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IQ Imbalance in Multiuser Systems: Channel

Estimation and Compensation
Nikolaos Kolomvakis, Student Member, IEEE, Michail Matthaiou, Senior Member, IEEE,

and Mikael Coldrey, Member, IEEE

Abstract—In this paper, we consider the uplink of a single-cell
multi-user single-input multiple-output (MU-SIMO) system with
in-phase and quadrature-phase imbalance (IQI). Particularly, we
investigate the effect of receive (RX) IQI on the performance
of MU-SIMO systems with large antenna arrays employing
maximum-ratio combining (MRC) receivers. In order to study
how IQI affects channel estimation, we derive a new channel
estimator for the IQI-impaired model and show that the higher
the value of signal-to-noise ratio (SNR) the higher the impact
of IQI on the spectral efficiency (SE). Moreover, a novel pilot-
based joint estimator of the augmented MIMO channel matrix
and IQI coefficients is described and then, a low-complexity
IQI compensation scheme is proposed which is based on the
IQI coefficients’ estimation and it is independent of the channel
gain. The performance of the proposed compensation scheme
is analytically evaluated by deriving a tractable approximation
of the ergodic SE assuming transmission over Rayleigh fading
channels with large-scale fading. Furthermore, we investigate
how many MSs should be scheduled in massive multiple-input
multiple-output (MIMO) systems with IQI and show that the
highest SE loss occurs at the optimal operating point. Finally,
by deriving asymptotic power scaling laws, and proving that the
SE loss due to IQI is asymptotically independent of the number
of BS antennas, we show that massive MIMO is resilient to the
effect of RX IQI.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) systems

are built from an excessive number of antenna elements and

show great promise for mobile wireless technologies [1], [2].

Extra antennas help to focus energy into small regions of space

and bring huge improvements in throughput when compared

to conventional MIMO systems with small number of antennas

[3]. Other benefits of massive MIMO include: extensive use of

inexpensive low-power components, simplest linear receivers

e.g, maximum-ratio combining (MRC), become nearly optimal

[4], [5]. The focusing of energy also reduces the effects of

inter-cell interference, while the effect of channel estimation
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errors in individual receiver chains vanishes on the average

[6].

The excessive degrees-of-freedom offered by massive

MIMO may be used to limit performance degradation in the

event of failure of individual antenna units. This characteristic

of massive MIMO creates new opportunities in terms of the

accuracy of radio-frequency (RF) front-ends. Hardware accu-

racy constraints can be relaxed, thus allowing the deployment

of lower-quality (inexpensive) components on future massive

base stations (BSs), compared to today’s examples [3]. The use

of low-quality hardware is desirable in order to make massive

MIMO an economically sustainable technological shift, or

its total deployment cost will scale with the number of RF

front-ends and components. Unfortunately, these low-quality

RF components are more prone to hardware imperfections,

such as phase noise [7] and in-phase and quadrature-phase

imbalance (IQI), which refers to the mismatch between the

I and Q branches, i.e., the mismatch between the real and

imaginary parts of the complex signal. Several stages in the

receiver structure can contribute to the IQI, e.g., errors in the

nominal 90◦ phase shift between the local oscillator signals

used for down-conversion of the I and Q signals, as well as,

the difference in amplitude transfer between the total I and Q

branches.

Another source of IQI is the limited accuracy of analog

hardware, such as finite tolerance of capacitors and transistors

[8]. This leads to a degradation in the overall performance and,

therefore, to a deteriorated user experience. The performance

of single-cell uplink massive multi-user single-input multiple-

output (MU-SIMO) systems has been well investigated in the

literature [4], [9], [10]; however, the impact of IQ imper-

fections have been scarcely studied so far, especially in the

massive MIMO context. Although several IQI compensation

algorithms have been proposed, especially for the case of

single-input single-output (SISO) systems [11]–[13], little is

still known for the case of massive MIMO systems. To the

best of our knowledge the only relevant works are [8], [14]–

[18]. Specifically, [8] studied the sensitivity of massive antenna

arrays to RF IQI by elaborating on the design of single-

user beamforming schemes; moreover, [14] proposed aug-

mented spatial post-processing linear minimum-mean-square-

error (LMMSE) filters for mitigating the effect of IQI in

the uplink receiver. Finally, [16]–[18] proposed widely linear

precoding algorithms for massive MIMO systems with IQI.

However, none of these works proposed practical channel

estimation and low complexity IQI compensation schemes,

while a detailed performance analysis is also missing from
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the literature.

Motivated by the above discussion, we study the perfor-

mance of a single-cell uplink massive MU-SIMO system under

the presence of IQI at the BS side, while we assume that

the transmit IQ branches at the MSs are perfect. Although in

real implementations hardware impairments are not negligible,

there is a long body of literature on transmit IQI compensation

and, even elimination [12], [19]. Therefore, it is reasonable

to assume that IQI affects only the low-cost branches of the

massive BS.1

The paper makes the following contributions: we first as-

sume that the BS does not have knowledge of the IQI and,

thus, we evaluate analytically the impact of IQI on channel

estimation by deriving a LMMSE channel estimator for the

IQI-impaired model. Next, we propose a novel low-complexity

pilot-based joint estimator of the propagation MIMO channel

and the IQI coefficients at the receiver. After that, and in order

to mitigate the effect of IQI, we propose a low-complexity

IQI compensation scheme; this scheme can be implemented

individually on each antenna branch and it is independent of

the channel matrix (depends only on the estimation of the IQI

coefficients). Based on our analytical results, it is shown that

the proposed IQI compensation scheme is able to eliminate

IQI when the knowledge of the IQI parameters is perfect.

Furthermore, we study the performance of the proposed com-

pensation scheme by deriving an approximation of the ergodic

SE of MRC receivers. Moreover, it is demonstrated that when

the number of BS antennas, N , grows without bound, we

can reduce the transmit power of each user proportionally to

1/N if the BS has perfect channel state information (CSI),

and proportionally to 1/
√
N if the BS has imperfect CSI;

interestingly, in both cases the extra interference introduced

by the IQI is significantly suppressed in the large-antenna

limit. Finally, we show that by increasing the number of BS

antennas, the impact of IQI is reduced with a logarithmic

scaling.

This paper is organized as follows. In Section II, the

system model is presented. In section III, the LMMSE channel

estimator for the IQI-impaired model is derived. In section IV,

we introduce and analyze the proposed joint estimator of the

channel and the IQI coefficients. In Section V, we present

the proposed IQI compensation scheme, while in Section

VI, we derive analytical expressions for the achievable rates.

Numerical results are provided in Section VII, and conclusions

are drawn in Section VIII.

Notation: The superscripts (·)H , (·)T , (·)−1, (·)∗ and

(·)−∗ stand for the conjugate-transpose, transpose, inverse,

conjugate and conjugate-inverse respectively. The operators

tr{·}, vec{·}, E{·} and ⊗ denote the trace of a matrix,

the vectorization of a matrix, which converts the matrix into

a column vector, the expectation and the Kronecker product

correspondingly. For a matrix A, [A]ij denotes its entry in

the ith row and jth column of A. Moreover, we define the

1Direct-conversion radio (DCR) architectures are widely used in wireless
communication systems and it is a good candidate for massive MIMO [8].
One of the DCR RF imperfections is IQI due to analogue circuit sensitivity to
component variations, resulting in unavoidable errors in the I and Q branches
due to temperature variations and process mismatches.

operator |A|2 , AAH . Finally, || · ||F refers to the Frobenius

norm, In denotes the n×n identity matrix, and 0n represents

the n× n zero matrix.

