is the graph of the same metric for

machine ‘‘grilled’’. The graphs can be zoomed to get more detail, panned to examine individual portions

of the program history, and enlarged to show more detail. The window on the bottom right hand corner of

the screen displays graphs of multiple metrics, message rate and CPU time. Any combination of metrics

and nodes can be displayed in single graph.

An important aspect of this interface is its simplicity. There are few commands and menus, and the

structure of the commands and displays matches a programmer’s notion of the structure of the program.

5. AUTOMATIC GUIDANCE TECHNIQUES

A major goal of the IPS system is to provide program performance analysis techniques that guide the

programmer in the search for performance problems. We provide the programmer with information to

directly locate performance bottlenecks. In this section, we briefly outline our first guidance technique

(Critical Path Analysis) and then describe new features for this analysis. We then describe a new technique

called Phase Behavior Analysis, and show how it interacts with the metric tables and Critical Path

Analysis.

5.1. Critical Path Analysis

Our first guidance technique was based on identifying the path through the program that consumed

the most time [2]. This critical path identifies the parts of the program responsible for its length of execu-

tion (based on traces of the program’s execution history). This information is more precise than just a

profile of the execution times of each part of a program. The critical path identifies the parts of the pro-

gram (including CPU times, synchronization and communication delays) that cause the execution time. If

we speed up the events along the critical path, we speed up the whole program.

Critical Path Analysis (CPA) can identify program parts that occur most frequently in the critical

path, and can further identify the most frequent sequences of events along the critical path. The ability to

locate frequent sequences allows us to detect bottlenecks spread across several procedures or across several

processes or machines. The results of the Critical Path Analysis can be displayed at the different levels of



- 12 -

abstraction: we can observe the most frequent elements of the path at the program, machine, process, and

procedure levels.

To perform CPA, we construct a graph of the program’s activities (a Program Activity Graph, or

PAG) from the trace information generated during execution. This graph represents the time dependencies

among the various parts of the program and is built from the program traces using only those records that

show an interaction between two processes (inter-process communication and process creation events).

Other records only appear in the PAG as elapsed time. Nodes in the PAG represent events (e.g., inter-

process communication and process creation) and arcs represent observed timings.

A slave analyst handles the traces from the processes on its machine. It first builds one subgraph per

process, and then uses the trace information to combine these subgraphs with the subgraphs for the other

processes (on the same machine and on others). Slaves compute these results concurrently. Finally, we

add global initial and final nodes to combine all the subgraphs into a single PAG for the whole program.

After constructing the PAG, we find the critical path (the longest time-weighted path through the

graph) using a distributed algorithm based on one by Chandy and Misra[9] and adapted to our problem for

the original version of IPS [1]. The adaptation focused on two areas. First, Chandy and Misra represented

each node with an analyst process. Since PAG’s can contain tens of thousands of nodes, that number of

processes would be unworkable on current operating systems. In our implementation, a single slave

analyst represents the PAG subgraph for all processes that ran on that slave’s machine. Second, Chandy

and Misra designed their algorithm to find the shortest path through a (directed) graph. Since the PAG is

acyclic (all arcs represent a forward progression of time), shortest path algorithms apply equally well to the

problem of searching for the longest path through the PAG.

Figure 5.1 illustrates a simple PAG. In this figure, time progresses from top to bottom. Processes A

and B ran on one machine, and Process C on another. Arcs are weighted with time values, and the critical

path is marked with double lines.

The master analyst is responsible for requesting that the Critical Path Analysis be performed, conso-

lidating the information gathered from that analysis, and presenting it to the user. Since it is impractical to

consider a graphical display of the thousands of nodes that can make up the critical path, we present critical

path information to the user statistically. For example, at the process level, we present a table, sorted by
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percentage of total time, of how much of the critical path execution time was due to CPU time in each pro-

cess, and how much was due to inter-process communication between each pair of processes. Similar

presentations are available at the program, machine and procedure levels. The windows at the top, right

corner of Figure 4.2 show critical path results for the process and procedure levels of our test program.

