Supporting Information

$\mathrm{IPy}_{2} \mathrm{BF}_{4}$-Mediated Transformation of n-Pentenyl Glycosides to Glycosyl Fluorides: A New Pair of Semi-Orthogonal Glycosyl Donors

J. Cristóbal López*, Clara Uriel, Alejandra Guillamón-Martín, Serafín Valverde, Ana M. Gómez*§
Instituto de Química Orgánica General (CSIC), Juan de la Cierva 3, 28006. Madrid, Spain.

Table of Contents

1. Materials and Methods \qquad
2. General Procedures \qquad
3. Experimental details of the preparation and spectroscopic characterization data of compounds \qquad
4. Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra

- ${ }^{1}$ H NMR spectra of $\mathbf{1 0}$ \qquad
- ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 1}$. \qquad
- ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1 2}$ \qquad
${ }^{1}$ HNMR ${ }^{13}$
- H NMR and C NMR spectra of $\mathbf{1 3}$ \qquad
${ }^{1}$ H ${ }^{13}$
- H NMR and C NMR spectra of $\mathbf{1 4}$. \qquad
- ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 5}$. \qquad
1
- H NMR spectra $\left(\mathrm{CDCl}_{3}\right.$ and $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right)$ of $\mathbf{1 6}$. \qquad
- ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and DEPT spectra of $\mathbf{1 8}$. \qquad
- ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 9}$ \qquad
${ }^{1}$ NMR ${ }^{13}$
- H NMR and C NMR spectra of 21α and 21β \qquad
- H NMR and C NMR spectra of $\mathbf{2 3} \alpha$ and H NMR spectra of $\mathbf{2 3} \beta$.

- H NMR and C NMR spectra of $\mathbf{2 4} \alpha$ and $\mathbf{2 4} \beta$ \qquad
- H NMR and C NMR spectra of $\mathbf{2 5}$ \qquad
- H NMR and ${ }^{13}$ C NMR spectra of 27 \qquad
- ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and DEPT spectra of 29 \qquad
1
- H NMR spectra of $\mathbf{3 1} \boldsymbol{\alpha}$ and $\mathbf{3 1} \beta$ \qquad
1
- H NMR spectra of $\mathbf{3 2}$. \qquad

1. Materials and Methods.

1
H NMR spectra were recorded at 400 and $300 \mathrm{MHz}, ~ C$ NMR spectra were recorded at 75 MHz , and chemical shifts are reported relative to internal $\mathrm{Me}_{4} \mathrm{Si}$. Optical rotations were determined for solutions in chloroform. Column chromatography was performed on silica gel (230-400 mesh). TLC was conducted in precoated Kiesel gel 60 F254 (Merck). Detection was first by UV light (254 nm) then charring with a $1 / 20 / 4$ solution of sulfuric acid/acetic acid/ $\mathrm{H}_{2} \mathrm{O}$. All solvents were purified by standard techniques. Reactions requiring anhydrous conditions were performed under argon. Anhydrous magnesium sulfate was used for drying solutions. Starting n-pentenyl glycosides 1-7 and n pentenylorthoesters 8-9 were prepared according to described procedures. ${ }^{1,2}$

2. General procedure for $\mathrm{IPy}_{2} \mathrm{BF}_{4}$-mediated transformation of n-pentenyl glycosides or n-pentenyl orthoesters to glycosyl fluorides.

[^0]A solution of bis(pyridine)iodonium(I) tetrafluoroborate $\left(\mathrm{IPy}_{2} \mathrm{BF}_{4}\right)(44.6 \mathrm{mg}, 0.12 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ under argon and cooled at $-40^{\circ} \mathrm{C}$ was treated with tetrafluoroboric acid $(13 \mu \mathrm{~L}, 0.12 \mathrm{mmol})$. After 5 min , a solution of the n-pentenyl glycoside or orthoester (0.10 mmol) dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added. When all the starting material disappeared, the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ and washed with 10% aqueous sodium thiosulphate containing sodium bicarbonate, saturated sodium bicarbonate and water. The organic layer was then dried and concentrated and the residue was purified by flash chromatography.

3. Experimental details of the preparation and spectroscopic characterization data of compounds.

2,3,4,6-tetra-O-benzyl- α-D-glucopyranosyl fluoride 10.

This compound was prepared according to the general procedure from n-pentenyl 2,3,4,6-tetra- O-benzyl- α-D-glucopyranose $1(61 \mathrm{mg}, 0.1 \mathrm{mmol})$. Silica gel chromatography (hexane/Ethyl acetate 9:1) provided pure $\mathbf{1 0}^{3}(45 \mathrm{mg}, 83 \%)[\alpha]_{\mathrm{D}}=+10.7^{\circ}\left(\mathrm{CHCl}_{3}, \mathrm{c} 0.53\right.$), ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}) \delta 7.15-7.31(\mathrm{~m}, 20 \mathrm{H}), 5.56(\mathrm{dd}, 1 \mathrm{H}, J=53.2,2.6 \mathrm{~Hz}), 4.98-4.45(\mathrm{~m}$, $8 \mathrm{H}), 3.99(\mathrm{t}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}), 3,94(\mathrm{~m}, 1 \mathrm{H}) 3,79(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{~m}, 1 \mathrm{H}) 3.57(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{J}=$ 25.7, 9.6, 2.6 Hz) ; API-ES positive: $565.2(\mathrm{M}+\mathrm{Na})^{+}$; Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{35} \mathrm{O}_{5} \mathrm{~F}(542.65)$: C, 75.26; H, 6.50. Found: C, 75.3; H, 6.64.

2,3,4,6-tetra-O-methyl- α-D-glucopyranosyl fluoride 11.

This compound was prepared according to the general procedure from n-pentenyl 2,3,4,6-tetra- O-methyl- α-D-glucopyranose 2 ($60.8 \mathrm{mg}, 0.2 \mathrm{mmol}$). Silica gel chromatography (hexane/Ethyl acetate 7:3) provided pure $\mathbf{1 1}^{3}$ (50 mg , quant). ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}) \delta 5.66$ (dd, 1H, $J=53.3,2.6 \mathrm{~Hz}$), 3.80-3.75 (m, 1H), $3.64(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.62-3.38(\mathrm{~m}, 3 \mathrm{H}), 3.54$ (s, $3 \mathrm{H}, \mathrm{OMe}$), 3.53 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), $3.40(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}$), 3.28 (t, $1 \mathrm{H}, J=9.4 \mathrm{~Hz}$), 3.19 (ddd, $1 \mathrm{H}, J=25.6,9.4,2.6 \mathrm{~Hz}),{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}) \delta 104.9(\mathrm{~d}, J=224.8 \mathrm{~Hz}), 82.7,81.2(\mathrm{~d}, J=$ $24.6 \mathrm{~Hz}), 78.2,72.3(J=4.0 \mathrm{~Hz}), 70.2,60.9,60.5,59.1(\mathrm{x} 2)$; API-ES positive: 477.3 $(2 \mathrm{M}+\mathrm{H})^{+}$Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{O}_{5} \mathrm{~F}$ (238.12): C, 50.41 ; H, 8.04. Found: C, 50.30; H, 8.28.

