
IQC-Synthesis with General Dynamic Multipliers ⋆

Joost Veenman and Carsten W. Scherer ∗

∗ Department of Mathematics, University of Stuttgart, Germany,
e-mail: {joost.veenman,carsten.scherer}@mathematik.uni-stuttgart.de

Abstract: In this paper we generalize our previous results on the synthesis of robust controllers. A
novel controller/scaling algorithm is proposed that allows for the use of arbitrary real-rational Integral
Quadratic Constraint (IQC) multipliers with no poles on the extended imaginary axis. In contrast to
the classical µ-synthesis approaches, the techniques completely avoid gridding as well as curve-fitting.
Moreover, while the classical approaches are restricted to the use of real/complex time-invariant or
arbitrarily fast time-varying parametric uncertainties, the IQC framework can be employed for a much
larger class of uncertainties involving nonlinearities and bounds on rates of time-varying parametric
uncertainties. The results are illustrated through a numerical example.
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1. INTRODUCTION

During the last three decades the synthesis of H∞-controllers
has received a lot of attention (Doyle et al. (1989), Gahinet and
Apkarian (1994), Iwasaki and Skelton (1994)). Despite the fact
that the developed synthesis techniques had a major impact in
the control community and have been used for numerous appli-
cations, they generally can only be employed in a reliable way
if the involved LTI models describe the real system sufficiently
well. If, on the other hand, the LTI models are uncertain (i.e.
inaccurate), the problem of synthesizing controllers that are op-
timally robust to these uncertainties is much harder, and, apart
from some special cases, no convex solution for the associated
optimization problem is known.

Despite the complexity of the robust H∞-controller synthesis
problem, a number of very useful but non-optimal methods,
such as µ- and Km-synthesis, have been suggested in the litera-
ture (see e.g. Safonov et al. (1993), Safonov and Chiang (1993),
Helmersson (1995), Young (1994)). Essentially these methods
rely on an iteration between the synthesis of an optimal H∞-
controller, while fixing the involved scalings, and finding scal-
ings by computing an upper-bound of the structured singular
value, while fixing the controller. Although the individual steps
admit convex solutions and the overall procedure converges,
there is no guarantee whatsoever that the resulting controller is
globally optimal. Moreover, as another serious limitation of all
these methods, they can only be employed, without introducing
too much conservatism, for the class of real/complex time-
invariant or arbitrarily fast time-varying parametric uncertain-
ties. Therefore, application to a larger class of uncertainties
might yield overly conservative results. The methods, never-
theless, are numerically reliable and have been successfully
applied in many practical applications.

A well known framework for the analysis of uncertain systems
is the IQC approach, which was initially formulated by Megret-
ski and Rantzer (1997). IQCs are very useful in capturing a
rich class of uncertainties. One could for example think of
repeated static nonlinearities such as saturation (see e.g. Zames
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and Falb (1968), Chen and Wen (1995), D’Amato et al. (2001))
or smoothly time-varying parametric uncertainties as well as
uncertain time-varying time-delays, both with bounds on the
rate-of-variation (see e.g. Helmersson (1999), Köroğlu and
Scherer (2006), Kao and Rantzer (2007)). Until recently, the
IQC framework could also be employed for a limited number
of synthesis applications, if the corresponding IQC-multipliers
were restricted to be static (see e.g. Packard (1994), Geromel
(1999), Scherer (2001), Ferreres and Roos (2005)). Preliminary
work on synthesis based on dynamic IQC-multipliers has been
done by Scherer and Köse (2008). One of the essential difficul-
ties was the characterization of nominal stability of the closed-
loop system. This problem has been resolved in Scherer and
Köse (2008), by means of an exact characterization of closed-
loop stability in terms of a suitable positivity constraint on the
LMI solutions.

The goal of this paper is to generalize our previous results
on the synthesis of robust controllers (Veenman and Scherer
(2010)) from the use of dynamic DG-scalings to the use of
arbitrary real-rational IQC-multipliers with no poles on the
extended imaginary axis. Inspired by the results of Scherer and
Köse (2008), we formulate an exact characterization of nominal
stability in terms of simplified state-space relations with lower
state dimensions and LMI certificates for the corresponding
Frequency Domain Inequalities (FDI). Analogous to the ex-
isting µ- and Km-synthesis techniques, it will be shown, by
employing the insight of Gahinet and Apkarian (1994), Iwasaki
and Skelton (1994) and Megretski and Rantzer (1997) that the
results are also very useful in a controller/scaling algorithm
for the synthesis of robust controllers. The suggested algorithm
enables us to perform robust controller synthesis in a systematic
fashion for a much larger class of uncertainties if compared to
the classical µ and Km-synthesis approaches.