It is possible to have a PAG in which the longest and second longest paths do not overlap (except at

beginning and end). In this case, improving the critical path may have little affect on the program’s perfor-

mance. Fortunately, experience has shown that the longest path and second longest path have substantial

overlap. There is still the question: how much improvement will we really get by fixing something that lies

on the critical path?

While this question can not be answered in general, the critical path analysis provides a feature that

can help. For any element(s) on the critical path, we can change their weight to zero and recalculate the

critical path. We can then compare the length of the new path with the original critical path. This is only

an approximation of the affect of a change to the program, but it provides some insight about the change.

For example, Figure 5.2, top right corner, shows the critical path table for the procedure level. We

have selected the procedure that contributes the largest time on the path (‘‘calc2’’ in process ‘‘test2a.swb’’)

and assigned its weight to zero. This creates a new context (‘‘Context 1’’), which is based on the original

PAG, but with all of the weights for ‘‘calc2’’ event edges set to zero. To the left of the original critical

path table in Figure 5.2 is a window with a new critical path table, based on the modified PAG. We can see

that eliminating ‘‘calc2’’ can substantially change the critical path. The length of the path has changed

from 2.85 to 1.20, indicating that the execution time might be substantially improved if ‘‘calc2’’ could be

made more efficient. The contents of the critical path have also changed − procedure ‘‘getdata’’ in process

‘‘test2b.swb’’ is now the major contributor to the critical path.

5.2. Phase Behavior Analysis

Programs go through different phases during the course of their executions. For example, a

master/slave parallel program might have the following phases: (1) the master process sets the initial prob-

lem, (2) the slave processes are initialized, (3) the master distributes pieces of the problem to each slave,

(4) the slaves compute their piece of the program, (5) the master reaps the partial results and combines
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them. Steps (3)-(5) are repeated until a solution is reached. Each of these phases has different execution

characteristics. The goal of the Phase Behavior Analysis is to automatically identify phases in the

program’s execution history. Once these phases are identified, we can then use our other analysis tech-

niques, focusing on each phase as a separate problem. Each phase represents a simpler subproblem, which

should be easier to evaluate and improve its execution.

Intuitively, a phase is a period of time when the program is performing the same activity. For our

performance tool, we define the phase as a period of time where some combination of performance metrics

maintain consistent values. For example, in the graph in the center of Figure 4.2, CPU time is displayed for

an entire program. For this single metric, we can observe periods of low CPU usage and periods of high

CPU usage. In the Phase Behavior Analysis, we take several such graphs (for different metrics, such as

message frequency or procedure call frequency, or for different parts of the program) and identify common

periods between these graphs.

Our detection algorithm inputs raw metric curves that are derived from the trace data generated by

the instrumented programs. Each metric curve is represented by a list of discrete values for a finite number

of points in time, summarized from the total execution period of the program. The algorithm works in

three steps: smoothing, segmenting, and combining. The smoothing step reduces spikes from the raw

metric curves. The segmenting step determines the potential segment boundaries in the execution history

graph for a single performance metric. The combining step identifies the phases in the overall program

execution from the common segment boundaries in a list of metrics.

5.2.1. Smoothing

The goal of the smoothing step is to simplify the segmenting step by reducing spikes in the perfor-

mance data. The current smoothing function is a sliding window average, weighting the center point most

and the edges of the window least. A window size of 9 (empirically determined) suppresses spikes that

results from the fine granularity of the trace data collected. The smoothing function has the same effect as

a low pass filter. Increasing the window size effectively lowers the cutoff frequency. Each smoothed

curve is normalized with respect to the maximum value of that metric (as constrained by physical and

operating systems characteristics of the machines). The smoothed and normalized metric curve is then
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used to compute segment boundaries.

5.2.2. Segmenting

An execution history graph, Gm, for metric m can be divided into segments, Sm,i , where Sm,i starts at

time ti and ends at ti +1 (ti < ti +1)†. A new segment is started at time ti when values for the metric m during

Sm,i −1 differ significantly from the values immediately after time ti .