II. SYSTEM AND IQ IMBALANCE MODELS

We consider the uplink of a single-cell MU-SIMO system,

which includes a BS equipped with N antennas communicat-

ing with K single-antenna mobile stations (MSs). The N × 1
received vector at the BS is

r =
√
ρuYx+w (1)

where Y is the N ×K channel matrix that characterizes the

propagation environment, x is a zero-mean circularly sym-

metric complex Gaussian K × 1 vector (i.e. E{xxT } = 0) of

independent, unit-power symbols transmitted simultaneously

by the K MSs, with the average transmit power of each MS

being ρu. Finally, w ∼ CN (0, σ2
wI) is the additive white

Gaussian noise (AWGN).

More specifically, Y models the composite propagation

channel affected by small-scale fading, geometric attenuation

and log-normal shadow fading. Its elements [Y]nk are given

by

[Y]nk = [H]nk
√
βk (2)

where [H]nk ∼ CN (0, 1), is the small-scale channel coeffi-

cient from the kth user to the nth antenna element. The term

βk models geometric attenuation and shadow fading between

the k-th MS and BS. The large-scale fading is modeled via

βk = ζk/d
α
k , where ζk is the lognormal shadowing with

variance σ2. Finally, the term dk is the reference distance

between the BS and the k-th MS, and α is the path loss

exponent. We can alternatively express Y as follows

Y = HD1/2 (3)

where D is a K×K diagonal matrix, whose diagonal elements

are given by [D]kk = βk.

A. RF IQ Imbalance

The RF front-ends of the MSs are assumed to be perfect

and we focus on the impact of the IQI at the BS. The IQI can

be modeled in either a symmetrical or asymmetrical fashion.

In the symmetrical method, each branch (I and Q) experiences

half of the phase and amplitude errors, see e.g. [16], [19]. In

the asymmetrical method, the I branch is modeled to be ideal

and the errors are modeled in the Q branch. Nevertheless,

it has been easily verified that the symmetrical model can be

obtained from the asymmetrical one by a linear transformation

with a rotation matrix and a scaling factor.

In this paper, we consider the asymmetrical IQI model for

our analysis. Note that this model has been extensively used

in the majority of relevant works (see e.g. [8], [14], [20],

[21]). The RX IQI can be modeled for the n-th (n = 1, ..., N )

individual antenna element on the baseband equivalent level

as [20]

rimb,n = K1,nrn +K2,nr
∗
n (4)

where rn is the baseband equivalent signal under ideal IQ

matching. The IQI coefficients K1,n and K2,n are of the
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form K1,n ,
(
1 + gne

−jφn
)
/2 and K2,n ,

(
1− gne

jφn
)
/2,

where gn and φn denote the RX amplitude and phase mis-

match, respectively. For perfect IQ matching, the imbalance

parameters are gn = 1 and φn = 0; thus, in this case, we

have K1,n = 1 and K2,n = 0. The antenna array (4) can be

rewritten as

rimb = K1r+K2r
∗ (5)

where K1 and K2 are N × N diagonal matrices whose the

nth diagonal entries are K1,n and K2,n respectively. Thus, the

matrices K1 and K2 are referring to the IQI coefficients of

each parallel receiver branch.

The IQI-impaired version of (1) is given by

rimb =
√
ρuK1Yx+

√
ρuK2Y

∗x∗ + w̃ (6)

where w̃ , K1w +K2w
∗.

We assume that both the IQI coefficients K1 and K2, and

the small-scale channel gain H are unknown at the receiver.

Next, we seek to develop a channel estimation scheme for the

IQI-impaired model in (6).

III. EFFECTIVE CHANNEL ESTIMATION WITHOUT IQI

COMPENSATION

In general, full knowledge of the channel gain of each

transmit-receive antenna link is required in MIMO systems

for implementing MRC [22]. In this section, we assume that

the BS does not have knowledge of the IQI and therefore we

consider that MRC receivers detect the transmitted signal x,

while x∗ is treated as interference. On this basis, we derive a

LMMSE estimator for the effective channel: Y1 , K1Y.

It is assumed that the channels are quasi-static, which

implies that the channel gain matrix remains invariant in

each frame but may vary from frame to frame. Under this

assumption, pilot symbols are inserted at the beginning of each

transmit frame in order to perform channel estimation.

Let Sp denote the K × τ transmitted pilot symbol matrix,

where τ is the length of channel training.2 Then, the equivalent

MIMO signal model for pilot symbol transmission can be

expressed as

Rimb,p = K1(
√
ρpYSp +Wp) +K2(

√
ρpYSp +Wp)

∗

=
√
ρpΩimbZp + W̃p (7)

where Rimb,p represents the N × τ received signal matrix

during pilot transmission, Wp refers to the N × τ noise

matrix and we define Y2 , K2Y
∗ and the power of each

pilot symbol ρp , τρu. Furthermore, we define Ωimb ,

[Y1 Y2] ∈ CN×2K , Zp , [STp SHp ]T ∈ C2K×τ , and

W̃p , K1Wp +K2W
∗
p .

By vectorizing the received signal in (7) and applying the

property [23]: vec(ABC) = (CT ⊗A)vec(B), the received

training signal of our system can be expressed as

vec(Rimb,p) =
√
τρu(Z

T
p ⊗ IN )vec(Ωimb) + vec(W̃p)

where, it can be verified that,

vec(W̃p) = (Iτ ⊗K1)vec(Wp) + (Iτ ⊗K2)vec(W
∗
p)

2Henceforth, the subscript p denotes transmission during the training phase.

and

vec(Ωimb) =

[
(D1/2 ⊗K1)vec(H)

(D1/2 ⊗K2)vec(H
∗)

]
.

Then, we apply the results of [24, Chapter 15.8] to derive

the estimation error E = vec(Ωimb)−vec(Ω̂imb) whose mean

is zero and its covariance matrix CMMSE is given by:

CMMSE =

(
τpu(Z

∗
p ⊗ IN )C−1

wp
(ZTp ⊗ IN ) +C−1

Ωimb

)−1

=

(
τpu
σ2
w

(
Z∗
pZ

T
p

)
⊗
(
|K1|2 + |K2|2

)
+C−1

Ωimb

)−1

(8)

where Cwp
, E

{
vec(W̃p)vec(W̃p)

H
}

and CΩimb
,

E
{
vec(Ωimb)vec(Ωimb)

H
}

denote the covariance matrices of

vec(W̃p) and vec(Ωimb) respectively. It can be shown that

CΩimb
=

[
D⊗ |K1|2 0NK

0NK D⊗ |K2|2
]

and Cwp
= σ2

wIτ ⊗
(
|K1|2 + |K2|2

)
.