The paper is organized as follows. After having introduced
some preliminaries in Section 2, we formally state the problem
in Section 3. Then, in Section 4 and 5, we give a short recap on
H∞-synthesis and IQC-analysis respectively. The core of the
paper is found in Section 6 and forms the basis for the main
results in Section 7. We conclude the paper with a numerical
example in Section 8 and some final remarks in Section 9.
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2. NOTATION AND PRELIMINARIES

L2 denotes the space of vector-valued square integrable func-
tions defined on [0,∞), with the usual inner product given

by 〈., .〉. RL
m×n
∞

(RH
m×n
∞

) denotes the space of all real-
rational and proper (and stable) matrix functions that have
no poles on the extended imaginary axis (in the closed right-
half complex-plane). By an operator we mean a map G :

L a
2 → L b

2 , and for two given linear operators G =
(

G11G12

G21G22

)

and ∆, the Linear Fractional Transformation (LFT) ∆ ⋆ G

is defined as G22 +G21∆(I−G11∆)
−1

G12, assuming that

(I−G11∆)−1
exists. Realizations of Linear Time Invariant

(LTI) systems are denoted by the standard notation G =
[
AB

CD

]

:= C (sI−A)−1
B + D. We finally use (⋆)∗G2G1 to

abbreviate G∗

1G2G1.

3. PROBLEM FORMULATION

Consider the uncertain plant in Figure 1 where G represents a
proper, possibly unstable and weighted LTI system that admits
a minimal realization of the form

(
q
z
y

)

=






A Bp Bw Bu

Cq Dqp Dqw Dqu

Cz Dzp Dzw Dzu

Cy Dyp Dyw 0






︸ ︷︷ ︸

(
p
w
u

)

, A∈R
n×n,

G

(1)

where respectively col(p, w, u)∈L
np+nw+nu

2 and col(q, z, y)∈

L
nq+nz+ny

2 denote the collection of uncertainty, exogenous
disturbance and control input signals and uncertainty, perfor-
mance and measurement output signals. The plant is subject to
perturbations of the bounded and causal operator ∆, which is
allowed to take values from a given star-convex set ∆ with
center zero (i.e. [0, 1]∆ ⊆ ∆), describing the uncertainties
and/or nonlinearities.

The main goal in robust control is the synthesis of a controller
K that dynamically processes the measurement y in order to
provide a control input u that robustly stabilizes the system
interconnection of Figure 1 while the L2-gain from w to z is
rendered less than γ. Here K is a proper LTI system that admits
a minimal realization of the form

u=

[
AK By

Cu Duy

]

︸ ︷︷ ︸

y, AK ∈R
n×n.

K

(2)

Given the plant G and the set ∆, the goal of this paper can now
be formally stated as follows: Design a robust controllerK such
that, for all ∆∈∆, the interconnection of Figure 1 is stable and
the L2-gain from w to z is rendered less then γ > 0.

Analogously to the existing µ- and Km-synthesis techniques
and our previous work (Veenman and Scherer (2010)), the main
idea of this paper is to develop an algorithm that relies on an
iteration between the synthesis of an optimal H∞-controller,
while fixing the involved IQC-multipliers, and finding IQC-
multipliers by performing an IQC-analysis, while fixing the
controller. The key problem after each synthesis/analysis iter-
ation step, is to find suitable stable weights for a new aug-
mented plant that can be used for the synthesis of a robust
H∞-controller in a next iteration step. Although it would be
straightforward to proceed if the IQC-multipliers are restricted
to be static, it is much more delicate to construct the new

∆

G-
--

-

�

K �

p

w

u

q

z

y

Robust Controller

Uncertain Plant

Fig. 1. Setup for Robust synthesis.

augmented plant for the more general case of dynamic IQC-
multipliers. The essential difficulty is related to closed-loop
stability. Despite the fact that the results of Scherer and Köse
(2008) fully apply for general dynamic IQC-multipliers and can
be adopted in order to obtain the desired augmented plant, we
provide much simpler and easier to implement state-space rela-
tions with lower state dimensions by formulating an alternative
and constructive proof of (Goh, 1996, Theorem 2).