[^1]
2,3,4,6-tetra-O-benzyl- α-D-mannopyranosyl fluoride 12.

This compound was prepared according to the general procedure from n-pentenyl 2,3,4,6-tetra- O-methyl- α-D-mannopyranose $3(60.8 \mathrm{mg}, 0.1 \mathrm{mmol})$. Silica gel chromatography (hexane/Ethyl acetate 9:1) provided pure $\mathbf{1 2}^{4}(51 \mathrm{mg}, 94 \%) .[\alpha]_{\mathrm{D}}=+25.9^{\circ}\left(\mathrm{CHCl}_{3}, \mathrm{c} 0.56\right)$; ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}) \delta 7.35-7.18(20 \mathrm{H}, \mathrm{m}), 5.60(1 \mathrm{H}, \mathrm{d}, J=50.6 \mathrm{~Hz}), 4.88(1 \mathrm{H}, \mathrm{d}, J=10.8$ $\mathrm{Hz}), 4.81(1 \mathrm{H}, \mathrm{d}, J=12.3 \mathrm{~Hz}), 4.70-4.63(4 \mathrm{H}, \mathrm{m}), 4.56-4.53(2 \mathrm{H}, \mathrm{m}), 4.08(\mathrm{t}, 1 \mathrm{H}, J=9.7$ $\mathrm{Hz}), 3.93-3.88(3 \mathrm{H}, \mathrm{m}), 3.79(\mathrm{dd}, 1 \mathrm{H}, J=11.0,4.5 \mathrm{~Hz}), 3.72(\mathrm{~d}, 1 \mathrm{H}, J=10.9 \mathrm{~Hz})$; API-ES positive: $565.3(\mathrm{M}+\mathrm{Na})^{+}$; Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{35} \mathrm{FO}_{5}$: C, 75.26; H, 6.50. Found: C, 75.16; H, 6.45.

2,3,4,6-tetra-O-methyl- α-D-mannopyranosyl fluoride 13.

This compound was prepared according to the general procedure from n-pentenyl $2,3,4,6$ -tetra- O-methyl- α-D-mannopyranose 4 ($60.8 \mathrm{mg}, 0.2 \mathrm{mmol}$). Silica gel chromatography (hexane/Ethyl acetate 7:3) provided $13(45 \mathrm{mg}, 94 \%) .[\alpha]_{\mathrm{D}}=+28.7^{\circ}\left(\mathrm{CHCl}_{3}\right.$, c 1.5.); ${ }^{1} \mathrm{H}-$ NMR (300MHz) $\delta 5.65$ (dd, $1 \mathrm{H}, J=1.6,50.2 \mathrm{~Hz}), 3.76-3.58(\mathrm{~m}, 6 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe})$, 3.50 (s, 3H, OMe), 3.49 (s, $3 \mathrm{H}, \mathrm{OMe}$), 3.39 (s, $3 \mathrm{H}, \mathrm{OMe}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}) \delta 105.5$ (d, J $=220.8 \mathrm{~Hz}), 80.4(\mathrm{~d}, J=2.0 \mathrm{~Hz}), 75.8(\mathrm{~d}, J=34.6 \mathrm{~Hz}), 75.4,73.6(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 60.6$, 59.5, 59.2, 58.0; API-ES positive: $477.3(2 \mathrm{M}+\mathrm{H})^{+}, 261.1(\mathrm{M}+\mathrm{Na})^{+}$; Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{O}_{5} \mathrm{~F}$ (238.12): C, 50.41; H, 8.04. Found: C, 50.17; H, 7.96.

2-O-benzoyl-3,4,6-O-tri-O-benzyl- α-D-mannopyranosyl fluoride 14.

This compound was prepared according to the general procedure from n-pentenyl $2-O$ -benzoyl-3,4,6-O-tri-O-benzyl- α-D-mannopyranose 5 ($44.6 \mathrm{mg}, 0.12 \mathrm{mmol}$). Silica gel chromatography (hexane/Ethyl acetate 9:1) provided 14 ($50 \mathrm{mg}, 90 \%$); ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (300 MHz) δ 8.08-8.06 (m, 2 H), 8.05 (m, 1 H), 7.56-7.19 (m, 17 H), 5.75 (dd, $1 \mathrm{H}, J=49.3,1.7 \mathrm{~Hz}$), $5.74(\mathrm{t}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}), 4.89(\mathrm{~d}, 1 \mathrm{H}, J=10.5 \mathrm{~Hz}), 4.81(\mathrm{~d}, 1 \mathrm{H}, J=11.1 \mathrm{~Hz}), 4.73(\mathrm{~d}, 1 \mathrm{H}, J$ $=12.0 \mathrm{~Hz}), 4.61(\mathrm{~d}, 1 \mathrm{H}, J=11.4 \mathrm{~Hz}), 4.57(\mathrm{~d}, 1 \mathrm{H}, J=10.8 \mathrm{~Hz}), 4.55(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz})$, 4.21-3.96 (m, 3H), $3.91(\mathrm{dd}, 1 \mathrm{H}, J=11.2,3.6 \mathrm{~Hz}), 3.80(\mathrm{dd}, 1 \mathrm{H}, J=11.2,1.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}-$

[^2]NMR (75MHz) $\delta 165.3,138.1,138.0,137.5,133.4,129.9$ (x 2), 128.5 (x 2), 128.4 (x 5), 128.3 (x 3), 128.0 (x 2), 127.9 (x 2), $127.8,127.7,127.5$ (x 2$), 105.5$ (d, $J=219.3 \mathrm{~Hz}$), $77.2,75.3,73.9(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 73.4,73.2,71.8,68.3,67.2(\mathrm{~d}, J=40.0 \mathrm{~Hz})$; API-ES positive: $579(\mathrm{M}+\mathrm{Na})^{+}$; Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{33} \mathrm{O}_{6} \mathrm{~F}$ (556.23): C, 73.36; H, 5.98. Found: C, 73.54; H, 5.86.

In a different experiment 14 was prepared from n-pentenyl orthoester $9(44.6 \mathrm{mg}, 0.12$ mmol) according to the general procedure. Silica gel chromatography (hexane/Ethyl acetate 9:1) provided 14 ($53 \mathrm{mg}, 95 \%$).

6-O-tertbutyldiphenylsilyl-2,3,4-O-tri-O-methyl- α-D-mannopyranosyl fluoride 15.