Remark 1: We assume that the statistics, i.e., covariance

matrices, of both Ωimb and W̃p are perfectly known at the

receiver in order to perform the LMMSE estimator. This is a

reasonable assumption since the channel statistics change over

a slower time scale.3

Therefore, the total MSE becomes σ2
Ωimb

, E
{
||E||2F

}
=

tr {CMMSE}. In [25, Lemma 1] it is shown that for the positive-

definite matrix C−1
MMSE with (m,n)th entry [C−1

MMSE]mn, it holds

that

σ2
Ωimb

= tr {CMMSE}

≥
2NK∑

n=1

1

[C−1
MMSE]nn

where the equality is obtained if and only if C−1
MMSE is diagonal.

Given the fact that the matrices CΩimb
and Cw̃p

are diagonal, it

is easy to verify that CMMSE is a diagonal matrix, if and only if,

the training sequences are orthogonal between the ith and jth

MS. Mathematically speaking, the following condition needs

to be satisfied4

ZpZ
H
p = I2K . (9)

that is SpS
H
p = IK and SpS

T
p = 0K . For instance, this can be

achieved by choosing the rows of DFT matrices. Therefore, the

MSE σ2
Ωimb

is minimized if and only if the training sequences

are orthogonal between different MSs. It can be derived from

(8) that the minimum MSE of the (n, k)th (1 ≤ n ≤ N, 1 ≤
k ≤ K) entry of the effective channel Y1 is given by

σ̃2
nk =

(
1

βk|[K1]n|2
+

2τpu
(1 + g2n)σ

2
w

)−1

, τ ≥ 2K. (10)

3Despite the fact that the covariance matrix CΩimb
is known, i.e we know

D⊗|K1|2, the large-scale fading coefficient, βk , as well as the phase of K1

are unknown at the receiver. Thus, the IQI coefficients cannot be estimated
directly from CΩimb

such that an IQI estimation algorithm is proposed in
Section IV-B.

4This result is consistent with the classical results on MIMO channel
estimation in spatially white noise channels [26].
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Notice that the effective channel estimation is deteriorated

only if the amplitude mismatch is gn > 1. Interestingly, we

can observe that when the ampitude mismatch is gn < 1 or

there is phase mismatch (i.e. φn 6= 0), then the MSE in (10)

is lower than the one with perfect IQ matching (i.e. gn = 1
and φn = 0). In this case, intuitively, the variance of the

entries of the effective channel becomes smaller than the ones

of the case without IQI, and thus, the LMMSE performs better.

However, it is worth mentioning that in order to achieve the

MSE in (10), the training sequence length needs to be twice

of that in the case with ideal IQ branches. This can be a

crucial drawback especially when the number of MSs becomes

very high, thereby reducing significantly the duration of data

transmission within a frame interval.

By the orthogonality principle of LMMSE estimators [24],

each element of Ŷ1 has variance, β̂1nk (1 ≤ n ≤ N, 1 ≤ k ≤
K), given by

β̂1nk = β1nk − σ̃2
nk

=
2τρuβ

2
k|[K1]n|4

2τρuβk|[K1]n|2 + (g2n + 1)σ2
w

(11)

where β1nk = |[K1]n|2βk represents the variance of the

(n, k)th element of Y1.

IV. JOINT ESTIMATION OF CHANNEL AND IQI

COEFFICIENTS

In contrast to Section III, where the channel estimation

was blind to the IQI coefficients, we herein introduce a

novel pilot-based IQI estimation scheme. By estimating the

IQI coefficients K1 and K2, we are able to develop an IQI

compensation scheme which is proposed in the next section.

First, the propagation channel Y is estimated by decoupling

it from the IQI coefficients and, then, based on the estimated

channel, an estimator for the IQI coefficients is developed.

A. Channel Estimation

The estimation of the channel Y is of particular importance

for two reasons: i) it is an intermediate step in order to estimate

the IQI coefficients and ii) it is required for implementing

MRC reception after applying the IQI compensation scheme.

Following the technique in [27], the channel estimation can

account for IQI coefficients. From (7) and making use of the

property K1 +K∗
2 = IN , it is easy to verify that

Rimb,p +R∗
imb,p =

√
τρuΩZp +W′

p (12)

where Ω , [Y Y∗] and W′
p , Wp + W∗

p. The entries

of W′
p are i.i.d. real Gaussian random variables, each with

a N (0, 2σ2
w) distribution. We can now see that the received

signal in (12) is independent of the IQI coefficients but the

additive Gaussian noise variance is twice of that in the case

with ideal IQ branches. Following the channel estimation

technique in Section III, the LMMSE estimation error for the

kth MS is given by:

σ2
k =

(
1

βk
+

τpu
2σ2

w

)−1

=
2βkσ

2
w

2σ2
w + τρuβk

, 1 ≤ k ≤ K. (13)

By the orthogonality principle of LMMSE estimators, each

element of the kth column of Ŷ has variance, β̂k, and it is

given by

β̂k = βk − σ2
k

=
τρuβ

2
k

2σ2
w + τρuβk

, 1 ≤ k ≤ K. (14)

Then, denoting EY as the channel estimation error, the rela-

tionship between Y and Ŷ can be expressed as

Y = Ŷ +EY (15)

where each element of EY is zero-mean complex Gaussian

distributed random variable, and all entries in its kth column

have variance σ2
k.

B. Estimation of IQI coefficients

In this section, based on the estimated channel Ŷ, we derive

a novel least-square (LS) estimator of K1 and K2. A precise

estimator of the IQI coefficients is necessary in order for

the proposed IQI compensation scheme to be efficient. The

IQI coefficients are estimated individually on each antenna

element based on the received pilot symbols. Decoupling

the estimation problem on each antenna element, renders

its implementation simple, especially, when the number of

antennas becomes large. More specifically, the received signal

for the nth (n = 1, ..., N) individual antenna element during

the pilot transmission can be expressed as

rn,p =
√
τρuK1,n[A]np

+
√
τρuK2,n[A

∗]np + w̃n, 1 ≤ p ≤ τ

where

[A]np ,

K∑

k=1

[Y]nk[Sp]kp

(15)
=

K∑

k=1

([Ŷ]nk + [EY]nk)[Sp]kp

=
K∑

k=1

[Ŷ]nk[Sp]kp

︸ ︷︷ ︸
, [Â]np

+
K∑

k=1

[EY]nk[Sp]kp

︸ ︷︷ ︸
, [E]np

(16)

and w̃n , K1,nwn +K2,nw
∗
n.

After the nth antenna element receives all transmitted pilot

symbols, {rn,p}τp=1, the pilot-based received signal vector

rn = [rn,1, ..., rn,τ ]
T can be written as

rn =
√
τρuÂnκn +

√
τρuEnκn + w̃n (17)

where κn , [K1,n K2,n]
T and

Xn ,



[X ]n1 [X ∗]n1

...
...

[X ]nτ [X ∗]nτ


 ∈ C

τ×2 (18)

where X , {Â,E}. The LS estimate κ̂n is given by

κ̂n =
1√
τρu

(ÂH
n Ân)

−1ÂH
n rn. (19)
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Next, we simplify the expression of κ̂n by providing the

following proposition.

Proposition 1: Let Wn , ÂH
n Ân ∈ C2×2. Then, assum-

ing that the uplink pilots sequence Zp satisfies the condition

(9) we have that

[Wn]11 = [Wn]22 =

K∑

k=1

∣∣∣[Ŷ]nk

∣∣∣
2

(20)

and

[Wn]12 = [Wn]21 = 0. (21)

Proof: See Appendix I.