To derive segments, we define a boundary curve, Bm, for metric m that shows the likelihood that any

given point on the metric curve is at the end of a segment. To calculate Bm, we first calculate a step func-

tion to show the range of values for m. The step function, hm,i , for metric m at time ti is the difference in

value of m between the previous minimum (maximum) and the following maximum (minimum). Figure

5.3a shows the step function for the metric curve in Figure 5.3b. Next, we define two variables for comput-

ing the first derivative of the metric curve: time and value increments. The time increment, ∆ti , is the

difference between the present time, ti , and the previous time, ti −1, in which the metric was sampled. The

value increment, ∆Vm,i , is the difference in the value of the metric m at time ti and ti −1, as shown in Figure

5.3a. Thus, the first derivative of the metric curve at time ti is approximated by
∆ti

∆Vm,ihhhhhh .

The boundary curve is derived by multiplying the absolute value of the first derivative of the metric

curve with the step function, hm,i . Thus the boundary curve, Bm, at time ti , is defined

Bm,i = abs (
∆ti

∆Vm,ihhhhhh ) × hm,i

The greater the value of Bm,i , the greater the probability that the corresponding point on the metric curve is

at the end of a segment. We identify segment boundaries as the peaks of the boundary curve that are

greater in value than some threshold.

5.2.3. Combining

After the boundary curves for each metric have been computed, they must be combined. If Bm,i is

high at time ti for most of the metric curves, then there is a high probability that ti is an endpoint of a phase.

The combining function identifies the most common boundaries and generates the program phases based
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

† The notations here are used to represent discrete data rather than some continuous function of time.
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on this combined list of metrics. The combining function sums up the boundary curves of each of the

metric curves to compute the segment boundaries from the aggregate boundary curve. Hence, the aggre-

gate boundary curve, B, at time ti , is defined

Bi =
m∈M
Σ Bm,i =

m∈M
Σ abs (

∆ti

∆Vm,ihhhhhh ) × hm,i

where M is the set of all the metrics used.

There is a phase boundary for the program at time ti if the first derivative of the aggregate boundary

curve is zero and Bi is greater than some threshold. The programmer interacts with the IPS-2 to determine

a reasonable threshold value. If the threshold is too low, there will be too many phases and the results will

not be useful. If the threshold is too high, there will be too few phases. Figure 5.4 shows a close-up of the

graph of the CPU time and message frequency metrics for the program, and the corresponding boundary

curve.

Note that the only manual step in identifying phases is setting the threshold. This is done by adjust-

ing the slide bar on the left side of Figure 5.4. We are currently experimenting with heuristics to set this

value automatically. Once we have identified the phases, we use the performance metrics and Critical Path

Analysis to study these phases. We are investigating the use of Phase Behavior Analysis to find patterns

and periods in a program’s phases.

5.2.4. Using Phases with Other Analyses

IPS-2 can automatically identify phases or they can be specified manually. Once a phase has been

identified and selected, we can use the other facilities in IPS-2 to study the behavior of that specific phase.

We can display metric tables for a phase, and display the portion of the critical path that lies within the

phase.

For example, we measured the execution of a shared-memory, parallel, database join program that

runs on the Sequent Symmetry. The graph of total CPU time for one execution is shown in Figure 5.5.

Note that there is a start-up interval of low CPU use. We identify two phases, phase ‘‘A’’ representing the

start-up and phase ‘‘B’’ for the main computation. Figure 5.6 shows the procedure-level critical path table

for the entire program (top right window), and below it, critical path tables for phases ‘‘A’’ and ‘‘B’’. We
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have re-sized these tables to show only the top eight entries; a scroll bar is used to see the others. We can

see that the start-up phase (‘‘A’’) is dominated by procedure ‘‘random_shuffle’’ (used for initialization),

but this procedure is not an important part of phase ‘‘B’’. Other changes in the critical path reflect the dif-

ferent type of work done in the different phases.

6. CONCLUSIONS

IPS-2 is a running [10] system whose design and features benefited from the experience gathered in

the first (Charlotte Distributed Operating System) implementation. The first implementation of IPS pro-

vided useful insights in how to design a parallel program performance measurement tool. Using the

semantic structure of the program produces a hierarchical model for the program and performance data.

This model resulted in a system that was intuitive to use and provided large amounts of information. The

model also allowed for the construction of analysis techniques that help guide the programmer to the cause

of program bottlenecks.