This compound was prepared according to the general procedure from n-pentenyl 6 -O-tertbutyldimethylsilyl-2,3,4-O-tri-O-methyl- α-D-mannopyranose 6 ($53 \mathrm{mg}, 0.1 \mathrm{mmol}$). Silica gel chromatography (hexane/Ethyl acetate $8: 2$) provided $15(39.3 \mathrm{mg}, 85 \%) .[\alpha]_{\mathrm{D}}=$ $+26.5^{\circ}\left(\mathrm{CHCl}_{3}\right.$, c 1.2$) ;{ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}) \delta 7.75-7.69(\mathrm{~m}, 5 \mathrm{H}), 7.43-7.35(\mathrm{~m}, 5 \mathrm{H}), 5.72$ $(\mathrm{dd}, 1 \mathrm{H}, J=50.5,1.9 \mathrm{~Hz}), 3.97(\mathrm{dd}, 1 \mathrm{H}, J=11.5,3.4 \mathrm{~Hz}), 3.85(\mathrm{t}, 1 \mathrm{H}, J=9.5 \mathrm{~Hz}), 3.85$ (dd, $1 \mathrm{H}, J=11.5,1.7 \mathrm{~Hz}), 3.74(\mathrm{~m}, 1 \mathrm{H}), 3.67-3.63(\mathrm{~m}, 1 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 3.56(\mathrm{~m}, 1 \mathrm{H})$, $3.55(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}) \delta 135.9(\mathrm{x} 2), 135.6(\mathrm{x} 2)$, $133.8,133.3,129.5$ (x 2), 127.6 (x 2), 127.5 (x 2), 105.6 (d, $J=219.4 \mathrm{~Hz}$), $80.4,75.9,75.0$, 74.8, 62.3, 60.7, 58.9, 57.9, 26.7 (x 3), 19.4; API-ES positive: $480.3\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}, 485.3$ $(\mathrm{M}+\mathrm{Na})^{+}$; Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{O}_{5} \mathrm{FSi}$ (462.22): C, 64.9; H, 7.63. Found: C, 65.02; H, 7.58 .

2,3,4,6-Tetra-O-benzoyl- α-D-mannopyranosyl fluoride 16.

This compound was prepared according to the general procedure from n-pentenyl orthoester 8 ($66.4 \mathrm{mg}, 0.1 \mathrm{mmol}$). Silica gel chromatography (hexane/Ethyl acetate 8:2) provided $\mathbf{1 6}^{5}(49 \mathrm{mg}, 82 \%) .[\alpha]_{\mathrm{D}}=-29.7^{\circ}\left(\mathrm{CHCl}_{3}, \mathrm{c} 1.6\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}) \delta 8.14-7.26$ $(\mathrm{m}, 20 \mathrm{H}), 6.22(\mathrm{t}, 1 \mathrm{H}, J=10.1 \mathrm{~Hz}), 5.96-5.86(\mathrm{~m}, 2 \mathrm{H}), 5.86\left(\mathrm{dd}, 1 \mathrm{H}, J_{1,2}=43.1,1.8 \mathrm{~Hz}\right)$, $4.79(\mathrm{dd}, 1 \mathrm{H}, J=12.3,2.2 \mathrm{~Hz}), 4.61(\mathrm{~m}, 1 \mathrm{H}), 4.49(\mathrm{dd}, 1 \mathrm{H}, J=12.3,3.8 \mathrm{~Hz})$; API-ES

[^3]positive: $622.1(\mathrm{M}+\mathrm{Na})^{+}$; Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{27} \mathrm{O}_{9} \mathrm{~F}$ (598.57): C, 68.22; H, 4.55. Found: C, 68.14; H, 4.43.

In a different experiment, a solution of $\mathrm{IPy}_{2} \mathrm{BF}_{4}(55.8 \mathrm{mg}, 0.15 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was cooled to $-78^{\circ} \mathrm{C}$ and $\mathrm{HBF}_{4}(16 \mu \mathrm{~L}, 0.15 \mathrm{mmol})$ was added. After 5 min . of stirring, a solution of n-pentenyl 2,3,4,6-tetra-O-benzoyl- α-D-mannopyranose 7 ($66.4 \mathrm{mg}, 0.1 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added. The stirring was maintained at $-78^{\circ} \mathrm{C}$ for 30 minutes before $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(13 \mu \mathrm{~L}, 0.1 \mathrm{mmol})$ was added. The reaction mixture was then warmed to room temperature over 20 min and washed with 10% aqueous sodium thiosulphate containing sodium bicarbonate, saturated sodium bicarbonate and water. The organic layer was then dried and concentrated and the residue was purified by flash chromatography (hexane/Ethyl acetate 8:2) to provide pure $\mathbf{1 6}(\mathbf{4 5} \mathrm{mg}, 75 \%$).
n-Pentenyl 2,3,4-tri-O-methyl-6-O-(2,3,4,6-tetra-O-benzyl- α-D-mannopyranosyl)- α - D mannopyranoside 18.

To a stirred solution of fluoride $12(54.2 \mathrm{mg}, 0.1 \mathrm{mmol}), n$-pentenyl glycoside $\mathbf{1 7}(29 \mathrm{mg}$, 0.1 mmol) and 4 A molecular sieves (50 mg) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added Ytterbium (III) trifluoromethanesulfonate ($62 \mathrm{mg}, 0.1 \mathrm{mmol}$). Stirring was maintained for 10 min and then the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$, washed with saturated aqueous sodium bicarbonate. The organic extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash chromatography (Hexane:AcOEt, 7:3) to give disaccharide $18(55.2 \mathrm{mg}, 68 \%) .[\alpha]_{\mathrm{D}}=+37.6^{\circ}\left(\mathrm{CHCl}_{3}\right.$, c 1.5$)$; ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}) \delta 7.32-$ $7.06(\mathrm{~m}, 20 \mathrm{H}), 5.71(\mathrm{ddt}, 1 \mathrm{H}, J=17.1,10.4,6.6 \mathrm{~Hz}), 5.04(\mathrm{~s}, 2 \mathrm{H}), 4.86-4.96(\mathrm{~m}, 1 \mathrm{H}), 4.81$ $(\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=10.9 \mathrm{~Hz}), 4.73(\mathrm{bs}, 1 \mathrm{H}), 4.65(\mathrm{~s}, 2 \mathrm{H}), 4.61(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12.2 \mathrm{~Hz}), 4.53(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $12.2 \mathrm{~Hz}), 4.51(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12.2 \mathrm{~Hz}), 4.46(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12.1 \mathrm{~Hz}), 4.43(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.9 \mathrm{~Hz})$, 3.85-3.26 (m, 14H), $3.42(\mathrm{~s}, 3 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 2.06-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.52$ (m, 2H); ${ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}) \delta 138.7,138.6,138.5,138.4,137.9,128.3$ (x2), 128.2 (x6), 127.8 (x 2), 127.7 (x 2), 127.6 (x2), 127.5 (x 2), 127.4 (x2), 127.3 (x2), 114.9, 98.0, 96.6, 81.4, 79.9, 77.1, 76.1, 74.9, 74.8 (x2), 73.2, 72.3, 71.8, 71.7, 71.4, 69.2, 66.9, 65.9, 60.8, 58.8, 57.6, 30.3, 28.5; API-ES positive: $830.5\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}, 835.2(\mathrm{M}+\mathrm{Na})^{+}, 859.5$
$(\mathrm{M}+2 \mathrm{Na})^{+}$; Anal. Calcd for $\mathrm{C}_{48} \mathrm{H}_{60} \mathrm{O}_{11}$ (812.98): C, 70.91; H, 7.44. Found: C, 71.06; H, 7.37.
n-Pentenyl
2,3,4-tri-O-methyl-6-O-(2-O-benzoyl-,3,4,6-tri-O-benzyl- α-D-mannopyranosyl)- α-D-mannopyranoside 19.