Proposition 1 shows that Wn is a scaled identity matrix which

makes its inverse simple to compute. Therefore, assuming that

(9) is satisfied, the LS estimate κ̂n can be rewritten as

κ̂n =
ÂH
n rn

√
τρu

∑K
k=1 |[Ŷ]nk|2

, τ ≥ 2K, (22)

and the resulting MSE is provided by the following proposi-

tion:

Proposition 2: Assuming that the IQI coefficients’ vector

κn is estimated by the LS estimator in (22), then the MSE of

each coefficient is given by

σ2
κn,i

, E{||Ki,n − K̂i,n||22} (23)

= E

{
|Ki,n|2

∑K
k=1 σ

2
k|[Ŷ]nk|2(∑K

k=1 |[Ŷ]nk|2
)2

+
||κn||2

τρu
∑K

k=1 |[Ŷ]nk|2

}
, i = 1, 2, (24)

and it can be upper bounded by

σ2
κn,i

≤ αiE

{
1

∑K
k=1 |[Ŷ]nk|2

}
(25)

where σ2
k expresses the channel estimation error in (13)

and αi , |Ki,n|2σ2
max + ||κn||2/τρu, where σ2

max ,

max1≤k≤K{σ2
k}.

Proof: See Appendix II.

According to the upper bound (25), the number of MSs, is a

crucial parameter in the performance of the estimator. Notice

that when N,K → ∞, while N/K = c > 1, then σ2
κn,i

→ 0.

This implies that, when the BS serves a large number of MSs

(i.e. K > 10), then the estimation of K1 and K2 can be nearly

perfect. Therefore, the IQI estimator can be very efficient in

a MU-SIMO regime where tens of users are served.

Unfortunately, the exact analytic derivation of the expres-

sion (24) imposes several mathematical challenges, since the

first negative moment of (24) does not exist [28]. Therefore,

we now provide a tractable tight approximation via the fol-

lowing proposition:

Proposition 3: Assuming that [Ŷ]nk (1 ≤ k ≤ K) are K
independent, zero-mean circular symmetric complex Gaussian

Fig. 1. Uplink transmission protocol: During the first L frames the IQI
coefficients: K1, K2 and the channel Y are jointly estimated with pilot
length τ = 2K . After estimating the IQI coefficients, and employing the IQI
compensation scheme the channel can be estimated directly from (37) during
the next B − L frames with pilot length τ = K .

random variables with variance β̂k, then the MSE of the LS

estimate κ̂n in (22) can be approximated as

σ2
κn,i

≈ αi

K∑

l=1

Γ(0, α
β̂l

)

β̂l
∏K
j=1,j 6=l(1−

β̂j

β̂l

)
, i = 1, 2 (26)

where α > 0 is a constant that can be arbitrary small, and

Γ(·, ·) is the upper incomplete gamma function defined as

Γ(s, x) ,

∫ ∞

x

ts−1 e−t dt.

Proof: See Appendix III.

Given the fact that IQI is a slowly varying process, we

assume that K1 and K2 remain constant over a sequence of B
frames. Therefore, it is sufficient to utilize the IQI estimator

in (22) only during the first L (L ≪ B) frames as shown

in Fig. 1. The IQI coefficient K1 (or K2) is estimated and

then, K2 (or K1) can be estimated according to the property

K̂2 = IN−K̂∗
1. Therefore, by denoting as Ψ(l) the estimation

error of Ki (i = 1, 2) during the lth (1 ≤ l ≤ L) frame and

given the fact that K1 +K∗
2 = IN , the estimated parameters

K̂
(l)
1 , K̂

(l)
2 can be written as

K̂
(l)
1 = K

(l)
1 +Ψ(l) (27)

K̂
(l)
2 = K

(l)
2 −Ψ∗(l) (28)

where Ψ(l) is a diagonal matrix which entries are modeled

as complex Gaussian distributed random variables, with zero

mean and the nth diagonal element has variance σ2
κn,i

.

We can estimate K1 and K2 with better precision by

averaging out the estimation error as follows:

K̂1 ,
1

L

L∑

l=1

K̂
(l)
1 = K1 +Ψ (29)

K̂2 ,
1

L

L∑

l=1

K̂
(l)
2 = K2 −Ψ∗ (30)

where Ψ is a diagonal matrix with zero mean entries and the

nth diagonal element has variance σ2
κn,i

/L.

V. IQ IMBALANCE COMPENSATION

The interference caused by IQI motivates the need for

compensation schemes. In this section, we propose an IQI

compensation scheme which is only based on the estimated

K̂1 and K̂2. Its advantage is that it can be implemented

individually on each antenna element and thus it has very low

complexity implementation at the receiver.
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Combining the received signal in (5) with the corresponding

expression for r∗imb, the augmented received signal is given by

Rimb = ΦR (31)

where Rimb , [rTimb rHimb]
T , Φ ,

[
K1 K2

K∗
2 K∗

1

]
∈ C2N×2N and

R , [rT rH ]T is the augmented ideal received signal (i.e.

without IQI).

Given the estimated IQI coefficients, we now define the

compensation matrix Φcomp as follows5

Φcomp ,

[
K̂∗

1K̂
−1
2 −IN

−IN K̂1K̂
−∗
2

]
. (32)

Note that the proposed IQI compensation scheme is indepen-

dent of the channel matrix gain, which makes its implementa-

tion very feasible. Moreover, since K2 is diagonal, its inverse

requires simply to compute the inverse of N scalar parameters

(with complexity O(N)). Thus, Φcomp can be computed offline

with very low implementation complexity since it contains

only 4N non-zero entries. Substituting (29) and (30) into the

matrix Φ, it can be decomposed as

Φ =

[
K̂1 K̂2

K̂∗
2 K̂∗

1

]

︸ ︷︷ ︸
,Φ̂

+

[
−Ψ Ψ∗

Ψ −Ψ∗

]

︸ ︷︷ ︸
,Φψ

. (33)

Multiplying the compensation matrix in (32) with the re-

ceived signal model in (31), using the decomposition in (33),

we have the following compensated received signal

Rcomp = ΦcompRimb (34)

= ΦcompΦ̂R+ΦcompΦψR︸ ︷︷ ︸
, Wψ

= Φcrn +Wψ (35)

where Φc , ΦcompΦ̂ =

[
Kc 0N×N

0N×N K∗
c

]
∈ C2N×2N , and

Kc , K̂∗
1K̂

−1
2 K̂1 − K̂∗

2. Finally, Wψ , [wT
ψ wH

ψ ]T , where

wψ = K̂−1
2 (Ψ∗r∗ −Ψr). It is worth mentioning that the

matrix Φc, and Wψ in (35) represent the effective channel

gain and the interference due to the imperfect estimation of

K1 and K2, respectively after IQI compensation.

The received signal vector in (35) can be written as Rcomp =
[rTcomp r

H
comp]

T , where rcomp is the N×1 desired received vector

after IQI compensation, which can be expanded as

rcomp = Kcr+wψ. (36)

The final stage of the compensation is to recover the ideal

received signal from (36). Therefore, we conclude that

r̂comp = K−1
c rcomp = r+ w̃ψ (37)

where w̃ψ , K−1
c wψ = G

(
Ψ∗r∗ − Ψr

)
, represents

the interference due to the imperfect knowledge of K1 and

5Note that, in practice, both K1 and K2 are always full-rank, since all
antenna elements are IQI-impaired.