4. NOMINAL H∞-CONTROLLER SYNTHESIS

In this section we give a brief recap on the well known LMI
solution for the synthesis of H∞-controllers, as formulated by
Gahinet and Apkarian (1994) and Iwasaki and Skelton (1994).
For this purpose consider the nominal plant Gnom :=∆⋆G, with
∆= 0.

Theorem 1. (H∞-Synthesis). Suppose that ∆= 0. Then there
exists a controller K such that the interconnection of Figure
1 is stable and the L2-gain from w to z is rendered less than
γ > 0, if there exist symmetric matrices X and Y for which the
following LMIs are feasible:

(
X I
I Y

)

≻0 (3)

T T
y (⋆)

T






0 X 0 0
X 0 0 0
0 0 γ−1I 0
0 0 0 −γI











I 0
A Bw

Cz Dzw

0 I




Ty≺0 (4)

T T
u (⋆)

T






0 Y 0 0
Y 0 0 0
0 0 γI 0
0 0 0 −γ−1I











−AT −CT
z

I 0
0 I

−BT
w −DT

zw




Tu≻0 (5)

Here, Ty and Tu are basis matrices of ker (Cy Dyw ) and

ker
(
BT

u DT
zu

)
respectively.

Once a feasible solution is found, one can, subsequently, deter-
mine the controller K along the lines of Gahinet and Apkarian
(1994) and Iwasaki and Skelton (1994).

5. ROBUST STABILITY AND PERFORMANCE
ANALYSIS WITH DYNAMIC IQCS

Now consider the standard input-output setting for robust sta-
bility and performance analysis in Figure 2, where M := G ⋆

K ∈RH
(nq+nz)×(np+nw)
∞

represents the corresponding nom-
inal, stable and weighted closed-loop LTI part of Figure 1 that
admits the minimal realization

M :=

(
MqpMqw

MzpMzw

)

=





A Bp Bw

Cq Dqp Dqw

Cz Dzp Dzw



.

Here the closed-loop realization matrices are defined by
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Fig. 2. Standard configuration for robust stability and perfor-
mance analysis.





A Bp Bw

CqDqpDqw

CzDzpDzw



=






A 0 Bp Bw

0 0 0 0
Cq0DqpDqw

Cz 0Dzp Dzw




+






0 Bu

I 0
0Dqu

0Dzu




×

(
AK By

Cu Duy

)(
0 I 0 0
Cy 0DypDyw

)

.

(6)

M is subject to perturbations by the bounded and causal
operator ∆ representing the uncertainties and nonlinearities.
The feedback interconnection of Figure 2 is well-posed if the
operator I−Mqp∆ has a causal inverse. We say that the system
interconnection of Figure 2 is robustly L2-stable, if for all

∆ ∈∆, (I−Mqp∆)−1
defines a bounded and causal operator

on L2. If the system is robustly stable, the outputs q and z
have finite-energy, whenever ∆∈∆ and the loop is excited by
finite-energy inputs ζ and ξ. Moreover, we say that the system
interconnection of Figure 2 has a robust L2-gain performance
of level γ, if it is robustly L2-stable and if the worst-case L2-
gain from w to z is less than γ > 0.

Let us introduce the scaling factor τ ∈ [0, 1] and recall that
an uncertainty/nonlinearity ∆ ∈ τ∆ is said to satisfy the

IQC defined by the multiplier Π ∈ RL
(nq+np)×(nq+np)
∞

if the
following condition holds true:

〈(
q

∆(q)

)

,Π

(
q

∆(q)

)〉

≥ 0, ∀q ∈ L
nq

2 . (7)

In applications one constructs a whole family of multipliers
that are parameterized as Π = Ψ∗

PΨ with a suitable set of

symmetric matrices P and with a typically tall Ψ∈RH
nψ×np

∞

such that the IQC holds for all Π∈Π and ∆∈τ∆. In this paper
we assume to have no prior knowledge about the structure of Ψ
and P ∈ P. Hence, conveniently we can partition the columns
of Ψ as (Ψ1 Ψ2 ), compatible with the rows of col(Mqp, I) and
alternatively consider

〈(
q

∆(q)

)

,Ψ∗PΨ

(
q

∆(q)

)〉

≥ 0, ∀q ∈ L
nq

2 , (8)

where Ψ∗PΨ=(Ψ1 Ψ2)
∗

P (Ψ1 Ψ2).