To a stirred solution of fluoride $\mathbf{1 4}(27.8 \mathrm{mg}, 0.05 \mathrm{mmol})$, n-pentenyl glycoside $\mathbf{1 7}$ ($14.5 \mathrm{mg}, 0.05 \mathrm{mmol}$) and 4 A molecular sieves $(25 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added Ytterbium (III) trifluoromethanesulfonate ($62 \mathrm{mg}, 0.1 \mathrm{mmol}$). Stirring was maintained for 10 min and then the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$, washed with saturated aqueous sodium bicarbonate. The organic extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash chromatography (Hexane:AcOEt, 7:3) to give disaccharide 19 (31 mg, 75\%). $[\alpha]_{\mathrm{D}}=+13.2^{\circ}\left(\mathrm{CHCl}_{3}\right.$, c 1.3$)$; ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}) \delta$ 8.09-8.06 (m, 2H), 7.57-7.17 (m, 18H), $5.80(\mathrm{ddt}, 1 \mathrm{H}, \mathrm{J}=16.8,10.2,6.6 \mathrm{~Hz}), 5.73(\mathrm{~m}, 1 \mathrm{H})$, $5.09(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.8 \mathrm{~Hz}), 5.05-4.95(\mathrm{~m}, 2 \mathrm{H}), 4.88(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.5 \mathrm{~Hz}), 4.87(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.8$ $\mathrm{Hz}), 4.80(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12.3 \mathrm{~Hz}), 4.76(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12.9 \mathrm{~Hz}), 4.54(\mathrm{~m}, 3 \mathrm{H}), 4.12-4.10(\mathrm{~m}, 1 \mathrm{H})$, $3.96(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=10.8,3.6 \mathrm{~Hz}), 3.81-3.57(\mathrm{~m}, 8 \mathrm{H}), 3.51(\mathrm{~s}, 6 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H})$, 3.46-3.37 (m, 2H); ${ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}) \delta 165.4,138.6,138.5,138.0,137.9,132.9,130.0$, 129.9 (x 3), 128.3 (x 2), 128.29 (x 2), 128.24 (x 2), 128.21 (x 2), 128.1 (x 2), 127.8 (x 2), $127.6,127.5$ (x 2), 127.4, 114.9, 98.1, 96.5, 81.4, 78.3, 76.3, 75.1, 74.2, 73.3, 71.5, 71.4, $71.0,69.0,68.7,67.0,66.7,60.8,58.8,57.5,30.3,28.6$; API-ES positive: $844.3\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}$, $872(\mathrm{M}+2 \mathrm{Na})^{+}$; Anal. Calcd for $\mathrm{C}_{48} \mathrm{H}_{58} \mathrm{O}_{12}$ (826.39): C, 69.71; H, 7.07. Found: C, 69.61; H, 6.94.

2,3,4-tri-O-methyl-6-O-(2,3,4,6-tetra-O-benzyl-D-glucopyranosyl)- α - and β--Dglucopyranosyl fluoride 21.

To a stirred solution of pentenyl-2,3,4,6-tetra- O-benzyl- α-D-glucopyranoside $\mathbf{1}$ (122 mg , 0.2 mmol) and 2,3,4-tri- O-methyl- α-D-glucopyranosyl fluoride 20 ($34.8 \mathrm{mg}, 0.15 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ under argon was added IDCP ($234 \mathrm{mg}, 0.5 \mathrm{mmol}$) in one portion. The solution was stirred for 2 h and then the mixture was quenched by washing with a mixture of aqueous sodium bicarbonate and aqueous sodium thiosulfate solution. The separated organic extract was dried, filtered and concentrated. Purification by flash chromatography
(hexane/ethyl acetate $8: 2$ to $1: 1$) gave disaccharide 21α ($51 \mathrm{mg}, 45 \%$) followed by disaccharide $\mathbf{2 1} \boldsymbol{\beta}$ ($50 \mathrm{mg}, 45 \%$)
α anomer : $\alpha_{D}=+37.5^{\circ}\left(\mathrm{CHCl}_{3}\right.$, c 0.35$) ;{ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}) \delta 7.30-7.05(\mathrm{~m}, 20 \mathrm{H}), 5.48$ $(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=53.3,2.7 \mathrm{~Hz}), 4.98(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=17.4 \mathrm{~Hz}), 4.96(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.1 \mathrm{~Hz}), 4.84(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $10.8 \mathrm{~Hz}), 4.81(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.8 \mathrm{~Hz}), 4.66(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16.7 \mathrm{~Hz}), 4.61(\mathrm{~d}, 1 \mathrm{H}, 17.2 \mathrm{~Hz}), 4.54(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=12.1 \mathrm{~Hz}), 4.42(\mathrm{bs}, 1 \mathrm{H}), 4.40(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12.1 \mathrm{~Hz}), 3.91(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=9.2 \mathrm{~Hz}), 3.80-3.39$ $(\mathrm{m}, 9 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 3,24(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=9.5 \mathrm{~Hz}), 2.93(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{J}=$ $25.7,9.5,2.7 \mathrm{~Hz}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}) \delta 138.8,138.5,138.2,137.9,128.3(\mathrm{x} 5), 127.9(\mathrm{x} 3)$, 127.8 (x3), 127.7 (x3), 127.6 (x2), 127.5 (x2), 127.3 (x2), 104.9 (d, J= 226.3Hz), 94.4, $82.9,81.8,81.2(\mathrm{~d}, \mathrm{~J}=24.8 \mathrm{~Hz}), 80.1,78.4,77.5,75.6,75.1,73.4,72.3,72.4(\mathrm{~d}, \mathrm{~J}=3.5 \mathrm{~Hz})$, $70.3,68.4,66.0,60.8,60.6,59.1$.API-ES positive: $764.3\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}, 769.2(\mathrm{M}+\mathrm{Na})^{+}$. Anal. Calcd for $\mathrm{C}_{43} \mathrm{H}_{51} \mathrm{FO}_{10}$ (746.86): C, 69.15; H, 6.88. Found: C, $69.35 ; \mathrm{H}, 6.65$. β anomer : $\alpha_{D}=+17.5^{\circ}\left(\mathrm{CHCl}_{3}\right.$, c 0.45$) ;{ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}) \delta 7.29-7.08(\mathrm{~m}, 20 \mathrm{H}), 5.60(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=$ $53.3,2.6 \mathrm{~Hz}), 4.90(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.0 \mathrm{~Hz}), 4.84(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.8 \mathrm{~Hz}), 4.74(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.8 \mathrm{~Hz})$, $4.72(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.3 \mathrm{~Hz}), 4.69(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.0 \mathrm{~Hz}), 4.55(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12.2 \mathrm{~Hz}), 4.49(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $12.2 \mathrm{~Hz}), 4.47(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.8 \mathrm{~Hz}), 4.37(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.7 \mathrm{~Hz}), 4.13(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=11.0,1.7 \mathrm{~Hz})$, 3.83 (ddd, 1H, J=10.0, 4.5, 1.6Hz), 3.70-3.40 (m, 8H), $3.56(\mathrm{~s}, 3 \mathrm{H}), 3.47$ (s, 3H), 3.39 (s, $3 \mathrm{H}), 3.18(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=9.6 \mathrm{~Hz}), 3.11(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{J}=25.7,9.6,2.7 \mathrm{~Hz}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz})$ $\delta 138.5,138.3,138.1,137.9,128.4(x 2), 128.33(x 2), 128.32(x 2), 128.31(x 2), 128.0(x 2)$, 127.9 (x2), 127.8 (x2), 127.7, 127.6 (x2), 127.57, 127.56, 127.55, 104.8 (d, J= 226.4Hz), $103.7,84.8,82.8,81.9,81.3(\mathrm{~d}, \mathrm{~J}=24.8 \mathrm{~Hz}$), $78.5,77.8,75.7,75.0,74.9,74.8,73.4,72.2(\mathrm{~d}$, $\mathrm{J}=3.9 \mathrm{~Hz}), 68.9,68.1,60.9,60.5$, 59.1. API-ES positive: $769.2(\mathrm{M}+\mathrm{Na})^{+}$. Anal. Calcd for $\mathrm{C}_{43} \mathrm{H}_{51} \mathrm{FO}_{10}$ (746.86): C, 69.15; H, 6.88. Found: C, 69.3; H, 6.93.