K2. Notice that each element of the diagonal matrix G ,(
K̂2Kc

)−1

is given by [G]nn = 1
gncos(φn)

(n = 1, ..., N).

If the error of the IQI parameters’ estimation is zero, then

w̃ψ = 0 and the ideal received signal r is obtained.

Remark 2: Notice that after estimating K1 and K2, the

propagation MIMO channel Y can be estimated directly from

(37) during the last B − L frames as shown in Fig. 1. In this

case, the training sequence length becomes at least τ ≥ K .

Note that the compensated signal rcomp in (34) can be

expressed as

rcomp = K̂∗
1K̂

−1
2 rimb − r∗imb.

Given the fact that the matrices K̂∗
1K̂

−1
2 and Kc are diagonal,

the compensated signal r̂comp,n for the nth individual antenna

element is given by

r̂comp,n = [K−1
c K̂∗

1K̂
−1
2 ]nnrimb,n − [K−1

c ]nnr
∗
imb,n

which means that the proposed compensation scheme can be

implemented parallel on each antenna element and, thus, it has

very low complexity implementation.

VI. PERFORMANCE ANALYSIS

In this section, we derive a tractable analytical approx-

imation of the ergodic SE and provide the power scaling

laws for MRC receivers for the case with IQI but without

compensation.6 Finally, we show that the SE loss due to IQI

reaches a saturation point, as the number of BS antennas grows

without bound.

Proposition 4: The exact SE (bits/s/Hz) of the kth MS for

MRC receivers, Rmrc
k , after employing the proposed compen-

sation scheme, is approximated by

Rwic
k ≈ log2

(
1 +

ρuNβk

ρu
∑K
i=1,i6=k βi + ρuεy + εψ + 1

)
(38)

where εy ,
∑K

i=1 σ
2
i and

εψ , 2
(
2ρuβk + ρu

∑

i6=k
βi +

σ2
k

2
+ 1
)
Ḡ,

where Ḡ , 1
N

∑N
n=1

(
σκn,i

gncos(φn)

)2
.

Proof: See Appendix IV.

Note that the expression in (38) is an approximation, which

depends on the inter-user interference, the channel estimation

error εy and the interference εψ, which stems from the IQI

coefficients’ estimation error. We now turn our attention to

the power scaling laws and provide the following simplified

expressions for the case with IQI but without compensation.

Proposition 5: Assume that the BS has perfect CSI and that

the transmit power of each MS is scaled with N according to

ρu = Eu

N , where Eu is fixed. Then,

Riqi

k,P → log2 (1 + βkEuλP) , N → ∞ (39)

6Henceforth, the superscript ideal stands for the ideal case without IQI,
while the superscripts wic and iqi stand for the case with IQI employing
the proposed compensation scheme and the one with IQI but without com-
pensation respectively.
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where λP ,
( 1

n

∑
N
i=1 |[K1]n|2)2

1
n

∑
N
i=1

(
|[K1]n|4+|[K1|2|K2]n|2

) is a bounded

constant, depending on the IQI parameters. Notice that, when

the IQ branches are perfectly matched then λP = 1.

Proof: Assuming perfect CSI, the proof can be easily

derived from Appendix V.

Proposition 5 shows that with perfect CSI and the presence

of IQI at the BS and a large N , the performance of a MU-

SIMO system with N antennas at the BS and a transmit power

per MS of Eu/N is equal to the performance of a single-input

single output (SISO) system with transmit power EuβkλP.

Proposition 6: Assume that the BS has imperfect CSI,

obtained by LMMSE estimation from uplink pilots, and that

the transmit power of each MS is ρu = Eu√
N

, where Eu is

fixed. Then,

R
iqi

k,IP → log2
(
1 + τβ2

kE
2
uλIP

)
, N → ∞ (40)

where λIP ,
( 1

n

∑
N
i=1 λ̃n)

2

1
n

∑
N
i=1 |[K1]n|4

and λ̃n ,
|[K1]n|4

|[K1]n|2+|[K2]n|2 .

Proof: See Appendix V.

Proposition 6 implies that with imperfect CSI and a large

N -antenna array at the BS, the performance of a MU-SIMO

system with IQI at the BS and the transmit power per MS

to be Eu/
√
N is equal to the performance of a SISO link

with transmit power τβ2
kE

2
uλIP. Most importantly, the above

propositions showcase that massive MIMO with appropriate

power scaling is resilient to IQI.

Finally, it is worth mentioning, that [15] studied a gener-

alized Gaussian-type error model for the impact of residual

hardware impairments (e.g. phase noise, quantization and IQ

imbalance) at the BS. It was shown that in the massive MIMO

regime residual hardware impairments vanish asymptotically.

Similarly, we show, using a very different line of reasoning,

that the SE loss due to IQI reaches asymptotically a saturation

point which implies that massive MIMO systems are resilient

to IQI. We will also show in the next section that unless proper

compensation schemes are applied, the performance loss can

be substantial when the number of antennas is finite.

Proposition 7: Assume that the BS has imperfect CSI (ob-

tained by LMMSE estimation from uplink pilots), serving a

finite number of MSs and that the transmit power ρu = Eu
of each MS is fixed. Then

∆Rk,IP , Rideal
k,IP − Riqi

k,IP

→ o(1), N → ∞. (41)

Proof: Proposition 7 can be easily derived by using the

expression (67), the fact that logα − log β = log α
β and the

Lindeberg-Lévy central limit theorem [4, Eq. (5)].

Proposition 7 highlights that the SE loss due to IQI is

asymptotically independent of the number of BS antennas.

Furthermore, notice that Rideal
k,IP → ∞, in a logarithmic fash-

ion, as the number of BS antennas grow without bound. There-

fore, Proposition 7 implies that the ratio ∆Rk,IP/R
ideal
k,IP → 0,

while N → ∞. This result is of particular importance, since it

shows that the effect of IQI becomes negligible by increasing

the number of antennas. However, as will be shown via

simulation, this property will kick in for a very large number

of antennas.

Number of Ms (K)
5 10 15 20 25 30 35

M
S

E

10-3

10-2

10-1

100

101

Simulation (24)
Approximation (26)Imperfect CSI

Perfect CSI

5 MSs, τ = 2K

Fig. 2. MSE of K2 as a function of the number of MSs, K with τ = 2K .
In this example, the number of antennas is N = 100, the amplitude mismatch
is g = 1.2, the transmit power per MS is ρu = 10dB and the propagation
channel parameters are σ = 10dB and pathloss α = 3.8.
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Fig. 3. Area spectral efficiency of MRC receivers as a function of frames
L. In this example, N = 20, the number of frames that IQI remains invariant
over is B = 1000, the propagation channel parameters are σ = 10dB and
pathloss α = 3.8.

VII. NUMERICAL RESULTS

The analytical results are corroborated in this section by

studying the uplink in a single-cell simulation scenario. We

consider a circular cell with a radius of 1000m and assuming

uniform MSs distribution, as well as, that no user is closer to

the BS than 100m. The path loss exponent is α = 3.8, the

variance of the shadowing parameter is σ2 = 10dB and the

phase mismatch is φn = 18◦ (∀n = 1, ..., N ) [20]. Hereafter,

we assume identical amplitude mismatch across all antenna

elements, i.e. gn = g ≥ 1, ∀n = 1, ..., N . Furthermore, we

assume that the transmitted data are modulated with OFDM.