IPS-2 uses this foundation to make several new advances. The new instrumentation techniques pro-

vides more detailed and precise information about the program. The implementation now includes both

distributed and shared-memory systems. The graphical user interface simplifies use of the system and

significantly improves the presentation of performance results. The Phase Behavior Analysis presents a

new type of guidance technique: a focusing technique that allows more precise use of other analyses.

IPS-2 has been used in several performance studies, and we are gaining experience with several

larger numerical applications. The Critical Path Analysis seems to have a real benefit, reducing the need to

look through piles of statistics. We are just beginning to get experience with the Phase Behavior Analysis.

To date, IPS-2 has been used to: (1) gather data to parameterize analytical performance models of parallel

systems, (2) measure parallel database join algorithms, (3) evaluate code generated by parallelizing com-

piler algorithms, and (4) measure parallel search programs and network flow programs. The feedback that

we have received from these studies has helped to improve the quality of the analyses and interface.

The strengths of IPS-2 are shown in the comments that we commonly receive. First, IPS-2 does not

require modification of the user’s program. All instrumentation is automatically inserted at compile/link

time. Second, IPS-2 has exposed performance problems in places not expected by the programmer. Third,
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IPS-2 seems to be easy to use; learning the basic features takes about 15 minutes.

IPS-2 is an evolving system. We are currently working on Critical Path Analysis advances,

hardware instrumentation, browsing tools, refining Phase Behavior Analysis, kernel instrumentation, and

new guidance techniques.

(1) The Critical Path work is to investigate second-longest, third-longest, etc., critical paths, and com-

paring and correlating information from these paths. We would like to compute these multiple

paths efficiently.

(2) Hardware instrumentation has the potential to greatly reduce execution time overhead. We are

currently instrumenting our instrumentation to better understand the type of data that we gather.

This information will be used in the design of a hardware data collection facility.

(3) IPS-2 currently provides no way to browse through the raw trace data or critical path. We are

currently designing browser functions to allow the programmer to intelligently select and display

parts of the (potentially huge) trace files.

(4) IPS-2 can measure application programs, but not the operating system kernel. Instrumenting the

kernel is more difficult than applications, but it will allow us to get system-level performance data.

We will also be able to study an application along with its effect on the operating system.

(5) We are investigating new analyses for studying the contention for such resources as the CPU,

memory, and communication channels.
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Untraced IPS gprof

# Elapsed CPU Elapsed CPU Overhead Trace Elapse CPU Overhead Proc. Calls/
Records Time Time Time Time Size Time Time Secondiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

1000 3.95 3.38 4.91 4.84 24% 206568 5.60 5.30 42% 2325

3000 7.34 8.33 10.35 12.40 41% 541852 12.05 13.60 64% 3590

4000 9.39 10.86 13.39 16.25 43% 709056 15.82 17.83 68% 3764

5000 11.61 13.49 15.94 20.02 37% 888664 19.40 21.94 67% 3811

6000 13.27 16.00 19.28 23.82 45% 1062116 22.13 25.83 66% 3750

7000 15.61 18.74 22.11 27.56 41% 1233348 26.20 30.43 67% 3955

8000 17.87 21.42 25.33 32.00 41% 1408264 30.37 34.69 69% 3911
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Figure 3.1: Overhead Measurements −− Parallel Sort

All times in seconds; trace size in bytes. Program run on 2 Microvaxes,
connected via an Ethernet.
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Untraced IPS gprof

Elapsed CPU Elapsed CPU Overhead Trace Elapse CPU Overhead Proc. Calls/
Config Time Time Time Time Size Time Time Secondiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

VAX 50.60 9.05 55.49 11.42 10% 441592 53.80 10.54 6% 142

Sequent w/ 7.91 7.18 8.51 8.05 7% 443008 8.25 7.52 4% 906
mem-map

clock

Sequent w/o 11.16 10.84 41% 443008
mem-map

clock
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Figure 3.2: Overhead Measurements −− Traveling Salesman

All times in seconds, trace size in bytes. Microvax version run
in 1 process, Sequent version run in 8 processes (on 8 CPUs).

Problem size of 16 cities.
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Figure 5.3: Definitions Used in Boundary Curve Calculation