2,3,4-tri-O-methyl-6-O-(2,3,4,6-tetra-O-methyl-D-mannopyranosyl)- α - and β--Dmannopyranosyl fluoride 23.

To a stirred solution of fluoride $22(22 \mathrm{mg}, 0.1 \mathrm{mmol})$, n-pentenyl glycoside $4(30 \mathrm{mg}, 0.1$ $\mathrm{mmol})$ and 4 A molecular sieves $(25 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added $\mathrm{I}(\text { coll })_{2} \mathrm{ClO}_{4}(117 \mathrm{mg}$, $0.25 \mathrm{mmol})$. Stirring was maintained for 1 hour and then the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$, washed with 10% aqueous sodium thiosulphate containing sodium bicarbonate, saturated aqueous sodium bicarbonate and water. The organic extract was
dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash chromatography (Hexane:AcOEt, 2:8) to give disaccharide $23 \alpha(20 \mathrm{mg}, 44 \%$) followed by disaccharide $23 \beta(19 \mathrm{mg}, 44 \%)$. α-anomer $[\alpha]_{\mathrm{D}}=+26.8^{\circ}\left(\mathrm{CHCl}_{3}\right.$, c 0.15$) ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ $(300 \mathrm{MHz}) \delta 5.65(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=50.4,2.1 \mathrm{~Hz}), 5.03(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.8 \mathrm{~Hz}), 3.91(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=$ $12.0,4.5 \mathrm{~Hz}), 3.74-3.70(\mathrm{~m}, 2 \mathrm{H}), 3.67-3.65(\mathrm{~m}, 3 \mathrm{H}), 3.61(\mathrm{~m}, 1 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}), 3.53(\mathrm{~s}$, $3 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 3.58-3.44(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ $(75 \mathrm{MHz}) \delta 105.4(\mathrm{~d}, \mathrm{~J}=221.3 \mathrm{~Hz}), 97.3,81.1,80.6(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}), 76.8,76.3$, $75.7(\mathrm{~d}, \mathrm{~J}=$ $34.1 \mathrm{~Hz}), 75.1,73.7$ (d, J =2.2 Hz), 71.6, 71.3, 65.9, 60.9, 60.6, 59.4, 59.2, 58.8, 57.9, 57.7; API-ES positive: $465.2(\mathrm{M}+\mathrm{Na})^{+}$; Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{35} \mathrm{FO}_{10}$ (442.47): C, 51.57; H, 7.97. Found: C, 51.64 ; H, 8.03. β-anomer. $[\alpha]_{\mathrm{D}}=-20.1^{\circ}\left(\mathrm{CHCl}_{3}\right.$, c 0.15$) ;{ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}) \delta$ $5.66(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=50.4,1.8 \mathrm{~Hz}), 4.48(\mathrm{bs}, 1 \mathrm{H}), 4.22(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=11.1,1.5 \mathrm{~Hz}), 3.87-3.82$ $(\mathrm{m}, 1 \mathrm{H}), 3.73-3.70(\mathrm{~m}, 2 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{~s}, 6 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{~s}$, $3 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 3.67-3.25(\mathrm{~m}, \mathrm{H}), 3.18(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=8.7,3.3 \mathrm{~Hz}) ; \delta$; API-ES positive: $465.2(\mathrm{M}+\mathrm{Na})^{+}$; Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{35} \mathrm{FO}_{10}$ (442.47): C, 51.57; H, 7.97. Found: C, 51.39; H, 8.15.

6-O-tertbutyldiphenylsilyl-2,3,4-tri-O-methyl-6-O-(2,3,4,6-tetra-O-methyl-D-manno-