Here, we choose parameters that resemble those of the LTE

standard, i.e., T = 196 is the number of OFDM symbols in

a 1ms coherence interval [4]. Moreover, we assume that IQI

coefficients remain invariant for a period of 1s, i.e., B = 1000
coherence intervals. Finally, we assume that the noise variance

σ2
w = 1, such that ρu , SNR can be defined as the normalized

transmit SNR.

First, the IQI estimator in (22) is evaluated in Fig. 2. Note

that the curves are based on the Monte-Carlo simulation of the

expectation in (24), while the marker symbols correspond to
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Fig. 4. Area spectral efficiency of MRC receivers with different estimation
error of the IQI coefficients. In this example, K = 10, ρu = 16dB and the
propagation channel parameters are σ = 10dB and pathloss α = 3.8.

the analytical approximation in Proposition 3. It is observed

that the approximation agrees with simulations in all cases.

We compare the MSE of a scheme with a fixed number

of MSs, K = 5, and a scheme where the number of MSs is

variable with K ≥ 5, for perfect and imperfect CSI. Notice

that the higher the number of MSs, the more training symbols

need to be transmitted (τ ≥ 2K). Therefore, in order to

compare these two schemes, we assume that both allocate

the same number of pilots (τ = 2K). In Fig. 2, we see that

increasing the number of MSs, the MSE of K̂2 is reduced

faster than the scheme where the number of MSs is fixed

K = 5. This behavior can be easily explained from the

analytical expression in (26), by noticing that the summation

decays exponentially with the number of MSs.

Moreover, we have seen in Section IV-B that the propa-

gation channel estimation is of particular importance for the

performance of the IQI estimator. Fig. 2 also depicts the

MSE of K̂2 considering both perfect and imperfect CSI of

Y. We see that for the scheme with higher number of MSs

(K ≥ 10), the MSE with imperfect CSI converges faster to

that with perfect CSI. These results validate the importance

of the number of MSs on the efficiency of the IQI estimator

and show that the IQI estimator can be very efficient in a

MU-SIMO topology where tens of users are served.

Next, we illustrate the proposed IQI compensation scheme

utilizing the uplink transmission protocol in Fig. 1, and com-

pare its performance with that of the case without IQI and

the one with IQI but without compensation. On this basis, we

define the total area SE (measurable in bits/s/Hz/km2) over B
total frames, where IQI is invariant:

Rwic
IP =

(
T −K

T
− LK

BT

) K∑

i=1

Rwic
k , RA

IP =
T −K

T

K∑

i=1

RA
k,IP

where A , {ideal, iqi} and T is one frame in symbols.

Notice that due to the double length of pilots during the

estimation of IQI coefficients, the SE for the case with IQI

compensation is reduced by LK
BT compared with the other ones.

Fig. 3, shows for different values of SNR the SE as a

function of the frames L that the IQI coefficients’ estimator
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Fig. 5. Area spectral efficiency versus the number of BS antennas N
for MRC processing at the receiver for the case without IQI and the one
with IQI but without compensation. In this example, K = 10 MS are
served simultaneously, the reference transmit power is Eu = 20 dB, and
the propagation parameters is σ = 10 dB and α = 3.8.
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utilizes. The IQI coefficients are estimated based on the

expressions (29) and (30). As expected, there is a trade-off

between the SE and the precision of the estimates K1 and

K2. Clearly, the lower SNR the more iterations are needed

in order to achieve the highest SE. It is important to mention

that for both cases of SNR the number of iterations needed to

achieve the optimal SE is much lower than the total number

of frames B where IQI remains invariant over. As a result, the

SE loss of the compensation scheme due to IQI estimation is

negligible, i.e. LKBT ≈ 0.

In Fig. 4, assuming imperfect CSI, we observe that, the

performance degradation caused by the IQI highlights the

need for compensation schemes. Notice that, by increasing the

amplitude mismatch the proposed IQI compensation scheme

yields almost the same SE. Intuitively, as we have shown in

Proposition 4, after performing the compensation scheme, the

achievable rate per MS is mainly degraded by the interference

εψ. Particularly, εψ depends on the large-scale fading coef-

ficients βi (i = 1, ...,K) and the bounded constant Ḡ. By

increasing the amplitude mismatch (and given that −π/2 <
φ < π/2), and assuming that the IQI coefficients’ error is

given by (26), Ḡ will decrease converging asymptotically

(g → ∞) to γ
cos2(φ) , where γ is a constant, which implies that

the compensation scheme is intimately resilient to amplitude

mismatches.

We next illustrate the power scaling laws. Fig. 5 compares

the SE of the case without IQI and the one with IQI but

without compensation versus the number of BS antennas. The

power scaling of the MSs is ρu = Eu/N and ρu = Eu/
√
N ,

for perfect and imperfect CSI at the receiver, respectively. As

Proposition 5 implies, we see that the spectral efficiency of

the case with IQI but without compensation converges to the

asymptotic expression in (39). Interestingly, the effect of the

IQI is significantly suppressed by increasing the number of

BS antennas. Assuming perfect CSI with ρu = Eu/
√
N , the

SE of both cases grows without bound when N → ∞. On

the other hand, assuming imperfect CSI, the SE of the case

with IQI but without compensation converges slowly to the

expression in (40). In this case, notice that the effect of IQI is

reduced slowly with the number of BS antennas (theoretically√
N times slower than the convergence in (39)). These results

confirm that when we can scale down the transmitted power

of each user as ρu = Eu/N for the perfect CSI case, and as

ρu = Eu/
√
N for the imperfect CSI case when N is large,

then the interference due to the IQI is suppressed.

Fig. 6 demonstrates the SE as function of the SNR for dif-

ferent IQI coefficients in the cases with and without compen-

sation. It can be observed that for low SNR, the compensation

scheme cannot completely mitigate the residual IQI effects.

Nevertheless, for low SNR the noise dominates the IQI and

thus, the SE loss is negligible. However, for high SNR, the

high SE loss (up to 13% when g = 1.3) highlights the need

for IQI compensation. In this case, the proposed compensation

scheme effectively suppress the residual IQI effects and it is

easily observed that the SE after applying the compensation

scheme almost cancels the effect of the IQI. Finally, we see

that the approximation (38) is very tight with the exact SE for

low and mid SNR.

In general, the number of BS antennas, N , is fixed in a

deployment and not a variable, while the number of MSs, is the

actual design parameter. A scheduling algorithm decides how

many terminals are admitted in a certain coherence block, with

the goal of maximizing some performance metric. We assume

that the sum SE is the metric considered in the scheduler.