It is well known from Megretski and Rantzer (1997) that
stability of the feedback interconnection of Figure 2 can now
be characterized as follows.

Theorem 2. (Megretski & Rantzer). Suppose that, for all τ ∈
[0, 1] and ∆ ∈ τ∆, (i) the feedback interconnection of Figure
2 is well-posed and (ii) ∆ satisfies (8). Then the feedback
interconnection of Figure 2 is stable and the L2-gain from w to
z is less than γ if there exists a P ∈ P for which the following
FDI is satisfied:

(⋆)
∗

Πe(iω)






Mqp(iω)Mqw(iω)
I 0

Mzp(iω)Mzw(iω)
0 I




≺ 0, ∀ω ∈ R ∪ {∞}. (9)

Here Πe := Ψ∗

ePeΨe represents the extension of the IQC
multiplier Π = Ψ∗PΨ to L2-performance with Pe :=
diag(P, I,−γ2I) and Ψe :=diag(Ψ, I, I).

If all conditions of Theorem 2 are satisfied for Π, they hold as
well for Π + ǫI for some sufficiently small ǫ > 0. We can,
hence, assume

Ψ∗

1PΨ1 ≻ 0, ∀ω ∈ R ∪ {∞}. (10)

Let us now suppose that Ψ1 and τΨ2 respectively admit the
minimal realizations

Ψ1 =

[
A1 B1

C1 D1

]

, τΨ2 =

[
A2 B2

C2 D2

]

, (11)

with A1 and A2 being stable. We explicitly mention that τ has
been incorporated into the realization of Ψ2. Then, by applying
the KYP lemma, the FDIs (9) and (10) are equivalent to the

existence of some symmetric matrices X and X̂ , for which the
following LMIs hold:

(⋆)
T





0 X 0
X 0 0
0 0 Pe
















I 0
A1 0 B1Cq
0 A2 0
0 0 A
C1C2D1Cq
0 0 Cz
0 0 0

B1Dqp B1Dqw

B2 0
Bp Bw

D1Dqp+D2D1Dqw

Dzp Dzw

0 I












≺0,

(12)
(
AT

1 X̂ + X̂A1 + CT
1 PC1 X̂B1 + CT

1 PD1

BT
1 X̂ +DT

1 PC1 DT
1 PD1

)

≻ 0. (13)

If we partition X as

X =

(
X11 X12 X13

X21 X22 X23

X31 X32 X33

)

,

where X11, X22 and X33 have compatible dimensions with A1,
A2 and A respectively, we can define the coupling condition
(Scherer and Köse (2008))

(

X11 − X̂ X13

X31 X33

)

≻ 0 (14)

and state the following result.

Theorem 3. (IQC-Analysis). The controller K stabilizes the
system interconnection of Figure 1 and renders the L2-gain
from w to z less than γ > 0 for all ∆ ∈ τ∆ and for all
τ ∈ [0, 1] if the following statement is true:

∃ X , X̂, P ∈ P : (12), (13), (14) hold ∀τ ∈ [0, 1]. (15)

Note that the outer factors of the IQC-multipliers Ψ are gener-
ally tall and, hence, cannot be inverted. Moreover, in case Ψ is
square and invertible, there is no guarantee that Ψ−1 is stable. In
order to construct suitable stable weights for a new augmented
open-loop generalized plant that can be used for the synthesis of
a robust H∞-controller by employing Theorem 1, we require
Ψ to be square, upper triangular, stable and invertible, while the
right lower block should have a stable inverse. This is causing
the key technical problem of this paper.

6. REFORMULATION OF THE ANALYSIS LMIS

In order to construct the desired weights by using state-space
arguments, we will provide an alternative constructive proof of
the following result of Goh (1996).