 pyranosyl) - α - and β--D-mannopyranosyl fluoride 24.To a stirred solution of fluoride $22(22 \mathrm{mg}, 0.1 \mathrm{mmol})$, n-pentenyl glycoside $\mathbf{6}(52.8 \mathrm{mg}$, $0.1 \mathrm{mmol})$ and 4 A molecular sieves $(25 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added $\mathrm{I}(\mathrm{coll})_{2} \mathrm{ClO}_{4}(117$ $\mathrm{mg}, 0.25 \mathrm{mmol}$). Stirring was maintained for 1 hour and then the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$, washed with 10% aqueous sodium thiosulphate containing sodium bicarbonate, saturated aqueous sodium bicarbonate and water. The organic extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash chromatography (Hexane:AcOEt, 1:1) to give disaccharide $24 \alpha(32 \mathrm{mg}, 48 \%$) followed by disaccharide 24β (16 mg, 24\%). α-anomer $[\alpha]_{\mathrm{D}}=+43.5^{\circ}\left(\mathrm{CHCl}_{3}\right.$, c 1.0$) ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ (300MHz) $\delta 7.76-7.71(\mathrm{~m}, 4 \mathrm{H}), 7.42-7.34(\mathrm{~m}, 6 \mathrm{H}), 5.66(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=50.4,1.5 \mathrm{~Hz}), 5.05(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=1.2 \mathrm{~Hz}), 3.95-3.83(\mathrm{~m}, 4 \mathrm{H}), 3.76-3.66(\mathrm{~m}, 4 \mathrm{H}), 3.57-3.46(\mathrm{~m}, \mathrm{H}), 3.53(\mathrm{~s}, 6 \mathrm{H}), 3.51$ $(\mathrm{s}, 3 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}) \delta 135.9(\mathrm{x}$ 2), 135.6 (x 2), $134.1,133.6,129.4$ (x 2), 127.5 (x 2), 127.4 (x 2), 105.4 (d, $J=220.9 \mathrm{~Hz}$), $96.8,81.2,80.5(\mathrm{~d}, J=1.6 \mathrm{~Hz}), 76.7,76.1,75.6(\mathrm{~d}, J=34.0 \mathrm{~Hz}), 75.2,73.8(\mathrm{~d}, J=2.0 \mathrm{~Hz})$,
$73.0,65.5,63.3,60.9,60.6,59.3,58.3,57.9,57.6,26.7$ (x 3), 19.4.; API-ES positive: 684.3 $\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}$; Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{51} \mathrm{FO}_{10} \mathrm{Si}$ (666.85): C, 61.24; H, 7.71. Found: C, 61.09; H, 7.65. β-anomer $[\alpha]_{\mathrm{D}}=-9.5^{\circ}\left(\mathrm{CHCl}_{3}, \mathrm{c} 0.9\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}) \delta 7.78-7.70(\mathrm{~m}, 4 \mathrm{H}), 7.42-$ $7.35(\mathrm{~m}, 6 \mathrm{H}), 5.69(\mathrm{dd}, 1 \mathrm{H}, J=50.4,1.8 \mathrm{~Hz}, 4.48(\mathrm{bs}, 1 \mathrm{H}), 4.25(\mathrm{dd}, 1 \mathrm{H}, J=11.1,1.8 \mathrm{~Hz})$, $3.95(\mathrm{dd}, 1 \mathrm{H}, J=11.1,5.1 \mathrm{~Hz}), 3.91-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{~d}, 1 \mathrm{H}, J=3.3 \mathrm{~Hz}), 3.72(\mathrm{~m}, 1 \mathrm{H})$, $3.65(\mathrm{~s}, 3 \mathrm{H}), 3.62-3.55(\mathrm{~m}, 1 \mathrm{H}), 3.53(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{~s}, 6 \mathrm{H}), 3.44$ $(\mathrm{t}, 1 \mathrm{H}, J=9.3 \mathrm{~Hz}), 3.25-3.22(\mathrm{~m}, 1 \mathrm{H}), 3.19(\mathrm{dd}, 1 \mathrm{H}, J=9.3,3.0 \mathrm{~Hz}), 1.05(\mathrm{~s}, 9 \mathrm{H}) ;$); APIES positive: $684.3\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}$; Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{51} \mathrm{FO}_{10} \mathrm{Si}$ (666.85): C, 61.24; H, 7.71. Found: C, 61.15; H, 7.84.

2,3,4-tri-O-methyl-6-O-(2,3,4,6-tetra-O-benzoyl-a-D-mannopyranosyl)- α-D-

 glucopyranosyl fluoride 25.A stirred solution of n-pentenyl orthoester $8(66.4 \mathrm{mg}, 0.1 \mathrm{mmol})$, and fluoride 22 (22.4 $\mathrm{mg}, 0.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ and under argon was cooled to $-20^{\circ} \mathrm{C}$ and then NIS (44.8 $\mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathrm{Yb}(\mathrm{OTf})_{3}(62 \mathrm{mg}, 0.1 \mathrm{mmol})$ were added. The solution was stirred for 1 h and then was quenched by washing with a mixture of aqueous sodium bicarbonate and aqueous sodium thiosulfate solution. The separated organic extract was dried, filtered and concentrated. Purification by flash chromatography (hexane/ethyl acetate $3: 2$ to $1: 1$) gave disaccharide 25 (75 mg, 94\%). $[\alpha]_{\mathrm{D}}=-2.3^{\circ}\left(\mathrm{CHCl}_{3}, \mathrm{c} 0.9\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}) \delta 8.0-7.15$ $(\mathrm{m}, 20 \mathrm{H}), 6.04(\mathrm{t}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}), 5.87(\mathrm{dd}, 1 \mathrm{H}, J=10.1,3.3 \mathrm{~Hz}), 5.70(\mathrm{dd}, 1 \mathrm{H}, J=3.2$, $1.8 \mathrm{~Hz}), 5.64(\mathrm{dd}, 1 \mathrm{H}, J=50.3,1.8 \mathrm{~Hz}), 5.14(\mathrm{~d}, 1 \mathrm{H}, J=1.6 \mathrm{~Hz}), 4.67-4.58(\mathrm{~m}, 1 \mathrm{H}), 4.47-$ $4.39(\mathrm{~m}, 2 \mathrm{H}), 3.96(\mathrm{dd}, 1 \mathrm{H}, J=11.5,5.3 \mathrm{~Hz}), 3.87-3.78(\mathrm{~m}, 2 \mathrm{H}), 3.67(\mathrm{~m}, 1 \mathrm{H}), 3.54(\mathrm{~s}$, $3 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H}), 3.53-3.42(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}) \delta 166.2,165.4$, $165.3,165.2,133.4$ (x 2), 133.1, 133.0, 129.9, 129.8 (x 4), 129.7 (x 2), 129.6 (x 2), 129.4, 129.1, $128.9,128.5$ (x 2), 128.4 (x 2), 128.3 (x 2), 128.2 (x 2), 105.3 (d, $J=220.8 \mathrm{~Hz}$), $98.0,80.5,75.5(\mathrm{~d}, J=34.0 \mathrm{~Hz}), 75.4,73.7,70.3,69.9,68.8,67.1,66.9,62.8,60.9,59.4$, 57.8; API-ES positive: $825.2(\mathrm{M}+\mathrm{Na})^{+}$;Anal. Calcd for $\mathrm{C}_{43} \mathrm{H}_{43} \mathrm{FO}_{14}$ (802.79): C, 64.33; H, 5.40. Found: C, 64.47; H, 5.49.

In a different experiment a solution of n-pentenyl 2,3,4,6-tetra- O-benzoyl- α-Dmannopyranoside $7(79.7 \mathrm{mg}, 0.12 \mathrm{mmol})$, 2,3,4-tri- O-methyl- α-D-mannopyranosyl
fluoride $22(22.4 \mathrm{mg}, 0.1 \mathrm{mmol})$, NIS ($44.8 \mathrm{mg}, 0.2 \mathrm{mmol}$) and 4A molecular sieves (25 $\mathrm{mg})$ in anhyd. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was stirred under argon for 10 min at room temperature. Then the reaction was cooled at $-30^{\circ} \mathrm{C}$ and $\mathrm{BF}_{3} \mathrm{OEt}_{2}(15 \mu \mathrm{l}, 0.12 \mathrm{mmol})$ was added. After 30 min , the reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, washed with 10% aq $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and saturated aq $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The obtained residue was a complex mixture of compounds from which disaccharide 25 could be purified by flash chromatography (Hexane:AcOEt, 7:3)(20mg, 25\%).

Methyl 2,3,4-tri-O-methyl-6-O-(2,3,4,6-tetra-O-benzoyl-a-D-mannopyranosyl)- α-Dglucopyranoside 27.