Ignoring the large-scale fading, Fig. 7 shows this metric as

a function of the number of scheduled MSs for a massive

MIMO deployment with N = 100 BS antennas. The operating

points that maximize the performance are marked and the

corresponding values of the ratio N/K are indicated. We

can easily observe that the optimized operating point is the

same for both cases without IQI and the one with IQI but

without compensation. We can see that the optimized operating

point is the range N/K < 10 and thus, it is possible to

let N and K be at the same order of magnitude for this

particular scenario. Interestingly, the highest SE loss occurs at

the optimal operating point. This can be explained by noticing

from (66) that the higher the number of users the higher

the interference due to IQI effect. However, by increasing

the number of users beyond the optimal operating point, the

overhead due to the length of pilots is dominant, and, thus,

the effect of IQI becomes negligible.

Notice, that when the number of MSs is high, i.e. K >
10, the proposed compensation scheme curve coincides with

the curve corresponding to no IQI; this implies that the IQI

estimator of K1 and K2 become nearly perfect.

We finally demonstrate the importance of Proposition 7.

Fig. 8 compares the SE loss of the case with IQI but

without compensation and the one employing the proposed

compensation scheme. In consistence with the observations in

Fig. 4, we see that the proposed compensation scheme is not

able to fully compensate for the total SE loss, however, its

performance loss is negligible (less than 0.35%). Moreover,

as Proposition 7 implies, notice that the IQI has diminishing

impact by increasing the number of BS antennas.

To sum up, we can conclude that for a very large number

of antennas the effect of IQI is reduced in a logarithmic

fashion; yet, for practical number of antennas, the performance
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degradation can be approximately as high as 16% (when the

number of antennas is N = 10). Therefore, if we desire to

achieve a SE loss less than 0.35%, then it is necessary to

utilize the proposed compensation scheme.

VIII. CONCLUSIONS

In this paper, we analyzed the impact of IQI impairments at

the BS by studying the uplink of a single-cell massive MIMO

system. In particular, we derived a new LMMSE channel

estimator for the IQI-impaired model and show that IQI can

downgrade the performance of MU-SIMO systems. Next, we

introduced and analyzed a novel pilot-based joint estimator

of the propagation MIMO channel and IQI coefficients at

the receiver. We showed that in a MU-SIMO regime, where

tens of users are served simultaneously, the IQI estimator is

very efficient. Moreover, we proposed a low-complexity IQI

compensation scheme which is based only on the estimation

of the IQI coefficients, and thus, its implementation can be

done offline and individually on each antenna element. Based

on this scheme, it was proved that IQI can be eliminated

at the receiver as long as the IQI coefficients are perfectly

known. Furthermore, we investigated how many MS should be

scheduled in massive MIMO systems with IQI to maximize the

SE for a fixed N . Interestingly, we found that the highest SE

loss occurs at the optimal operating point. Finally, we showed,

that by increasing the number of BS antennas without bound

the effect of IQI can be reduced in a logarithmic fashion. These

important observations showcase the resilience of massive

MIMO to IQI imperfections.

APPENDIX I

From the structure (18) of Ân we have

[Wn]11 = [Wn]22 =

τ∑

i=1

|[Â]ni|2 (42)

and

[W∗
n]12 = [Wn]21 =

τ∑

i=1

[Â]2ni. (43)

We first prove the expression (20). Using the definition of

[Â]ni in (16), the expression in (42) can be expanded as

τ∑

i=1

|[Â]ni|2 =

τ∑

i=1

K∑

k=1

K∑

j=1

[Ŷ∗]nk[Ŷ]nj [S
∗
p ]ki[Sp]ji

=

K∑

k=1

K∑

j=1

[Ŷ∗]nk[Ŷ]nj

τ∑

i=1

[S∗
p ]ki[Sp]ji (44)

Then, it is easy to verify from the condition (9) that

τ∑

i=1

[S∗
p ]ki[Sp]ji =

{
1, k = j
0, k 6= j

(45)

and therefore

τ∑

i=1

|[Â]ni|2 =

K∑

k=1

|[Ŷ∗]nk|2.

Similarly, it can be proved that the expression (43) equals

(21).

APPENDIX II

Substituting the received signal (17) into the LS estimation

of κn in (19), it is easy to see that the estimation error nk ,

κ̂n − κn, is given by

nk = (ÂH
n Ân)

−1ÂH
n Enκn

+
1√
τρu

(ÂH
n Ân)

−1ÂH
n w̃n.

Next, the expression of the nk is simplified by using the

proposition 3 and providing the following corollary.

Corollary 1: Let Cn , ÂH
n En ∈ C2×2. Assuming that the

uplink pilots sequence S satisfies the condition (9) then,

[Cn]11 = [C∗
n]22 =

K∑

k=1

[Ŷ]nk[E
∗
Y ]nk (46)

and

[Cn]12 = [Cn]21 = 0 (47)

Proof: The proof is similar with Proposition’s 3.

Then,

nk =
Cnκn

[Wn]11
+

ÂH
n w̃n√

τρu[Wn]11
. (48)

The IQI coefficients’ estimation error can be written as nk =
[nk,1 nk,2]

T , where nk,1 and nk,2 denote the estimation error

of the IQI coefficients K1,n and K2,n respectively.

Therefore, the estimation error can be expressed as

nk,i =
1

[Wn]11

(
[Cn]iiKi,n +

[ÂH
n w̃n]i√
τρu

)
, i = 1, 2 (49)

where [ÂH
n w̃n]i denotes the ith element of the column vector

ÂH
n w̃n ∈ C2×1.

Given that An, En and w̃n are uncorrelated, the MSE of

the estimated Ki,n (i = 1, 2) is given by

σ2
κi

= E{||κn,i − κ̂n,i||22}
= E{nk,in∗

k,i}

= E

{
|Ki,n|2

|[Cn]11|2
[Wn]211

}
+ E

{ ||κn||2
τρu[Wn]11

}
(50)

= E




|Ki,n|2

∑K
k=1 σ

2
k|[Y]nk|2(∑K

k=1 |[Y]nk|2
)2





(51)

+ E

{
||κn||2

τρu
∑K

k=1 |[Y]nk|2

}
(52)

where the channel estimation error EY and the thermal noise

w̃n are averaged out correspondingly. Finally, the MSE in (23)

can be upper bounded by

σ2
κi

≤ αiE

{
1

∑K
k=1 |[Ŷ]nk|2

}
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APPENDIX III

For ease of exposition we define the random variable

Q ,
∑K

k=1 |[Y]nk|2. Then, Q has a generalized chi-squared

distribution given as [29]

f(x;K,β1, ..., βk) =

K∑

i=1

e
− x

βi

βi
∏K
j=1,j 6=i(1 −

βj

βi
)
, x ≥ 0.

Therefore, the expectation of the inverse Q is given by

E

{
1

Q

}
=

∫ ∞

0

1

Q
f(Q;K,β1, ..., βk)dQ (53)

=

K∑

i=1

1

βi
∏K
j=1,j 6=i(1−

βj

βi
)

∫ ∞

0

e
− Q

βi

Q
dQ

︸ ︷︷ ︸
Γ(0,0)

.

Notice that the incomplete Gamma function is not defined

when Q = 0, since Γ(0, 0) → ∞. However, we practically

have that Q > 0 and therefore, a constant α will be defined

next such that Q ≥ α and the cumulative distribution function

(CDF) of Q, FQ(·), satisfies the condition: F (Q ≤ α) ≈ 0.

Particularly, we want to have that

FQ(Q ≤ α) =

∫ α

0

f(Q;K,β1, ..., βk)dQ

=

K∑

i=1

1− e
− α

βi

∏K
j=1,j 6=i(1 −

βj

βi
)

(54)

≈ 0.