Lemma 4. Suppose that statement (15) holds. Then there exist

matrices Ψ̂j ∈ RH ∞, j = 1, 2, 3 with Ψ̂−∗

1 , Ψ̂−1
2 ∈ RH ∞

such that

Ψ∗PΨ =

(
Ψ̂1 Ψ̂3

0 Ψ̂2

)∗(
I 0
0−γ2I

)(
Ψ̂1 Ψ̂3

0 Ψ̂2

)

=: Ψ̂∗P̂ Ψ̂ (16)

and Ψ̂ admits the controllable realization
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Ψ̂ =

(
Ψ̂1 Ψ̂3

0 Ψ̂2

)

=







A1 0 B1 0

0 Â2 0 B̂2

Ĉ1 Ĉ3 D̂1 D̂3

0 Ĉ2 0 D̂2






. (17)

Proof. For notational simplicity we consider the case τ =
1. Since (13) is satisfied there exist some square and non-

singular D̂1 such that DT
1 PD1 = D̂T

1 D̂1 ≻ 0. With any such
factorization (13) is identical to the ARI

AT
1X̂+X̂A1+CT

1PC1−(⋆)TD̂−1
1 D̂−T

1

(
BT

1 X̂+DT
1 PC1

)
≻0.
(18)

Since (11) is minimal and D̂T
1 D̂1 ≻ 0, the corresponding

ARE has a unique anti-stabilizing solution Z11. With Ĉ1 =

D̂−T
1

(
BT

1 Z11+DT
1 PC1

)
we conclude that A1−B1D̂

−1
1 Ĉ1 is

anti-stable. Note that Z11 has the additional property Z11 ≺ X̂

for all solutions X̂ of (18). With Ψ̂1=

[
A1 B1

Ĉ1 D̂1

]

, we infer that

Ψ∗

1PΨ1=Ψ̂∗

1Ψ̂1 where Ψ̂1 is square, invertible and Ψ̂−∗

1 stable.

It is now possible to define the stable transfer matrix Ψ̂3 :=

Ψ̂−∗

1 Ψ∗

1PΨ2 which admits the realization

Ψ̂3=

[
Â2 B̂2

Ĉ3 D̂3

]

=





−AT
1 +ĈT

1 D̂
−T
1 BT

1 P̂1C2 P̂1D2

0 A2 B2

−D̂−T
1 BT

1 P̂2C2 P̂2D2



, (19)

where P̂1 = (CT
1 − ĈT

1 D̂
−T
1 DT

1 )P and P̂2 = D̂−T
1 DT

1 P .
Clearly, since we chose to work with the anti-stabilizing so-

lution Z11, −AT
1 +ĈT

1 D̂
−T
1 BT

1 , and hence Ψ̂3 are stable.

Remark 5. In case (19) has uncontrollable modes one can al-
ways perform a simple state-coordinate change in order to ar-
rive at the following controllable realization:

Ψ̂3=

[
Â2 B̂2

Ĉ3 D̂3

]

=





⋆ ⋆ ⋆
0 A2 B2

⋆ P̂2C2 P̂2D2



. (20)

Now observe that, since statement (15) is satisfied, (9) and (10)
hold as well. We can hence infer that

Ψ∗

2PΨ2 −Ψ∗

2PΨ1(Ψ
∗

1PΨ1)
−1Ψ∗

1PΨ2≺0,

which can be written as

[⋆]
∗

P̃

[
Â2 B̂2

C̃2 D̃2

]

:=

(
Ψ2

Ψ̂3

)
∗
(
P 0
0 −I

)(
Ψ2

Ψ̂3

)

≺ 0.

By employing the KYP-Lemma, this inequality is equivalent to

the existence of some X̃ for which the following LMI holds:
(
ÂT

2 X̃+X̃Â2+C̃T
2 P̃ C̃2 X̃B̂2+C̃T

2 P̃ D̃2

B̂T
2 X̃+D̃T

2 P̃ C̃2 D̃T
2 P̃ D̃2

)

≺0. (21)

Here C̃2 = col(C2J, Ĉ3), D̃2 = col(D2, D̂3) and J =
(
0 I
)
.

In complete analogy to the first part of the proof, we can express

D̃T
2 P̃ D̃2 ≺ 0 as −γ2D̂T

2 D̂2 ≺ 0, where D̂2 is square and
invertible. With any such factorization (21) is identical to

ÂT
2X̃+X̃Â2+C̃T

2 P̃ C̃2+
1
γ2 (⋆)

TD̂−1
2 D̂−T

2

(
B̂T

2X̃+D̃T
2P̃ C̃2

)
≺0.