A stirred solution of $\mathbf{8}(57.5 \mathrm{mg}, 0.087 \mathrm{mmol}), \mathbf{1 2}(47 \mathrm{mg}, 0.087 \mathrm{mmol})$ and $\mathbf{2 6}(20 \mathrm{mg}$, $0.087 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ under argon was cooled to $-30^{\circ} \mathrm{C}$ and then NIS $(38.7 \mathrm{mg}$, $0.173 \mathrm{mmol})$ and $\mathrm{BF}_{3} \mathrm{OEt}_{2}(1.1 \mu \mathrm{l}, 0.0087 \mathrm{mmol})$ were added. The solution was stirred for 20 minutes and then was quenched by washing with a mixture of aqueous sodium bicarbonate and aqueous sodium thiosulfate solution. The separated organic extract was dried, filtered and concentrated. Purification by flash chromatography (hexane/ethyl acetate $3: 2$ to $1: 1$) gave recovered $12(40 \mathrm{mg}, 85 \%)$ and disaccharide $27(68 \mathrm{mg}, 96 \%) .[\alpha]_{\mathrm{D}}=+4.3$ ${ }^{\mathrm{o}}\left(\mathrm{CHCl}_{3}, \mathrm{c} 3.2\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}) \delta 8.05-7.17(\mathrm{~m}, 20 \mathrm{H}), 6.02(\mathrm{t}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}), 5.85$ (dd, $1 \mathrm{H}, J=10.0,3.2 \mathrm{~Hz}$), $5.67(\mathrm{dd}, 1 \mathrm{H}, J=3.1,1.8 \mathrm{~Hz}), 5.14(\mathrm{~d}, 1 \mathrm{H}, J=1.4 \mathrm{~Hz}), 4.74(\mathrm{~d}$, $1 \mathrm{H}, J=3.5 \mathrm{~Hz}), 4.68(\mathrm{dd}, 1 \mathrm{H}, J=11.9,2.0 \mathrm{~Hz}), 4.48(\mathrm{ddd}, 1 \mathrm{H}, J=9.9,4.3,2.0 \mathrm{~Hz}), 4.39$ (dd, $1 \mathrm{H}, J=11.9,4.6 \mathrm{~Hz}), 3.91(\mathrm{dd}, 1 \mathrm{H}, J=11.0 \mathrm{~Hz}, 5.4 \mathrm{~Hz}), 3.79(\mathrm{dd}, 1 \mathrm{H}, J=10.9,1.4 \mathrm{~Hz})$, 3.69-3.63 (m, 1H), $3.57(\mathrm{~s}, 3 \mathrm{H}), 3.53(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{~m}, 1 \mathrm{H}) 3.46(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H}), 3.11$ (dd, $1 \mathrm{H}, J=9.7,3.7 \mathrm{~Hz}), 3.05(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}) \delta 166.4,165.7,165.6,165.5$, 133.7 (x 2), 133.4, 133.3, 130.2, 130.1 (x 2), 129.9 (x 6), 129.6 (x 2), 129.3 (x 4), 129.2 (x 2), $128.8,128.7,128.6,97.7,97.5,83.8,82.0,79.8,70.6,70.2,70.0,69.2,67.2,66.8,63.1$, 61.1, $60.8,59.3,55.4$; API-ES positive:837.2 $(\mathrm{M}+\mathrm{Na})^{+}$; Anal. Calcd for $\mathrm{C}_{44} \mathrm{H}_{46} \mathrm{O}_{15}$ (814.83): C, 64.86; H, 5.69. Found: C, 65.02; H, 5.73.

One pot assembly of trisaccharide 29.

A mixture of n-pentenyl orthoester 8 ($73 \mathrm{mg}, 0.11 \mathrm{mmol}$), 2,3,4 -tri-O-methyl- α-Dmannopyranosyl fluoride $22(22.4 \mathrm{mg}, 0.1 \mathrm{mmol})$ and 4 A molecular sieves in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$
was stirred under argon at $-20^{\circ} \mathrm{C}$ for 10 min . Then NIS ($24.6 \mathrm{mg}, 0.11 \mathrm{mmol}$) and $\mathrm{Yb}(\mathrm{OTf})_{3}$ ($68.2 \mathrm{mg}, 0.11 \mathrm{mmol}$) was added. The reaction mixture was stirred at $-20^{\circ} \mathrm{C}$ for 1 h , after which n-pentenyl-2,3,4-tri-O-methyl- α-D-mannopyranoside 17 ($26.1 \mathrm{mg}, 0.09 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added. The reaction was allowed to warm to room temperature and then $\mathrm{Yb}(\mathrm{OTf})_{3}(68.2 \mathrm{mg}, 0.11 \mathrm{mmol})$ was added. Upon stirring for 10 minutes, the reaction was was quenched by washing with a mixture of aqueous sodium bicarbonate and aqueous sodium thiosulfate solution. The separated organic extract was dried, filtered and concentrated. Purification by flash chromatography (hexane/ethyl acetate 1:1) trisaccharide 29 (69mg , 72\%); $[\alpha]_{\mathrm{D}}=-2.3^{\circ}\left(\mathrm{CHCl}_{3}, \mathrm{c} 0.9\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}) \delta 8.31-7.79(\mathrm{~m}, 8 \mathrm{H})$, 7.61-7.22 (m, 12H), $6.10(\mathrm{t}, 1 \mathrm{H}, J=9.9 \mathrm{~Hz}), 5.96(\mathrm{dd}, 1 \mathrm{H}, J=10.2,3.3 \mathrm{~Hz}), 5.77(\mathrm{ddt}, 1 \mathrm{H}$, $J=17.1,10.5,6.6 \mathrm{~Hz}), 5.76(\mathrm{~m}, 1 \mathrm{H}), 5.26(\mathrm{~d}, 1 \mathrm{H}, J=1.8 \mathrm{~Hz}), 5.12(\mathrm{~d}, 1 \mathrm{H}, J=1.0 \mathrm{~Hz})$, 5.03-4.92 (m, 2H), 4.88 (bs, 1H), 4.71-4.68 (m, 1H), 4.57-4.47 (m, 2H), 4.05-3.97 (m, 2H), $3.91-3.87(\mathrm{~m}, 1 \mathrm{H}), 3.81-3.35(\mathrm{~m}, 11 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H})$, $3.47(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}), 2.11-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.60(\mathrm{~m}, 2 \mathrm{H}){ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz})$ $\delta 166.2,165.4,165.2,165.1,137.9,133.3,133.2,132.9,129.9,129.8$ (x 2), 129.77 (x 2), 129.73 (x 2) 129.6 (x 2), 129.5, 129.2, 129.0, 128.5 (x 2), 128.4 (x 2), 128.3 (x 2), 128.2 (x 2), 114.9, $97.6,96.9,96.6,81.39,81.38,77.1,76.6,76.3,75.8,71.4,71.1,70.4,69.9,68.7$, $67.1,67.0$ (x 2), $66.0,62.9,60.8,60.7,58.7,58.6,57.5,57.4,30.3,28.6$; API-ES positive: $1090.3\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}, 1095.4(\mathrm{M}+\mathrm{Na})^{+}$; Anal. Calcd for $\mathrm{C}_{57} \mathrm{H}_{68} \mathrm{O}_{20}(1073,14): \mathrm{C}, 63.80 ; \mathrm{H}$, 6.39. Found: C, 63.93; H, 6.51.