By choosing a constant α > 0 such that α
βi

≪ 1, then

e
− α

βi ≈ 1− α
βi

. Substituting it into (54) we get

FQ(Q ≤ α) ≈ α

K∑

i=1

1

βi
∏K
j=1,j 6=i(1−

βj

βi
)

︸ ︷︷ ︸
[29]
= 0

= 0.

Therefore, to ensure that α
βi

≪ 1, α must be given by

α = cβmin, c ≪ 1

where c is an arbitrary constant and βmin , min1≤k≤K{βi},

and thus, the expression (53) can be approximated as

E

{
1

Q

}
≈

K∑

i=1

1

βi
∏K
j=1,j 6=i(1−

βj

βi
)

∫ ∞

α

e
− Q

βi

Q
dQ

=

K∑

i=1

Γ(0, α/βi)

βi
∏K
j=1,j 6=i(1−

βj

βi
)
.

APPENDIX IV

Recalling that Y = Ŷ + EY, we can rewrite the received

signal in (37) as

r̂c =
√
ρu

K∑

i=1

(ŷi + ei)xi +w + ñψ (55)

where ŷi and ei denote the ith column of the matrices Ŷ and

EY, respectively.

We denote the effective post-processing noise for the kth

MS as

ñk , ŷHk r̂c −
√
ρu||ŷk||2xk (56)

=
√
ρu

K∑

i=1,i6=k
ŷHk ŷixi +

√
ρu

K∑

i=1

ŷHk (ei −GΨyi)xi

+
√
ρu

K∑

i=1

ŷHk GΨ∗y∗
i x

∗
i + ŷHk G (Ψ∗w∗ −Ψw) + ŷHk w.

(57)

Given the estimated channel ŷk and the IQI estimation error,

the variance, σ̃2
k , E{ñkñHk } , of the post-processing noise is

obtained as

σ̃2
k = ρu

K∑

i=1,i6=k
||ŷHk ŷi||2 + 2ρu

K∑

i=1,i6=k
βi||ŷHk G̃||2

+ 2ρu

N∑

i=1

[G̃2]ii|ŷki|4 + 2||ŷHk G̃||2

+ σ2
k||ŷHk G̃||2 + ρu

K∑

i=1

σ2
i ||ŷk||2 + ||ŷk||2

where G̃ , G·diag(σκ1,i ...σκN,i
) (i = 1, 2). Then, the uplink

achievable rate for the kth user, employing MRC receivers, is

given by

Rwic
k = E

{
log2

(
1 +

ρu||ŷk||4
σ̃2
k

)}
. (58)

For MRC receivers, the exact achievable uplink rate of the

kth user, Rwic
k , can be lower bounded as [4, Eq. (15)]: Rwic

k ≥
R̂wic
k where R̂wic

k , log2

(
1 + (E {λwick })−1

)
and λwick is the

inverse signal-to-noise plus interference ratio

λwick ,
σ̃2
k

ρu||ŷk||4
.

The expectation of λwick can be evaluated as

λ̄wick , E
{
λwick

}
(59)

= E

{∑K
i=1,i6=k ||ŷHk ŷi||2

||ŷk||4

}
+ E

{
2
∑N
i=1[G̃

2]ii|ŷHki|4
||ŷk||4

}

(60)

+ E

{
αψ ||ŷHk G̃||2
ρu||ŷk||4

}
+ E

{
αe

ρu||ŷk||2
}

(61)

where αe , 1+ρu
∑K

i=1 σ
2
i and αψ , 2

(
ρu
∑

i6=k βi + 1
)
+

σ2
k. It is well known [4], [30] that the expectation of the first

term in (60) equals

∑K
i=1,i6=k β̂i

(N − 1)β̂2
k

(62)

while

E

{
αe′

ρu||ŷk||2
}

=
αe′

ρuβ̂k(N − 1)
. (63)
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Now, let tk , ||ŷHk G||2/||ŷk||4. Then, the first term in (61)

can be written as

E

{
αψ
ρu

tk

}
=

αψ
ρu

N∑

m=1

[|G̃|2]mmE

{ |ŷkm|2
||ŷk||4

}

where ŷkm is the mth element of the column vector ŷk.

We define ||ŷ(m)
k ||2 ,

∑N
i=1,i6=m |ŷk|2. For a sufficiently

large number of antennas ||ŷ(m)
k ||4 ≈ ||ŷk||4 and then |ŷkm|2

and ||ŷ(m)
k ||4 can be considered independent. Thus, its ex-

pected value is approximated as

E

{
αψ
ρu

tk

}
≈ αψ

ρu

N∑

m=1

β̂k[|G̃|2]mmE

{
1

||ŷ(m)
k ||4

}
. (64)

Similarly, the expectation of the second term in (60) can be

approximated as

2

N∑

m=1

2β̂2
k[|G̃|2]mmE

{
1

||ŷ(m)
k ||4

}
. (65)

The expectation term in (64) and (65) can be written as a

scalar central complex Wishart matrix with N − 1 degrees of

freedom [30, Eq. (2.9)]

E

{
1

||ŷ(m)
k ||4

}
=

1

β̂2
k(N − 2)(N − 3)

.

Substituting (62)-(65) into (59) and assuming N ≫ 3, the

simplified approximation in (38) is obtained.

APPENDIX V

We can rewrite the received signal in (6) as

rimb =
√
ρu

K∑

i=1

(ŷ1i + εi)xi +
√
ρu

K∑

i=1

y2ix
∗
i + w̃ (66)

where yik , Kiyk and εi denotes the effective channel

estimation error. Therefore, the effective post-processing noise

for the kth MS is given by

n̂k , ŷH1krimb −
√
ρu||ŷ1k||2xk

=
√
ρu

K∑

i=1,i6=k
ŷH1kŷ1ixi +

√
ρu

K∑

i=1

ŷH1kεixi

+
√
ρu

K∑

i=1

ŷH1kK2y
∗
i x

∗
i + ŷH1kw̃.

Given the fact that the estimated channel ŷ1k and its

estimation error εi are uncorrelated, it can be shown that

they are also statistically independent. Therefore, the variance,

σ̂2
k , E{n̂kn̂∗

k} , of the post-processing noise is obtained as

σ̂2
k = ρu

K∑

i=2

||ŷH1kŷ1i||2 + ρuŷ
H
1k

(
K∑

i=1

Ei
)
ŷ1k

+ ρu

K∑

i=1

||ŷH1kK2y
∗
i ||2 + ||ŷH1kK1||2 + ||ŷH1kK2||2

where Ei , diag(σ̃2
1,i...σ̃

2
N,i). Then, the uplink achievable rate

for the kth user is given by

Riqi

k,IP = E

{
log2

(
1 +

ρu||ŷ1k||4
σ̂2
n

)}
. (67)

Substituting pu = Eu/
√
N and using the fact that each

element of ŷH1k is a RV with zero mean and variance β̂1nk

given by (11) along with

1

N
ŷH1kŷ1k → 1

N

N∑

n=1

β̂1nk

and
1

N
ŷH1kŷ

∗
1k → 0,

1

N
ŷH1kŷ1i → 0

as N → ∞, we obtain Proposition 6.
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