(22)

Since (Â2, B̂2) is controllable and D̂T
2 D̂2≻ 0, the correspond-

ing ARE has a unique stabilizing solution Z22, which has the

additional property Z22 ≺ X̃ for all solutions X̃ of (22). With

Ĉ2=D̂−T
2 (B̂T

2 Z22+D̃
T
2 P̃ C̃2) we conclude that Â2−B̂2D̂

−1
2 Ĉ2

is stable. With Ψ̂2 =

[
Â2 B̂2

Ĉ2 D̂2

]

, we infer that Ψ̃∗P̃ Ψ̃ = Ψ̂∗

2Ψ̂2

where Ψ̂2 is square, invertible and Ψ̂−1
2 stable. It is finally a

matter of direct verification that (16) holds.

Although, the initial ’old’ multiplier factorization Ψ∗PΨ ap-
pearing in the FDI (9) can now simply be replaced with the

’new’ factorization Ψ̂∗P̂ Ψ̂, it is far from trivial to see how this
can be done by using state-space arguments for the correspond-
ing LMI (12) and its certificate X . We need to find an LMI-
certificate for the frequency domain equation

Ψ̂∗P̂ Ψ̂−Ψ∗PΨ = 0 (23)

and ’merge’ the corresponding linear matrix equation with (12).
It is now very convenient to see that the constructive proof of
Theorem 4 allows us to infer that (23) is equivalent to

(⋆)
T













0 0 −Z11 Ĵ 0 0 0

0 0 ĴT −Z220 0 0

−Z11 Ĵ 0 0 0 0 0

ĴT −Z22 0 0 0 0 0
0 0 0 0 I 0 0
0 0 0 0 0−γ2I 0
0 0 0 0 0 0 −P

























I 0 0 0
0 I 0 0
A1 0 B1 0

0 Â2 0 B̂2

Ĉ1 Ĉ3 D̂1 D̂3

0 Ĉ2 0 D̂2

C1C2JD1D2













=0,

(24)
where Ĵ=(I 0 ).

As one of the key technical ingredients of Scherer and Köse
(2011), it is now possible to systematically merge the LMIs (12)

and (24). Indeed, let Ŵ and Wii, i = 1, 2 respectively satisfy

ĴÂ2Ĵ
T Ŵ+Ŵ ĴÂT

2 Ĵ
T ≺0 and

(
AT

i Wii +WiiAi − CT
i Ci WiiBi − CT

i Di

BT
i Wii −DT

i Ci −DT
i Di

)

≺0, i = 1, 2.

Then there exist ν > 0 and µ> 0 (that can be taken arbitrarily
small) such that

X̂ =





X11−Z11+νW11 X12J+Ĵ X13

JTX T
12+ĴT JT(X22+νW22)J−Z22+µĴTŴĴ JTX23

X T
13 X T

23J X33





satisfies the LMI

(⋆)
T











0 X̂ 0 0 0 0

X̂ 0 0 0 0 0
0 0 I 0 0 0
0 0 0−γ2I 0 0
0 0 0 0 I 0
0 0 0 0 0−γ2I
























I 0
A1 0 B1Cq
0 Â2 0
0 0 A

B1DqpB1Dqw

B̂2 0
Bp Bw

Ĉ1 Ĉ3 D̂1Cq
0 Ĉ2 0
0 0 Cz
0 0 0

D̂1Dee D̂1Dqw

D̂2 0
Dzp Dzw

0 I














≺0,

(25)

where Dee = Ddd + D̂−1
1 D̂3. This allows us to arrive at the

following reformulation of (12) where the uncertainty channels
are re-scaled and combined with the performance channels.

Lemma 6. Statement (15) holds if and only if X̂ ≻ 0 certifies
the LMI







I 0

Â B̂

Ĉ D̂
0 I







T





0 X̂ 0 0

X̂ 0 0 0
0 0 I 0
0 0 0−γ2I













I 0

Â B̂

Ĉ D̂
0 I






≺0, (26)

where

[

Â B̂

Ĉ D̂

]

:=










A1 −B1DqpD̂
−1
2 Ĉ2 B1CqB1DqpD̂

−1
2 B1Dqw

0 Â2−B̂2D̂
−1
2 Ĉ2 0 B̂2D̂

−1
2 0

0 −BpD̂
−1
2 Ĉ2 A BpD̂

−1
2 Bw

Ĉ1 Ĉ3−D̂1DeeD̂
−1
2 Ĉ2 D̂1Cq D̂1DeeD̂

−1
2 D̂1Dqw

0 −DzpD̂
−1
2 Ĉ2 Cz DzpD̂

−1
2 Dzw










.