Competition experiments between n-pentenyl glycoside 4 and glycosyl fluoride 12.

Experiment A. To a stirred solution of $\mathbf{4}(15.2 \mathrm{mg}, 0.05 \mathrm{mmol}), \mathbf{1 2}(27.1 \mathrm{mg}, 0.05 \mathrm{mmol})$ and $\mathbf{3 0}(16 \mathrm{mg}, 0.05 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ under argon was added IDCP ($46.8 \mathrm{mg}, 0.05$ mmol) in one portion. The solution was stirred for 30 minutes and then the mixture was quenched by washing with a mixture of aqueous sodium bicarbonate and aqueous sodium thiosulfate solution. The separated organic extract was dried, filtered and concentrated. Purification by flash chromatography (hexane/ethyl acetate 9:1 to 1:1) gave recovered $\mathbf{1 2}$ (24 mg, 89\%) and Methyl 2,3,4-tri-O-acetyl-6-O-(2,3,4,6-tetra-O-methyl- α-D-mannopyranosyl)-D-glucopyranoside $31(22 \mathrm{mg}, 82 \%)$ as a 1.4:1 mixture of anomers. α-anomer $[\alpha]_{\mathrm{D}}=+2.2^{\circ}\left(\mathrm{CHCl}_{3}, \mathrm{c} 0.12\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}) \delta 5.48(\mathrm{t}, 1 \mathrm{H}, J=9.8 \mathrm{~Hz})$, $4.96(\mathrm{t}, 1 \mathrm{H}, J=9.8 \mathrm{~Hz}), 4.93(\mathrm{~d}, 1 \mathrm{H}, J=3.3 \mathrm{~Hz}), 4.86(\mathrm{dd}, 1 \mathrm{H}, J=10.1,3.7 \mathrm{~Hz}), 4.36(\mathrm{bs}$, $1 \mathrm{H}), 4.07-3.97(\mathrm{~m}, 3 \mathrm{H}), 3.73(\mathrm{~m}, 1 \mathrm{H}), 3.68-3.32(\mathrm{~m}, 4 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{~s}$, $3 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 3.28-3.22(\mathrm{~m}, 1 \mathrm{H}), 3.17(\mathrm{dd}, 1 \mathrm{H}, J=9.0,3.2 \mathrm{~Hz}), 2.08(\mathrm{~s}$, $3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H})$; API-ES positive $561.3(\mathrm{M}+\mathrm{Na})^{+}$; Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{38} \mathrm{O}_{14}$ (538.54): C, 51.30; H, 7.11. Found: C, 51.07; H, 7.34; β-anomer ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (300MHz) $\delta 5.46(\mathrm{t}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}), 5.11(\mathrm{t}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}), 4.95-4.88(\mathrm{~m}, 4 \mathrm{H}), 4.00(\mathrm{ddd}, 1 \mathrm{H}, J=$ $10.1,4.1,2.3 \mathrm{~Hz}), 3.81(\mathrm{dd}, 1 \mathrm{H}, J=11.3,4.2 \mathrm{~Hz}), 3.64-3.54(\mathrm{~m}, 7 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{~s}$, $3 \mathrm{H}), 3.49(\mathrm{~m}, 1 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 2.01$ (s, 3H); API-ES positive: $561.2(\mathrm{M}+\mathrm{Na})^{+}$; Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{38} \mathrm{O}_{14}$ (538.54): C, 51.30; H, 7.11. Found: C, 51.45; H, 7.27.

Experiment B. To a stirred solution of $\mathbf{4}(15.2 \mathrm{mg}, 0.05 \mathrm{mmol}), \mathbf{1 2}$ ($27.1 \mathrm{mg}, 0.05 \mathrm{mmol}$) and $30(16 \mathrm{mg}, 0.05 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ under argon was added $\mathrm{Yb}(\mathrm{OTf})_{3}(31 \mathrm{mg}$, 0.05 mmol) in one portion. The solution was stirred for 5 minutes and then the mixture was
quenched by washing with aqueous sodium bicarbonate solution. The separated organic extract was dried, filtered and concentrated. Purification by flash chromatography (hexane/ethyl acetate $9: 1$ to $1: 1$) gave recovered $4(14 \mathrm{mg}, 92 \%)$ and Methyl 2,3,4-tri- O -acetyl-6-O-(2,3,4,6-tetra-O-benzyl- α-D-mannopyranosyl)- α-D-mannopyranoside $\mathbf{3 2}^{6}$ (36 $\mathrm{mg}, 86 \%) ;{ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}) \delta 7.37-7.16(\mathrm{~m}, 20 \mathrm{H}), 5.43(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=9.8 \mathrm{~Hz}), 5.01(\mathrm{t}, 1 \mathrm{H}$, $J=9.8 \mathrm{~Hz}), 4.90-4.49(\mathrm{~m}, 11 \mathrm{H}), 3.96-3.83(\mathrm{~m}, 3 \mathrm{H}), 3.76-3.66(\mathrm{~m}, 5 \mathrm{H}), 3.51(\mathrm{~m}, 1 \mathrm{H}), 3.30$ (s, 3H), 2.07 ($\mathrm{s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H})$.

[^4]

10

pm(1)

ppm (f1)

13

15

18

+						1	70		0	
140	130	120	110	100	90	80	70	60	50	40

18

19

21β

23β

24β

Whath

oprn (f1)

[^0]: ${ }^{1}$ (a) Andrews, C. W.; Rodebaugh, R.; Fraser-Reid, B. J. Org. Chem. 1996, 61, 5280; (b) Roberts, C.; Madsen, R.; Fraser-Reid, B. J. Am. Chem. Soc. 1995, 117, 1546.
 ${ }^{2}$ Mach, M.; Schlueter, U.; Mathew, F; Fraser-Reid B.; Hazen, K. C. Tetrahedron 2002, 58, 7345.

[^1]: ${ }^{3}$ Thiem, J.; Wiesner, M. Synthesis 1988, 124.

[^2]: ${ }^{4}$ Baeschlin, D. K.; Green, L. G.; Hahn, M. G.; Hinzen, B.; Ince, S. J.; Ley, S. V.; Tetrahedron Asymmetry, 2000, 11, 173.

[^3]: ${ }^{5}$ Miethchen, R.; Kolp, G. J. of Fluorine Chemistry 1993, 60, 49.

[^4]: ${ }^{6}$ (a) Wuiff, G.; Wichelhaus, J. Chem. Ber. 1979, 112, 2847-2853; (b) Crich, D.; Sun, S.; Tetrahedron 1998, 54, 8321.