(27)
If (26) is feasible, the closed-loop system (27), from which we
can directly extract the desired augmented weighted open-loop
generalized plant, is stable.
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Proof. Let us combine the uncertainty and performance chan-
nels by permuting the 4th and 5th block row/columns of the

middle matrix of (25) and, subsequently, eliminate Ĉ2 and

multiply D̂2 by its inverse respectively by performing a simple
congruence transformation. This directly yields (26) as well as
the closed-loop system (27). Finally, observe that (26) implies

X̂ Â+ ÂT X̂ ≺ 0. Since A1 and Â2 − B̂2D̂
−1
2 Ĉ2 are stable,

stability of A is, hence, equivalent to X̂ ≻0.

7. MAIN RESULTS

Based on the LMI reformulation of Lemma 6 and referring
to (6) it is now straightforward to extract the following aug-
mented weighted open-loop generalized plant from the aug-
mented closed-loop system (27) where the uncertainty channels
are re-scaled and adjoined to the performance channel:

Ĝnom=












A1−B1DqpD̂
−1
2 Ĉ2B1Cq B1DqpD̂

−1
2 B1Dqw B1Dqu

0 Â2−B̂2D̂
−1
2 Ĉ2 0 B̂2D̂

−1
2 0 0

0 −BpD̂
−1
2 Ĉ2 A BpD̂

−1
2 Bw Bu

Ĉ1 Ĉ3−D̂1D̂eeĈ2 D̂1Cq D̂1D̂ee D̂1Dqw D̂1Dqu

0 −DzpD̂
−1
2 Ĉ2 Cz DzpD̂

−1
2 Dzw Dzu

0 −DypD̂
−1
2 Ĉ2 Cy DypD̂

−1
2 Dyw 0












.

(28)
Here D̂ee = (Dqp + D̂−1

1 D̂3)D̂
−1
2 . The new augmented plant

can be used in Theorem 1 for the synthesis of a new robustified
H∞-controller.

We now have introduced all the ingredients that allow us
to formulate the following novel algorithm for the synthesis
of robust controllers. Note that we now incorporate τ as a
parameter.

Algorithm 7. (IQC-Synthesis). Initialize the synthesis by re-
spectively performing the following two steps:

- Perform the H∞-synthesis of Theorem 1. Feasibility
leads to a nominal H∞-controller that renders the nominal
L2-gain from w to z less than γnom>0.

- Construct the weighted closed-loop plant M and find, by
bisection, the largest τ for which the analysis LMIs of
Theorem 3 are feasible. The maximal τ for which (15)
still holds is denoted by τ̂ and the corresponding worst-
case L2-gain from w to z is given by γ̂≥γnom>0.

Now perform the following iteration:

- Construct the new augmented weighted open-loop gener-
alized plant (28) and perform the H∞-synthesis of Theo-
rem 1. Then for all ∆∈ τ̂∆ the resulting H∞-controller
stabilizes the system interconnection of Figure 1 and ren-
ders the L2-gain from w to z less than the new perfor-
mance level γj−1 with γ̂≥γj−1≥γnom>0.

- Construct the weighted closed-loop plant M and apply the
IQC analysis of Theorem 3. Then the resulting worst-case
L2-gain γj from w to z satisfies γ̂≥γj−1≥γj≥γnom>0.
(If τ̂ ≤ 1 one can try to increase τ .)

- Repeat the iteration until |γj−1−γj | ≤ ǫ for some small
ǫ > 0.

The iteration defines a sequence of performance levels γ̂≥γ1≥
γ2 ≥ γ3 ≥ . . . ≥ γnom > 0 and the resulting H∞-controller
guarantees stability and renders the L2-gain from w to z less
than γj>0 for all ∆ ∈ τ̂∆.

Remark 8. We finally remark that the LMI certificate X̂ for the
LMI (26) can be used as an initial condition in Theorem 1 in a
next iteration step in order to speed up the controller synthesis.

8. NUMERICAL EXAMPLE

The IQC-Synthesis algorithm has been applied to a mixed
sensitivity design problem from Skogestad and Postelwaite
(2005) extended with an actuator saturation and a measurement
delay block, as shown in Figure 3.

- - K - sat(·) - G1
- -? Gd

- e−δs

6
r

e

−

+ +uq1

d

y

Fig. 3. Block diagram of the disturbance process.

Here, respectively, G1 =
400

(s+20)2 , Gd =
10

(s+0.1) , δ ∈ [0, 0.05]

and

u=sat(q1)=

{
ū, q1 > ū
u, q1 ∈ [−ū, ū]

−ū, q1 < ū
, with ū = 1,

represent the plant and the disturbance model, the delay time
and the actuator saturation function. The synthesis objective is
to track the commanded reference signal r, while rejecting the
disturbances appearing at the input d and preventing the control
action to exceed the saturation limits.

In order to be able transform the system into the standard LFT
form, we introduce the following operator blocks:

∆1(q1)=

{
q1 − ū, q1 > ū

0, q1 ∈ [−ū, ū]
q1 + ū, q1 < ū

, ∆2(s) =
(
e−δs − 1

) 1

s
.

For further details on the parameterization and implementation
of the involved IQC-multipliers we refer the reader to Zames
and Falb (1968), Chen and Wen (1995) and Jun and Safonov
(2000). It is now straightforward to define the weighted closed-
loop uncertain system interconnection, shown in Figure 4.

- -

We

6

6

K -6

∆1(·)

? -6

6

Wu

G1
- -?

Wd

?

Gd
-

∆2s

?6

?

6
r

e

−

−

+ + ++
uq1

d q2

wdwuwe p1 p2

y

Fig. 4. Weighted closed-loop generalized plant.

The corresponding uncertain weighted open-loop generalized
plant G, hence, reads as







q1
q2
we

wu

e







=








0 0 0 0 1
−sGdG1 0 sGdWd 0 sGdG1

WeGdG1 −We −WeGdWd We −sWeGdG1

−Wu 0 0 0 Wu

GdG1 −1 −GdWd 1 −GdG1








︸ ︷︷ ︸








p1
p2
wd

r
q1







,

G

where, respectively, the weights were chosen as

Wp=
2(s+18)

3(s+0.0012) , Wu=
(s+10)
(s+100) , Wd=

(s+1000)
100(s+10) .

In Figure 5 the obtained simulation results are shown for two
controller implementations (i.e. a nominal and a robust con-
troller design). As can be seen the nominal controller Knom

(nom) tracks and rejects the reference and disturbance signal
well. However, if the system is simulated, while taking the
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Fig. 5. Time domain simulation results.

actuator saturation and measurement delay into account, the
performance degrades drastically (see Knom (unc)). In an at-
tempt to improve robust performance we have considered non-
dynamic (static) IQC-multipliers. However, this led to overly
conservative results. It is, on the other hand, very satisfactory
to see that robust performance can be significantly improved
by allowing for dynamics in the IQC-multipliers. Indeed, the
robust controllerKrob, has been designed by taking into account
the saturation constraint as well as the maximal delay time of
0.05 seconds. The improvement of robust performance is also
confirmed by the γ-levels that were obtained during the IQC-
synthesis iterations, as shown in Figure 6. As can be seen the
γ-levels converge and are consistent with the simulation results
of Figure 5.

9. CONCLUDING REMARKS

In this paper we have generalized our results on the systematic
synthesis of robust controllers to the use of arbitrary real ratio-
nal IQC-multipliers with no poles on the extended imaginary
axis. This allows us to perform robust controller synthesis for
a much larger class of uncertainties, involving nonlinearities as
well as bounds on rates of time-varying parametric uncertain-
ties, if compared to the classical µ-synthesis approaches. The
effectiveness of the synthesis algorithm has been demonstrated
through a numerical example. It has been shown that robust
performance can be systematically improved in a numerically
stable and reliable way.

 

 

0
2 4 6 8

10

10 12 14 16 18

20

20

30

40

50

60

70

80

90

100

iteration j

γsynthesis

γnominal

γ

Fig. 6. Obtained γ-levels during the IQC-synthesis iterations.
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